PAX5

Revision as of 20:33, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Paired box gene 5 (B-cell lineage specific activator)
File:PBB Protein PAX5 image.jpg
PDB rendering based on 1k78.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols PAX5 ; BSAP
External IDs Template:OMIM5 Template:MGI HomoloGene56419
RNA expression pattern
File:PBB GE PAX5 206802 at tn.png
File:PBB GE PAX5 221969 at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Paired box gene 5 (B-cell lineage specific activator), also known as PAX5, is a human gene.[1]

The PAX5 gene is a member of the paired box (PAX) family of transcription factors. The central feature of this gene family is a novel, highly conserved DNA-binding motif, known as the paired box. The PAX proteins are important regulators in early development, and alterations in the expression of their genes are thought to contribute to neoplastic transformation. The PAX5 gene encodes the B-cell lineage specific activator protein (BSAP) that is expressed at early, but not late stages of B-cell differentiation. Its expression has also been detected in developing CNS and testis, therefore, PAX5 gene product may not only play an important role in B-cell differentiation, but also in neural development and spermatogenesis. The PAX5 gene is located in chromosome 9p13 region, which is involved in t(9;14)(p13;q32) translocations recurring in small lymphocytic lymphomas of the plasmacytoid subtype, and in derived large-cell lymphomas. This translocation brings the potent E-mu enhancer of the IgH gene into close proximity of the PAX5 promoters, suggesting that the deregulation of PAX5 gene transcription contributes to the pathogenesis of these lymphomas. A transcript variant arising as a consequence of alternative promoter usage, and containing a different coding exon 1(B), has been described, however, its full-length nature is not known.[1]

See also

References

  1. 1.0 1.1 "Entrez Gene: PAX5 paired box gene 5 (B-cell lineage specific activator)".

Further reading

  • Hagman J, Wheat W, Fitzsimmons D; et al. (1999). "Pax-5/BSAP: regulator of specific gene expression and differentiation in B lymphocytes". Curr. Top. Microbiol. Immunol. 245 (1): 169–94. PMID 10533313.
  • Calame KL, Lin KI, Tunyaplin C (2003). "Regulatory mechanisms that determine the development and function of plasma cells". Annu. Rev. Immunol. 21: 205–30. doi:10.1146/annurev.immunol.21.120601.141138. PMID 12524387.
  • Carotta S, Holmes ML, Pridans C, Nutt SL (2007). "Pax5 maintains cellular identity by repressing gene expression throughout B cell differentiation". Cell Cycle. 5 (21): 2452–6. PMID 17102626.
  • Adams B, Dörfler P, Aguzzi A; et al. (1992). "Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis". Genes Dev. 6 (9): 1589–607. PMID 1516825.
  • Stapleton P, Weith A, Urbánek P; et al. (1995). "Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9". Nat. Genet. 3 (4): 292–8. doi:10.1038/ng0493-292. PMID 7981748.
  • Pilz AJ, Povey S, Gruss P, Abbott CM (1993). "Mapping of the human homologs of the murine paired-box-containing genes". Mamm. Genome. 4 (2): 78–82. PMID 8431641.
  • Busslinger M, Klix N, Pfeffer P; et al. (1996). "Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma". Proc. Natl. Acad. Sci. U.S.A. 93 (12): 6129–34. PMID 8650231.
  • Iida S, Rao PH, Nallasivam P; et al. (1996). "The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene". Blood. 88 (11): 4110–7. PMID 8943844.
  • Kaneko H, Ariyasu T, Inoue R; et al. (1998). "Expression of Pax5 gene in human haematopoietic cells and tissues: comparison with immunodeficient donors". Clin. Exp. Immunol. 111 (2): 339–44. PMID 9486401.
  • Verkoczy LK, Berinstein NL (1998). "Isolation of genes negatively or positively co-expressed with human recombination activating gene 1 (RAG1) by differential display PCR (DD RT-PCR)". Nucleic Acids Res. 26 (19): 4497–507. PMID 9742255.
  • Wheat W, Fitzsimmons D, Lennox H; et al. (1999). "The highly conserved beta-hairpin of the paired DNA-binding domain is required for assembly of Pax-Ets ternary complexes". Mol. Cell. Biol. 19 (3): 2231–41. PMID 10022910.
  • Eberhard D, Busslinger M (1999). "The partial homeodomain of the transcription factor Pax-5 (BSAP) is an interaction motif for the retinoblastoma and TATA-binding proteins". Cancer Res. 59 (7 Suppl): 1716s–1724s, discussion 1724s-1725s. PMID 10197586.
  • Libermann TA, Pan Z, Akbarali Y; et al. (1999). "AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter". J. Biol. Chem. 274 (35): 24671–6. PMID 10455134.
  • Nutt SL, Heavey B, Rolink AG, Busslinger M (1999). "Commitment to the B-lymphoid lineage depends on the transcription factor Pax5". Nature. 401 (6753): 556–62. doi:10.1038/44076. PMID 10524622.
  • Rolink AG, Nutt SL, Melchers F, Busslinger M (1999). "Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors". Nature. 401 (6753): 603–6. doi:10.1038/44164. PMID 10524629.
  • Kovac CR, Emelyanov A, Singh M; et al. (2000). "BSAP (Pax5)-importin alpha 1 (Rch1) interaction identifies a nuclear localization sequence". J. Biol. Chem. 275 (22): 16752–7. doi:10.1074/jbc.M001551200. PMID 10748034.
  • Eberhard D, Jiménez G, Heavey B, Busslinger M (2000). "Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family". EMBO J. 19 (10): 2292–303. doi:10.1093/emboj/19.10.2292. PMID 10811620.
  • Roberts EC, Deed RW, Inoue T; et al. (2001). "Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding". Mol. Cell. Biol. 21 (2): 524–33. doi:10.1128/MCB.21.2.524-533.2001. PMID 11134340.
  • Pasqualucci L, Neumeister P, Goossens T; et al. (2001). "Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas". Nature. 412 (6844): 341–6. doi:10.1038/35085588. PMID 11460166.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Template:WikiDoc Sources