Dihydrocodeine

Jump to: navigation, search
Dihydrocodeine
Dihydrocodeine Wiki Str.png
220px-Dihydrocodeine3DanJ.gif
Clinical data
AHFS/Drugs.comInternational Drug Names
Pregnancy
category
  • US: C (Risk not ruled out)
Routes of
administration
ATC code
Legal status
Legal status
  • AU: S2 (Pharmacy only)
    (S3) (S4) depending on dose and other constituents
  • UK: Class B
  • US: Schedule II
Pharmacokinetic data
Bioavailability20%[1]
Metabolism
Mainly hepatic, through CYP3A4 and CYP2D6
Elimination half-life4 hours[1]
Identifiers
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
FormulaC18H23NO3
Molar mass301.38 g/mol
3D model (JSmol)
 ☒N☑Y (what is this?)  (verify)

WikiDoc Resources for Dihydrocodeine

Articles

Most recent articles on Dihydrocodeine

Most cited articles on Dihydrocodeine

Review articles on Dihydrocodeine

Articles on Dihydrocodeine in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Dihydrocodeine

Images of Dihydrocodeine

Photos of Dihydrocodeine

Podcasts & MP3s on Dihydrocodeine

Videos on Dihydrocodeine

Evidence Based Medicine

Cochrane Collaboration on Dihydrocodeine

Bandolier on Dihydrocodeine

TRIP on Dihydrocodeine

Clinical Trials

Ongoing Trials on Dihydrocodeine at Clinical Trials.gov

Trial results on Dihydrocodeine

Clinical Trials on Dihydrocodeine at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Dihydrocodeine

NICE Guidance on Dihydrocodeine

NHS PRODIGY Guidance

FDA on Dihydrocodeine

CDC on Dihydrocodeine

Books

Books on Dihydrocodeine

News

Dihydrocodeine in the news

Be alerted to news on Dihydrocodeine

News trends on Dihydrocodeine

Commentary

Blogs on Dihydrocodeine

Definitions

Definitions of Dihydrocodeine

Patient Resources / Community

Patient resources on Dihydrocodeine

Discussion groups on Dihydrocodeine

Patient Handouts on Dihydrocodeine

Directions to Hospitals Treating Dihydrocodeine

Risk calculators and risk factors for Dihydrocodeine

Healthcare Provider Resources

Symptoms of Dihydrocodeine

Causes & Risk Factors for Dihydrocodeine

Diagnostic studies for Dihydrocodeine

Treatment of Dihydrocodeine

Continuing Medical Education (CME)

CME Programs on Dihydrocodeine

International

Dihydrocodeine en Espanol

Dihydrocodeine en Francais

Business

Dihydrocodeine in the Marketplace

Patents on Dihydrocodeine

Experimental / Informatics

List of terms related to Dihydrocodeine

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Dihydrocodeine is a semi-synthetic opioid analgesic prescribed for pain or severe dyspnea, or as an antitussive, either alone or compounded with paracetamol (as in co-dydramol) or aspirin. It was developed in Germany in 1908 and first marketed in 1911.[2]

Commonly available as tablets, solutions, elixirs, and other oral forms, dihydrocodeine is also available in some countries as an injectable solution for deep subcutaneous and intra-muscular administration. As with codeine, intravenous administration should be avoided, as it could result in anaphylaxis and dangerous pulmonary edema. In past times, dihydrocodeine suppositories were used; however, dihydrocodeine is available in suppository form on prescription.

Dihydrocodeine is used as an alternative or adjunct to codeine for the aforementioned indications. It is available as the following salts, in rough descending order of frequency of use: bitartrate, phosphate, hydrochloride, tartrate, hydroiodide, methyliodide, hydrobromide, sulfate, and thiocyanate. The salt to free base conversion factors are 0.67 for the bitartrate, 0.73 for the phosphate, and 0.89 for the hydrochloride.

Dihydrocodeine was developed during the intense international search for more effective antitussives, especially to help reduce the airborne spread of tuberculosis, pertussis, pneumonia, and similar diseases, in the years from c.a. 1895 to 1915, and is similar in chemical structure to codeine. Depending on individual metabolism, dihydrocodeine is 100 to 150 percent as strong as codeine[citation needed]. Although dihydrocodeine does have extremely active metabolites, in the form of dihydromorphine and dihydromorphine-6-glucuronide (one hundred times more potent), these metabolites are produced in such small amount that they do not have clinically important effects.[3]

Dihydrocodeine is also the original member and chemical base of a number of similar semi-synthetic opiates such as acetyldihydrocodeine, dihydrocodeine enol acetate, dihydroisocodeine, nicocodeine, and nicodicodeine.

Indications

Approved indication for dihydrocodeine is the management of moderate to moderately severe pain as well as coughing and shortness of breath. As is the case with other drugs in this group, the antitussive dose tends to be less than the analgesic dose, and dihydrocodeine is a powerful cough suppressant like all other members of the immediate codeine family (see below) and their cousins hydrocodone, oxycodone and ethylmorphine, whole opium preparations, and the strong opioid hydromorphone.

For use against pain, dihydrocodeine is usually formulated as tablets or capsules containing a quarter grain (15 or 16 mg) or a half grain (30 or 32 mg) with or without other active ingredients such as aspirin, paracetamol (acetaminophen), ibuprofen, or others. The usual dose is one tablet taken every 4–6 hours when necessary.

Controlled-release dihydrocodeine is available for both pain and coughing as indicated below as waxy tablets containing 60 to 120 mg of the drug, and some formulations intended for use against coughing and the like have other active ingredients such as antihistamines, decongestants and others. Generally, the starting dose would be 60 mg every 12 hours. Other oral formulations such as packets of effervescent powder, sublingual drops, elixirs and the like are also available in many places.

Injectable dihydrocodeine is most often given as a deep subcutaneous shot.

The above doses are typical starting doses for "opioid naïve" patients. Existing tolerance to opioids and more severe pain (up to about 6 or 7 on a 1 to 10 scale perhaps) call for higher doses; dihydrocodeine may be more like hydrocodone and oxycodone than codeine and ethylmorphine in lacking a theoretical analgesic ceiling, but toxicity of other ingredients (especially aspirin and paracetamol) and/or the side effects of the opioid itself—especially vasodilation, itching, and other effects of the large quantities of histamine released in the body—generally supervene and thus limit dihydrocodeine to the middle range of painkillers, viz. between ethylmorphine and nicocodeine on the continuum. Controlled-release dihydrocodeine is often taken every 8 hours and even 6 especially when titrating the dose in chronic pain cases and similar situations. Different authorities list the maximum daily dose for dihydrocodeine as being anywhere from 240 mg to 720 mg, all other things being equal.

Preparations and availability

Dihydrocodeine products which can be purchased over the counter in many European and Pacific Rim countries generally contain from 2 to 20 mg of dihydrocodeine per dosing unit combined with one or more other active ingredients such as paracetamol, aspirin, ibuprofen, antihistamines, decongestants, vitamins, medicinal herb preparations and other such ingredients. In a subset of these countries and foreign possessions, 30 mg tablets and 60 mg controlled-release tablets are available over the counter and chemists may very well be able to dispense the 90 and 120 mg strengths at their discretion.

In the United States, the most common analgesic brands with dihydrocodeine are: DHC Plus (16 and 32 mg), Panlor SS (32 mg), ZerLor (32 mg), Panlor DC (16 mg) and Synalgos DC (16 mg). These combination products also include paracetamol (acetaminophen) and caffeine. Aspirin is used in the case of Synalgos DC.

Dihydrocodeine is sometimes marketed in combination preparations with paracetamol as co-dydramol (BAN) to provide greater pain relief than either agent used singly (see examples of synergy).

In the UK and other countries, 30-mg tablets containing only dihydrocodeine as the active ingredient are available, also a 40-mg Dihydrocodeine tablet is available in the UK as DF-118 Forte.

The original dihydrocodeine product, Paracodin, is an elixir of dihydrocodeine hydroiodide also available as a Tussionex-style suspension in many European countries.

In many European countries and elsewhere in the world, the most commonly found dihydrocodeine preparations are extended-release tablets made by encasing granules of the ingredient mixture, almost always using the bitartrate salt of dihydrocodeine, of four different sizes in a wax-based binder. The usual strengths are 60, 90, and 120 mg. These tablets are used in some countries, such as Austria, as an alternative to methadone (MS-Contin/MST-Continus type medications and buprenorphine are also used for this purpose) for management of opiate addiction. Common trade names for the extended-release tablets are Didor Continus, Codidol, Codi-Contin, Dicodin (made in France and the major product containing the tartrate salt), Contugesic, DHC, and DHC Continus.

Dihydrocodeine is available in Japan as tablets which contain 2½ mg of dihydrocodeine phosphate and caffeine, the decongestant d,l-methylephedrine HCl, and the antihistamine chlorpheniramine, and packets of granules which effervesce like Alka-Seltzer with 10 mg of dihydrocodeine with lysozyme and chlorpheniramine, marketed for OTC sale as New Bron Solution-ACE. These two formulations may have once contained phenyltoloxamine citrate as the antihistamine component.

Elsewhere in the Pacific Rim, Dicogesic in analogous to Glaxo/Smith-Kline's DF-118.

The manufacturer of New Bron Solution-ACE; SS Pharmaceutical Co., Ltd, also markets an ibuprofen with dihydrocodeine product called S.Tac EVE, which also includes d,l-methylephedrine HCl, chlorpheniramine, anhydrous caffeine, and vitamins B1 and C.

The Panlor series is manufactured by Pan-American Laboratories of Covington, Louisiana, and they also market several dihydrocodeine-based prescription cough syrups in the United States.

Side-effects

As with other opioids, tolerance and physical and psychological dependence develop with repeated dihydrocodeine use. All opioids can impair the mental and/or physical abilities required for the performance of potentially hazardous tasks such as driving or operating machinery if taken in large doses.

Itching and flushing and other effects of blood vessel dilation are also common side-effects, due to histamine release in response to the drug using one or more types of receptors in the CNS and/or other responses elsewhere in the body. First-generation antihistamines such as tripelennamine (Pyrabenzamine), clemastine (Tavist), hydroxyzine (Atarax), diphenhydramine (Benadryl), cyproheptadine (Periactin), brompheniramine (Dimetapp), chlorphenamine (Chlor-Trimeton), doxylamine (NyQuil) and phenyltoloxamine (Percogesic Original Formula) not only combat the histamine-driven side-effects, but are analgesic-sparing (potentiating) in various degrees. The antihistamine promethazine (Phenergan) may also have a positive effect on hepatic metabolism of dihydrocodeine as it does with codeine. Higher doses of promethazine may interfere with most other opioids with the exception of the pethidine family (Demerol and the like) by this and/or other unknown mechanisms.

As with all drugs, side-effects depend on the person taking the medication. They can range in severity from mild to extreme, from headaches to difficulty breathing.

Constipation is the one side-effect of dihydrocodeine and almost all opioids which is near-universal. It results from the slowing of peristalsis in the gut and is a reason why dihydrocodeine, ethylmorphine, codeine, opium preparations, and morphine are used to stop diarrhoea and combat irritable bowel syndrome (IBS) in its diarrhoeal and cyclical forms as well as other conditions causing hypermotility and/or intestinal cramping. Opium/Opioid preparations are used often as a last resort, where pain is severe and the Bowels are organically loose. It is generally better to treat IBS with a non psycho-tropic opioid such as Loperamide hydrochloride which stays contained in the Bowel, thereby not causing drowsy effects and allowing many people to work using machines etc. For IBS, hyoscine butylbromide (Buscopan in the UK) and mebeverine hydrochloride (Colofac) can be effective with or without an opium related compound.

Regulation

Hong Kong 
In Hong Kong, dihydrocodeine is regulated under Schedule 1 of Hong Kong's Chapter 134 Dangerous Drugs Ordinance. It can only be used legally by health professionals and for university research purposes. A pharmacist can dispense Dihydrocodeine when furnished with a doctors prescription. Anyone who supplies the substance without a prescription can be fined $10000 (HKD). The penalty for trafficking or manufacturing the substance is a $5,000,000 (HKD) fine and life imprisonment. Possession of the substance for consumption, without a licence from the Department of Health, is illegal and carries a $1,000,000 (HKD) fine and/or 7 years imprisonment.
Japan 
In Japan, dihydrocodeine is available without a prescription; used in cough medicines such as New Bron Solution-ACE. Dihydrocodeine is used as an antitussive in many products as a Dextromethorphan alternative. Medicines in Japan which contain dihydrocodeine are coupled with caffeine to offset the sedative effects and discourage recreational use. Cough medicines containing dihydrocodeine are controlled similarly to dextromethrophan in the United States, in that its sale is strictly limited by purchase quantity and is restricted to persons 20 and older for purchase.
United Kingdom 
In the United Kingdom, dihydrocodeine is a Class B drug; but, it is available over-the-counter in small amounts (less than 8 mg), when combined with paracetamol (see co-dydramol). Dihydrocodeine is listed in Schedule 5 of the Misuse of Drugs Regulations 2001 whereby it is exempt from prohibition on possession provided that it is in the form of a single preparation not being designed for injection and less than 100 mg (calculated as free base) or with a total concentration less than 2.5% (calculated as free base). Illegal possession of dihydrocodeine can result in up to 5 years in prison and/or an unlimited fine.
United States 
In the USA, dihydrocodeine is a DEA Schedule II substance, although preparations containing small amounts of dihydrocodeine are classified as Schedule III or Schedule V, depending on the concentration of dihydrocodeine relative to other active constituents, such as paracetamol (acetaminophen). This scheduling is similar to the UK's. The DEA's ACSCN for dihydrocodeine free base and all salts is 9120. The 2013 annual aggregate manufacturing quota is 250 kilos.

International treaties and the controlled-substances laws of most countries, such as the German Betäubungsmittelgesetz, regulate dihydrocodeine at the same level as codeine. Dihydrocodeine-based pharmaceuticals are especially used where chronic pain patients are able to have essentially OTC access to them provided they are registered with the provincial or national government as such a patient.

Controlled-release dihydrocodeine is a non-prescription item in some places, especially the 60 mg strength. A report by the Ivo Šandor Organisation in 2004 listed Andorra, Spain, Gibraltar and Austria as having varying degrees of access to these and other dihydrocodeine, nicocodeine and codeine products.

Chemistry

Dihydrocodeine is the parent drug of a series of moderately strong narcotics including, among others, hydrocodone, nicocodeine, nicodicodeine, thebaine and acetyldihydrocodeine.

From the point of view of the organic chemist, the removal of the double bond makes the structure much more stable. It is more resistant to metabolic attack (hence a duration of action of 6 hours rather than 4 for codeine). It is also more stable in acidic, high-temperature environments. Whereas converting codeine to morphine is a difficult and unrewarding task, dihydrocodeine can be converted to dihydromorphine with very high yields (over 95%). Dihydromorphine is widely used in Japan. The dihydromorphine can be quantitatively converted to hydromorphone using potassium tert butoxide.

Dihydrocodeine can be presumptively detected by the Froehde reagent.

Recreational use

As dihydrocodeine can provide a euphoric high when taken in higher-than-therapeutic doses, it is quite commonly abused recreationally. The typical recreational dose can be anything from 70 mg to 500 mg, or, in users with tolerance, even more. Potentiators and adjuvants are often included when dihydrocodeine is used in an unsupervised fashion, especially carisoprodol, hydroxyzine and first-generation antihistamines, both to intensify the effect and lessen side-effects such as itching.[4]

History

Two famous users of dihydrocodeine were William S. Burroughs, who described it as "twice as strong as codeine and almost as good as heroin" and Hermann Göring, who consumed up to 100 tablets (3 grams) of dihydrocodeine per day and was captured by the Allies with a large quantity of the drug in a suitcase, reportedly more than twenty thousand tablets, quite probably the entire world supply at the time.[5] He was also very fond of morphine and oxycodone (Eukodal), beginning with therapeutic use of morphine after being wounded in the groin during the November 1923 Beer Hall Putsch in Munich and then specifically starting dihydrocodeine therapy in the early 1930s for a toothache.[6] [7]

Brand names

Brand names for dihydrocodeine products include Drocode, Paracodeine and Parzone. Its many brand names include Synalgos DC, Panlor DC, Panlor SS, Contugesic, New Bron Solution-ACE, Huscode, Drocode, Paracodin, Codidol, Dehace, Didor Continus, Dicogesic, Codhydrine, Dekacodin, DH-Codeine, Didrate, Dihydrin, Hydrocodin, Nadeine, Novicodin, Rapacodin, Fortuss, Paramol, Remedeine, Dico and DF-118.

References

  1. 1.0 1.1 Rowell F, Seymour R, Rawlins M (1983). "Pharmacokinetics of intravenous and oral dihydrocodeine and its acid metabolites". Eur J Clin Pharmacol. 25 (3): 419–24. doi:10.1007/BF01037958. PMID 6628531.
  2. http://books.google.co.uk/books?id=qoyYobgX0uwC&pg=PA404&lpg=PA404&dq=dihydrocodeine+1908+1911&source=bl&ots=Y7ALb1Yqjo&sig=FIkb3K4UwiXhn8LeO2EzXgxOGQk&hl=en&sa=X&ei=-mq9UsT5J4a10QXT0ID4CQ&ved=0CEQQ6AEwAzgK#v=onepage&q=dihydrocodeine%201908%201911&f=false
  3. Schmidt H, Vormfelde S, Walchner-Bonjean M, Klinder K, Freudenthaler S, Gleiter C, Gundert-Remy U, Skopp G, Aderjan R, Fuhr U (2003). "The role of active metabolites in dihydrocodeine effects". Int J Clin Pharmacol Ther. 41 (3): 95–106. PMID 12665158.
  4. Jack El-Hai : The Nazi and the Psychiatrist: Hermann Göring, Dr. Douglas M. Kelley, and a Fatal Meeting of Minds at the End of WWII, Publisher: PublicAffairs, 2013, ISBN 161039156X
  5. http://books.google.com/books?id=T93nvBI0gfIC&pg=PA34&dq=Hermann+Goering+pills&hl=en&ei=GbcaTLmNPI2TkAXWipWpBg&sa=X&oi=book_result&ct=result&resnum=6&ved=0CD4Q6AEwBQ#v=onepage&q&f=true
  6. http://gaijinass.com/2010/07/12/world-leaders-that-had-serious-drug-addictions/
  7. http://books.google.com/books?id=T93nvBI0gfIC&pg=PA34&dq=Hermann+Goering+pills&hl=en&ei=GbcaTLmNPI2TkAXWipWpBg&sa=X&oi=book_result&ct=result&resnum=6&ved=0CD4Q6AEwBQ#v=onepage&q&f=true



Linked-in.jpg