Dopamine receptor D1: Difference between revisions

Jump to navigation Jump to search
m (Bot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +))
 
m (Fix Category:Pages using citations with accessdate and no URL when permanent identifier present; possible ref cleanup; WP:GenFixes on; using AWB)
Line 1: Line 1:
{{Wrongtitle|title=Dopamine receptor D<sub>1</sub>}}
{{DISPLAYTITLE:Dopamine receptor D<sub>1</sub>}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Dopamine receptor D<sub>1</sub>''', also known as '''DRD1''', is a [[protein]] that in humans is encoded by the ''DRD1'' [[gene]].<ref name="pmid2144334">{{cite journal | vauthors = Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG | title = Molecular cloning and expression of the gene for a human D<sub>1</sub> dopamine receptor | journal = Nature | volume = 347 | issue = 6288 | pages = 72–6 | date = September 1990 | pmid = 2144334 | doi = 10.1038/347072a0 }}</ref><ref name="pmid2168520">{{cite journal | vauthors = Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HH, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O | title = Cloning and expression of human and rat D<sub>1</sub>dopamine receptors | journal = Nature | volume = 347 | issue = 6288 | pages = 76–80 | date = September 1990 | pmid = 2168520 | doi = 10.1038/347076a0 }}</ref><ref name="pmid1975640">{{cite journal | vauthors = Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y | title = Human dopamine D<sub>1</sub> receptor encoded by an intronless gene on chromosome 5 | journal = Nature | volume = 347 | issue = 6288 | pages = 80–3 | date = September 1990 | pmid = 1975640 | doi = 10.1038/347080a0 }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = no
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
==Tissue distribution==
{{GNF_Protein_box
| image =
| image_source =
| PDB =  
| Name = Dopamine receptor D1
| HGNCid = 3020
| Symbol = DRD1
| AltSymbols =; DADR; DRD1A
| OMIM = 126449
| ECnumber = 
| Homologene = 30992
| MGIid = 99578
| GeneAtlas_image1 = PBB_GE_DRD1_214652_at_tn.png
| Function = {{GNF_GO|id=GO:0001584 |text = rhodopsin-like receptor activity}} {{GNF_GO|id=GO:0001590 |text = dopamine D1 receptor activity}} {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0004952 |text = dopamine receptor activity}}
| Component = {{GNF_GO|id=GO:0005623 |text = cell}} {{GNF_GO|id=GO:0005624 |text = membrane fraction}} {{GNF_GO|id=GO:0005886 |text = plasma membrane}} {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}}
| Process = {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0007187 |text = G-protein signaling, coupled to cyclic nucleotide second messenger}} {{GNF_GO|id=GO:0007190 |text = adenylate cyclase activation}} {{GNF_GO|id=GO:0007191 |text = dopamine receptor, adenylate cyclase activating pathway}} {{GNF_GO|id=GO:0007204 |text = elevation of cytosolic calcium ion concentration}} {{GNF_GO|id=GO:0007268 |text = synaptic transmission}} {{GNF_GO|id=GO:0007399 |text = nervous system development}} {{GNF_GO|id=GO:0007617 |text = mating behavior}} {{GNF_GO|id=GO:0007626 |text = locomotory behavior}} {{GNF_GO|id=GO:0042493 |text = response to drug}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 1812
    | Hs_Ensembl = ENSG00000184845
    | Hs_RefseqProtein = NP_000785
    | Hs_RefseqmRNA = NM_000794
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 5
    | Hs_GenLoc_start = 174800643
    | Hs_GenLoc_end = 174803769
    | Hs_Uniprot = P21728
    | Mm_EntrezGene = 13488
    | Mm_Ensembl = ENSMUSG00000021478
    | Mm_RefseqmRNA = NM_010076
    | Mm_RefseqProtein = NP_034206
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 13
    | Mm_GenLoc_start = 54061276
    | Mm_GenLoc_end = 54065279
    | Mm_Uniprot = Q80T33
  }}
}}


Based upon [[Northern blot]] and [[in situ hybridization]], DRD1 [[gene expression|mRNA expression]] in the [[central nervous system]] is highest in the [[dorsal striatum]] ([[caudate nucleus|caudate]] and [[putamen]]) and [[ventral striatum]] ([[nucleus accumbens]] and [[olfactory tubercle]]).<ref name="DRD1 expression" />  Lower levels of DRD1 mRNA expression occur in the [[basolateral amygdala]], [[cerebral cortex]], [[septum]], [[thalamus]], and [[hypothalamus]].<ref name="DRD1 expression">{{cite book|vauthors=Schetz JA, Sibley DR|editor1-last=Sibley DR|title=Handbook of Contemporary Neuropharmacology|date=2007|publisher=Wiley-Interscience|location=Hoboken, NJ|isbn=9780471660538|page=226|chapter=Chapter 7: Dopaminergic Neurotransmission|quote=Localization of the D1 receptor messenger ribonucleic acid (mRNA) expression has been mapped using Northern analysis and in situ hybridization (for a review, see [54]). Expression of D1 receptor mRNA is highest in the caudate putamen, nucleus accumbens, and olfactory tubercle. Lower levels of expression are found in the basolateral amygdala, cerebral cortex, septum, thalamus, and hypothalamus.}}</ref>


==Overview==
== Function ==
'''Dopamine receptor D<sub>1</sub>''', also known as '''DRD1''', is a human [[gene]].
The D<sub>1</sub> subtype of the [[dopamine receptor]] is the most abundant dopamine receptor in the central nervous system. This [[G-protein coupled receptor]] is Gs/a coupled and indirectly activates [[cyclic AMP-dependent protein kinase]], stimulating the neuron. D<sub>1</sub> receptors regulate neuronal growth and development, mediate some behavioral responses, and modulate [[dopamine receptor D2|dopamine receptor D<sub>2</sub>]]-mediated events.<ref>{{Cite journal |title=D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease |author1=ML Paul |author2=AM Graybiel |author3=JC David |author4=HA Robertson |journal= The Journal of Neuroscience |year=1992 |volume=12 |issue=10 |pages=3729–3742 |url=http://www.jneurosci.org/content/12/10/3729.short}}</ref> Alternative transcription initiation sites result in two transcript variants of the gene.<ref name="entrez">{{cite web | title = Entrez Gene: DRD1 dopamine receptor D<sub>1</sub>| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1812| accessdate = }}</ref> [[D1-D2 dopamine receptor heteromer]] formation is observed.


This gene encodes the D<sub>1</sub> subtype of the [[dopamine receptor]]. The D<sub>1</sub> subtype is the most abundant dopamine receptor in the central nervous system. This [[G-protein coupled receptor]] stimulates [[adenylyl cyclase]] and activates [[cyclic AMP-dependent protein kinase]]s. D<sub>1</sub> receptors regulate neuronal growth and development, mediate some behavioral responses, and modulate [[dopamine receptor D2|dopamine receptor D<sub>2</sub>]]-mediated events. Alternate transcription initiation sites result in two transcript variants of this gene.<ref name="entrez">{{cite web | title = Entrez Gene: DRD1 dopamine receptor D1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1812| accessdate = }}</ref>
== Production ==
The DRD1 gene expresses primarily in the [[caudate putamen]] in humans, and in the [[caudate putamen]], the [[nucleus accumbens]] and the [[olfactory tubercle]] in mouse. Gene expression patterns from the [[Allen Brain Atlas]]es in mouse and human can be found [http://www.brain-map.org/search/index.html?query=drd1 here].


==Ligands==
== Ligands ==
* (+)-''trans''-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6''H''-chromeno[3,4-''c'']isoquinoline, a [[Chromane|chromano]] (oxygen) [[bioisostere]] of [[dihydrexidine]], potent full agonist, selective over D<sub>2</sub><ref name="pmid17154515">{{cite journal | author = Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE | title = trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D<sub>1</sub> receptor full agonist | journal = J. Med. Chem. | volume = 49 | issue = 23 | pages = 6848–57 | year = 2006 | pmid = 17154515 | doi = 10.1021/jm0604979 | issn = }}</ref>
There are a number of ligands selective for the D<sub>1</sub> receptors. To date, most of the known ligands are based on [[dihydrexidine]] or the prototypical [[benzazepines|benzazepine]] partial agonist SKF-38393 (one derivative being the prototypical antagonist SCH-23390).<ref name="pmid18642350">{{cite journal | vauthors = Zhang J, Xiong B, Zhen X, Zhang A | title = Dopamine D<sub>1</sub> receptor ligands: where are we now and where are we going. | journal = Med Res Rev. | volume = 29 | issue = 2 | pages = 272–294 | year = 2009 | pmid = 18642350 | doi = 10.1002/med.20130 }}</ref> D<sub>1</sub> receptor has a high degree of [[Sequence homology|structural homology]] to another dopamine receptor, [[dopamine receptor D5|D<sub>5</sub>]], and they both bind similar drugs.<ref name="Suhanara">{{cite journal | vauthors = Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB | title = Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1 | journal = Nature | volume = 350 | issue = 6319 | pages = 614–9 | year = 1991 | pmid = 1826762 | doi = 10.1038/350614a0 }}</ref> As a result, none of the known orthosteric ligands is selective for the D<sub>1</sub> vs. the D<sub>5</sub> receptor, but the benzazepines generally are more selective for the D<sub>1</sub> and D<sub>5</sub> receptors versus the D<sub>2</sub>-like family.<ref name="pmid18642350"/> Some of the benzazepines have high intrinsic activity whereas others do not. In 2015 the first [[allosteric modulator|positive allosteric modulator]] for the human D<sub>1</sub> receptor was discovered by [[high-throughput screening]].<ref name="pmid26109678">{{cite journal |vauthors=Lewis MA, Hunihan L, Watson J, Gentles RG, Hu S, Huang Y, Bronson J, Macor JE, Beno BR, Ferrante M, Hendricson A, Knox RJ, Molski TF, Kong Y, Cvijic ME, Rockwell KL, Weed MR, Cacace AM, Westphal RS, Alt A, Brown JM |title=Discovery of D1 Dopamine Receptor Positive Allosteric Modulators: Characterization of Pharmacology and Identification of Residues that Regulate Species Selectivity |journal=J. Pharmacol. Exp. Ther. |volume=354 |issue=3 |pages=340–9 |year=2015 |pmid=26109678 |doi=10.1124/jpet.115.224071 |url=}}</ref>
* A-86929, full agonist<ref name="pmid7658429">{{cite journal | author = Michaelides MR, Hong Y, DiDomenico S, Asin KE, Britton DR, Lin CW, Williams M, Shiosaki K | title = (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1 agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431) | journal = J. Med. Chem. | volume = 38 | issue = 18 | pages = 3445–7 | year = 1995 | pmid = 7658429 | doi = 10.1021/jm00018a002 | issn = }}</ref><ref name="pmid14971926">{{cite journal | author = Yamashita M, Yamada K, Tomioka K | title = Construction of arene-fused-piperidine motifs by asymmetric addition of 2-trityloxymethylaryllithiums to nitroalkenes: the asymmetric synthesis of a dopamine D<sub>1</sub> full agonist, A-86929 | journal = J. Am. Chem. Soc. | volume = 126 | issue = 7 | pages = 1954–5 | year = 2004 | pmid = 14971926 | doi = 10.1021/ja031760n | issn = }}</ref>


[[Image:D1 agonists.png|thumbnail|left|325px|Chemical structures of selective D<sub>1</sub> receptor agonists.<ref name="pmid17154515"/><ref name="pmid7658429"/>]]
===Agonists===
{{-}}
[[Image:D1 agonists.png|thumbnail|right|320px|Chemical structures of selective D<sub>1</sub> receptor agonists.<ref name="pmid17154515">{{cite journal | vauthors = Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE | title = trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist | journal = J. Med. Chem. | volume = 49 | issue = 23 | pages = 6848–57 |date=November 2006 | pmid = 17154515 | doi = 10.1021/jm0604979 | url = }}</ref><ref name="pmid7658429"/>]]


==See also==
Several D<sub>1</sub> receptor agonists are used clinically. These include [[apomorphine]], [[pergolide]], [[rotigotine]], and [[terguride]]. All of these drugs are preferentially [[D2-like receptor|D<sub>2</sub>-like receptor]] agonists. [[Fenoldopam]] is a selective D<sub>1</sub> receptor [[partial agonist]] that does not cross the [[blood-brain-barrier]] and is used [[intravenous]]ly in the treatment of [[hypertension]]. [[Dihydrexidine]] and [[adrogolide]] (ABT-431) (a [[prodrug]] of [[A-86929]] with improved [[bioavailability]]) are the only selective, centrally active [[D1-like receptor|D<sub>1</sub>-like receptor]] agonists that have been studied clinically in humans.<ref name="RosellZaluda2014">{{cite journal|last1=Rosell|first1=Daniel R|last2=Zaluda|first2=Lauren C|last3=McClure|first3=Margaret M|last4=Perez-Rodriguez|first4=M Mercedes|last5=Strike|first5=K Sloan|last6=Barch|first6=Deanna M|last7=Harvey|first7=Philip D|last8=Girgis|first8=Ragy R|last9=Hazlett|first9=Erin A|last10=Mailman|first10=Richard B|last11=Abi-Dargham|first11=Anissa|last12=Lieberman|first12=Jeffrey A|last13=Siever|first13=Larry J|title=Effects of the D1 Dopamine Receptor Agonist Dihydrexidine (DAR-0100A) on Working Memory in Schizotypal Personality Disorder|journal=Neuropsychopharmacology|volume=40|issue=2|year=2014|pages=446–453|issn=0893-133X|doi=10.1038/npp.2014.192|pmid=25074637|pmc=4443959}}</ref> They produced dose-limiting profound [[hypotension]] and [[dyskinesia]]s, respectively, and were not further developed for clinical use.<ref name="RosellZaluda2014" /><ref name="pmid9844789">{{cite journal | vauthors = Blanchet PJ, Fang J, Gillespie M, Sabounjian L, Locke KW, Gammans R, Mouradian MM, Chase TN | title = Effects of the full dopamine D1 receptor agonist dihydrexidine in Parkinson's disease | journal = Clin Neuropharmacol | volume = 21 | issue = 6 | pages = 339–43 | year = 1998 | pmid = 9844789 | doi = | url = }}</ref><ref name="GiardinaWilliams2006">{{cite journal|last1=Giardina|first1=William J.|last2=Williams|first2=Michael|title=Adrogolide HCl (ABT-431; DAS-431), a Prodrug of the Dopamine D1 Receptor Agonist, A-86929: Preclinical Pharmacology and Clinical Data|journal=CNS Drug Reviews|volume=7|issue=3|year=2006|pages=305–316|issn=1080-563X|doi=10.1111/j.1527-3458.2001.tb00201.x|pmid=11607045}}</ref>
 
====List of D<sub>1</sub> receptor agonists====
* Dihydrexidine derivatives
** [[A-86929]] - full agonist with 14-fold selectivity for D<sub>1</sub>-like receptors over D<sub>2</sub><ref name="pmid18642350" /><ref name="pmid7658429">{{cite journal | vauthors = Michaelides MR, Hong Y, DiDomenico S, Asin KE, Britton DR, Lin CW, Williams M, Shiosaki K | title = (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D<sub>1</sub>agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431) | journal = J. Med. Chem. | volume = 38 | issue = 18 | pages = 3445–7 | year = 1995 | pmid = 7658429 | doi = 10.1021/jm00018a002 }}</ref><ref name="pmid14971926">{{cite journal | vauthors = Yamashita M, Yamada K, Tomioka K | title = Construction of arene-fused-piperidine motifs by asymmetric addition of 2-trityloxymethylaryllithiums to nitroalkenes: the asymmetric synthesis of a dopamine D<sub>1</sub> full agonist, A-86929 | journal = J. Am. Chem. Soc. | volume = 126 | issue = 7 | pages = 1954–5 | year = 2004 | pmid = 14971926 | doi = 10.1021/ja031760n }}</ref>
** [[Dihydrexidine]] - full agonist with 10-fold selectivity for D<sub>1</sub>-like receptors over D<sub>2</sub> that has been in Phase IIa clinical trials as a cognitive enhancer.<ref name="pmid17596915">{{cite journal | vauthors = Mu Q, Johnson K, Morgan PS, Grenesko EL, Molnar CE, Anderson B, Nahas Z, Kozel FA, Kose S, Knable M, Fernandes P, Nichols DE, Mailman RB, George MS | title = A single 20 mg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia. | journal = Schizophr Res. | volume = 94 | issue = 1–3 | pages = 332–341 | year = 2007 | pmid = 17596915 | doi = 10.1016/j.schres.2007.03.033 }}</ref><ref name="pmid17467956">{{cite journal | vauthors = George MS, Molnar CE, Grenesko EL, Anderson B, Mu Q, Johnson K, Nahas Z, Knable M, Fernandes P, Juncos J, Huang X, Nichols DE, Mailman RB | title = A single 20 mg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia. | journal = Schizophr Res. | volume = 93 | issue = 1–3 | pages = 42–50 | year = 2007 | pmid = 17467956 | doi = 10.1016/j.schres.2007.03.011 }}</ref>  It also showed profound antiparkinson effects in MPTP-treated primates,<ref name="pmid1680717">{{cite journal | vauthors = Taylor JR, Lawrence MS, Redmond DE, Elsworth JD, Roth RH, Nichols DE, Mailman RB | title = Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys. | journal = Eur J Pharmacol | volume = 199 | issue = 3 | pages = 389–391 | year = 1991 | pmid = 1680717 | doi = 10.1016/0014-2999(91)90508-N }}</ref>  but caused profound hypotension in one early clinical trial in [[Parkinson's disease]].<ref name="pmid18642350"/> Although [[dihydrexidine]] has significant D<sub>2</sub> properties, it is highly biased at D<sub>2</sub> receptors and was used for the first demonstration of [[functional selectivity]]<ref name="pmid16803859">{{cite journal | vauthors = Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB | title = Functional selectivity and classical concepts of quantitative pharmacology | journal = J. Pharmacol. Exp. Ther. | volume = 320 | issue = 1 | pages = 1–13 | date = January 2007 | pmid = 16803859 | doi = 10.1124/jpet.106.104463 }}</ref> with dopamine receptors.<ref name="pmid12023552">{{cite journal | vauthors = Mottola DM, Kilts JD, Lewis MM, Connery HS, Walker QD, Jones SR, Booth RG, Hyslop DK, Piercey M, Wightman RM, Lawler CP, Nichols DE, Mailman RB | title = Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase | journal = J. Pharmacol. Exp. Ther. | volume = 301 | issue = 3 | pages = 1166–78 | date = June 2002 | pmid = 12023552 | doi = 10.1124/jpet.301.3.1166 }}</ref><ref name="pmid12023553">{{cite journal | vauthors = Kilts JD, Connery HS, Arrington EG, Lewis MM, Lawler CP, Oxford GS, O'Malley KL, Todd RD, Blake BL, Nichols DE, Mailman RB | title = Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs | journal = J. Pharmacol. Exp. Ther. | volume = 301 | issue = 3 | pages = 1179–89 | date = June 2002 | pmid = 12023553 | doi = 10.1124/jpet.301.3.1179 }}</ref>
** [[Dinapsoline]] - full agonist with 5-fold selectivity for D<sub>1</sub>-like receptors over D<sub>2</sub><ref name="pmid18642350"/>
** [[Dinoxyline]] - full agonist with approximately equal affinity for D<sub>1</sub>-like and D<sub>2</sub> receptors<ref name="pmid18642350"/>
** [[Doxanthrine]] - full agonist with 168-fold selectivity for D<sub>1</sub>-like receptors over D<sub>2</sub><ref name="pmid18642350"/>
* Benzazepine derivatives
** [[SKF-81297]] - 200-fold selectivity for D<sub>1</sub> over any other receptor<ref name="pmid18642350"/>
** [[SKF-82958]] - 57-fold selectivity for D<sub>1</sub> over D<sub>2</sub><ref name="pmid18642350"/>
** [[SKF-38393]] - very high selectivity for D<sub>1</sub> with negligible affinity for any other receptor<ref name="pmid18642350"/>
** [[Fenoldopam]] - highly selective peripheral D<sub>1</sub> receptor partial agonist used clinically as an [[antihypertensive]]<ref name="pmid18642350"/>
** [[6-Br-APB]] - 90-fold selectivity for D<sub>1</sub> over D<sub>2</sub><ref name="pmid18642350"/>
* Others
** [[Stepholidine]] - alkaloid with D1 agonist and D2 antagonist properties, showing antipsychotic effects
** [[A-68930]]
** [[A-77636]]
** [[CY-208,243]] - high intrinsic activity partial agonist with moderate selectivity for D<sub>1</sub>-like over D<sub>2</sub>-like receptors, member of [[ergoline]] ligand family like [[pergolide]] and [[bromocriptine]].
** SKF-89145
** SKF-89626
** 7,8-Dihydroxy-5-phenyl-octahydrobenzo[''h'']isoquinoline: extremely potent, high-affinity full agonist<ref>{{cite journal | vauthors = Bonner LA, Chemel BR, Watts VJ, Nichols DE | title = Facile synthesis of octahydrobenzo[h]isoquinolines: novel and highly potent D1 dopamine agonists | journal = Bioorg. Med. Chem. | volume = 18 | issue = 18 | pages = 6763–70 | date = September 2010 | pmid = 20709559 | pmc = 2941879 | doi = 10.1016/j.bmc.2010.07.052 }}</ref>
** [[Cabergoline]] - weak D<sub>1</sub> agonism, highly selective for D<sub>2</sub>, and various serotonin receptors
** [[Pergolide]] - (similar to cabergoline) weak D<sub>1</sub> agonism, highly selective for D<sub>2</sub>, and various serotonin receptors
 
===Antagonists===
Many [[typical antipsychotic|typical]] and [[atypical antipsychotic]]s are D<sub>1</sub> receptor antagonists in addition to D<sub>2</sub> receptor antagonists. No other D<sub>1</sub> receptor antagonists have been approved for clinical use. [[Ecopipam]] is a selective D<sub>1</sub>-like receptor antagonist that has been studied clinically in humans in the treatment of a variety of conditions, including [[schizophrenia]], [[cocaine abuse]], [[obesity]], [[pathological gambling]], and [[Tourette's syndrome]], with [[efficacy]] in some of these conditions seen. The drug produced mild-to-moderate, reversible [[depression (mood)|depression]] and [[anxiety]] in clinical studies however and has yet to complete development for any indication.
 
====List of D<sub>1</sub> receptor antagonists====
* Benzazepine derivatives
** [[SCH-23,390]] - 100-fold selectivity for D<sub>1</sub> over D<sub>5</sub><ref name="pmid18642350"/>
** [[SKF-83,959]] - 7-fold selectivity for D<sub>1</sub> over D<sub>5</sub> with negligible affinity for other receptors;<ref name="pmid18642350"/> acts as an antagonist at D<sub>1</sub> but as an agonist at D<sub>5</sub>
** [[Ecopipam]] (SCH-39,166) - a selective D<sub>1</sub>/D<sub>5</sub> antagonist that was being developed as an [[anti-obesity medication]] but was discontinued<ref name="pmid18642350"/>
 
==Protein–protein interactions==
Dopamine receptor D<sub>1</sub> has been shown to [[Protein–protein interaction|interact]] with:
 
* [[COPG2]],<ref name = pmid11893085/>
* [[COPG]],<ref name = pmid11893085>{{cite journal | vauthors = Bermak JC, Li M, Bullock C, Weingarten P, Zhou QY | title = Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus | journal = Eur. J. Cell Biol. | volume = 81 | issue = 2 | pages = 77–85 | date = Feb 2002 | pmid = 11893085 | doi = 10.1078/0171-9335-00222 }}</ref>  and
* [[DNAJC14]].<ref name = pmid11331877>{{cite journal | vauthors = Bermak JC, Li M, Bullock C, Zhou QY | title = Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein | journal = Nat. Cell Biol. | volume = 3 | issue = 5 | pages = 492–8 | date = May 2001 | pmid = 11331877 | doi = 10.1038/35074561 }}</ref>
 
=== Receptor oligomers ===
The D<sub>1</sub> receptor forms [[GPCR oligomer|heteromers]] with the following receptors: [[Dopamine receptor D2|dopamine D<sub>2</sub>]], [[Dopamine receptor D3|D<sub>3</sub>]],<ref name="pmid18644790">{{cite journal | vauthors = Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R | title = Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum | journal = J. Biol. Chem. | volume = 283 | issue = 38 | pages = 26016–25 | year = 2008 | pmid = 18644790 | pmc = 2533781 | doi = 10.1074/jbc.M710349200 }}</ref> [[Histamine H3 receptor|histamine H<sub>3</sub>]],<ref name="pmid19413572">{{cite journal | vauthors = Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, Canela EI, Leurs R, Ferré S, Lluís C, Franco R | title = Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors | journal = Br. J. Pharmacol. | volume = 157 | issue = 1 | pages = 64–75 | year = 2009 | pmid = 19413572 | pmc = 2697789 | doi = 10.1111/j.1476-5381.2009.00152.x }}</ref> [[mu Opioid receptor|μ opioid]].<ref name="pmid18237729">{{cite journal | vauthors = Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O'Dowd BF | title = Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells | journal = Eur. J. Pharmacol. | volume = 581 | issue = 3 | pages = 235–43 | year = 2008 | pmid = 18237729 | doi = 10.1016/j.ejphar.2007.11.060 }}</ref>
 
* [[D1–D2 dopamine receptor heteromer|D1–D2]]
* D1−H3−[[NMDA receptor|NMDA]] receptor complex − a target to prevent neurodegeneration<ref name="pmid27370794">{{cite journal |vauthors=Rodríguez-Ruiz M, Moreno E, Moreno-Delgado D, Navarro G, Mallol J, Cortés A, Lluís C, Canela EI, Casadó V, McCormick PJ, Franco R |title=Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease |journal=Mol. Neurobiol. |issue= |pages= |year=2016 |pmid=27370794 |doi=10.1007/s12035-016-9995-y |url=}}</ref>
 
== See also ==
* [[Dopamine receptor]]
* [[Dopamine receptor]]


==References==
== References ==
{{Reflist|2}}
{{Reflist|2}}


==Further reading==
==  External links ==
{{refbegin | 2}}
* {{cite web | url = http://www.iuphar-db.org/GPCR/ReceptorDisplayForward?receptorID=2252 | title = Dopamine Receptors: D<sub>1</sub> | accessdate = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | archiveurl = | archivedate = }}
{{PBB_Further_reading
| citations =
*{{cite journal | author=Missale C, Nash SR, Robinson SW, ''et al.'' |title=Dopamine receptors: from structure to function. |journal=Physiol. Rev. |volume=78 |issue= 1 |pages= 189-225 |year= 1998 |pmid= 9457173 |doi=  }}
*{{cite journal  | author=Milligan G, White JH |title=Protein-protein interactions at G-protein-coupled receptors. |journal=Trends Pharmacol. Sci. |volume=22 |issue= 10 |pages= 513-8 |year= 2001 |pmid= 11583808 |doi=  }}
*{{cite journal  | author=Bermak JC, Zhou QY |title=Accessory proteins in the biogenesis of G protein-coupled receptors. |journal=Mol. Interv. |volume=1 |issue= 5 |pages= 282-7 |year= 2004 |pmid= 14993367 |doi=  }}
*{{cite journal  | author=Minowa MT, Minowa T, Monsma FJ, ''et al.'' |title=Characterization of the 5' flanking region of the human D1A dopamine receptor gene. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 7 |pages= 3045-9 |year= 1992 |pmid= 1557411 |doi=  }}
*{{cite journal  | author=Tiberi M, Jarvie KR, Silvia C, ''et al.'' |title=Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=88 |issue= 17 |pages= 7491-5 |year= 1991 |pmid= 1831904 |doi=  }}
*{{cite journal  | author=Sunahara RK, Niznik HB, Weiner DM, ''et al.'' |title=Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. |journal=Nature |volume=347 |issue= 6288 |pages= 80-3 |year= 1990 |pmid= 1975640 |doi= 10.1038/347080a0 }}
*{{cite journal  | author=Grandy DK, Zhou QY, Allen L, ''et al.'' |title=A human D1 dopamine receptor gene is located on chromosome 5 at q35.1 and identifies an EcoRI RFLP. |journal=Am. J. Hum. Genet. |volume=47 |issue= 5 |pages= 828-34 |year= 1990 |pmid= 1977312 |doi=  }}
*{{cite journal  | author=Dearry A, Gingrich JA, Falardeau P, ''et al.'' |title=Molecular cloning and expression of the gene for a human D1 dopamine receptor. |journal=Nature |volume=347 |issue= 6288 |pages= 72-6 |year= 1990 |pmid= 2144334 |doi= 10.1038/347072a0 }}
*{{cite journal  | author=Zhou QY, Grandy DK, Thambi L, ''et al.'' |title=Cloning and expression of human and rat D1 dopamine receptors. |journal=Nature |volume=347 |issue= 6288 |pages= 76-80 |year= 1990 |pmid= 2168520 |doi= 10.1038/347076a0 }}
*{{cite journal  | author=Frail DE, Manelli AM, Witte DG, ''et al.'' |title=Cloning and characterization of a truncated dopamine D1 receptor from goldfish retina: stimulation of cyclic AMP production and calcium mobilization. |journal=Mol. Pharmacol. |volume=44 |issue= 6 |pages= 1113-8 |year= 1994 |pmid= 8264547 |doi=  }}
*{{cite journal  | author=Ohara K, Ulpian C, Seeman P, ''et al.'' |title=Schizophrenia: dopamine D1 receptor sequence is normal, but has DNA polymorphisms. |journal=Neuropsychopharmacology |volume=8 |issue= 2 |pages= 131-5 |year= 1993 |pmid= 8471124 |doi=  }}
*{{cite journal  | author=Albrecht FE, Drago J, Felder RA, ''et al.'' |title=Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. |journal=J. Clin. Invest. |volume=97 |issue= 10 |pages= 2283-8 |year= 1996 |pmid= 8636408 |doi=  }}
*{{cite journal  | author=Lee SH, Minowa MT, Mouradian MM |title=Two distinct promoters drive transcription of the human D1A dopamine receptor gene. |journal=J. Biol. Chem. |volume=271 |issue= 41 |pages= 25292-9 |year= 1996 |pmid= 8810292 |doi=  }}
*{{cite journal  | author=Mayerhofer A, Hemmings HC, Snyder GL, ''et al.'' |title=Functional dopamine-1 receptors and DARPP-32 are expressed in human ovary and granulosa luteal cells in vitro. |journal=J. Clin. Endocrinol. Metab. |volume=84 |issue= 1 |pages= 257-64 |year= 1999 |pmid= 9920093 |doi=  }}
*{{cite journal  | author=Wong AC, Shetreat ME, Clarke JO, Rayport S |title=D1- and D2-like dopamine receptors are co-localized on the presynaptic varicosities of striatal and nucleus accumbens neurons in vitro. |journal=Neuroscience |volume=89 |issue= 1 |pages= 221-33 |year= 1999 |pmid= 10051231 |doi=  }}
*{{cite journal  | author=Jin H, Xie Z, George SR, O'Dowd BF |title=Palmitoylation occurs at cysteine 347 and cysteine 351 of the dopamine D(1) receptor. |journal=Eur. J. Pharmacol. |volume=386 |issue= 2-3 |pages= 305-12 |year= 2000 |pmid= 10618483 |doi=  }}
*{{cite journal  | author=Li M, Bermak JC, Wang ZW, Zhou QY |title=Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). |journal=Mol. Pharmacol. |volume=57 |issue= 3 |pages= 446-52 |year= 2000 |pmid= 10692483 |doi=  }}
*{{cite journal  | author=Lezcano N, Mrzljak L, Eubanks S, ''et al.'' |title=Dual signaling regulated by calcyon, a D1 dopamine receptor interacting protein. |journal=Science |volume=287 |issue= 5458 |pages= 1660-4 |year= 2000 |pmid= 10698743 |doi=  }}
*{{cite journal  | author=Ginés S, Hillion J, Torvinen M, ''et al.'' |title=Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=97 |issue= 15 |pages= 8606-11 |year= 2000 |pmid= 10890919 |doi= 10.1073/pnas.150241097 }}
}}
{{refend}}
 
== External links ==
* {{MeshName|Receptors,+Dopamine+D1}}
* {{MeshName|Receptors,+Dopamine+D1}}


{{NLM content}}
{{NLM content}}
{{G protein-coupled receptors}}
{{G protein-coupled receptors|g1}}
{{Dopaminergics}}


[[Category:G protein coupled receptors]]
[[Category:Dopamine receptors]]
{{WH}}
{{WS}}

Revision as of 04:10, 4 December 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Dopamine receptor D1, also known as DRD1, is a protein that in humans is encoded by the DRD1 gene.[1][2][3]

Tissue distribution

Based upon Northern blot and in situ hybridization, DRD1 mRNA expression in the central nervous system is highest in the dorsal striatum (caudate and putamen) and ventral striatum (nucleus accumbens and olfactory tubercle).[4] Lower levels of DRD1 mRNA expression occur in the basolateral amygdala, cerebral cortex, septum, thalamus, and hypothalamus.[4]

Function

The D1 subtype of the dopamine receptor is the most abundant dopamine receptor in the central nervous system. This G-protein coupled receptor is Gs/a coupled and indirectly activates cyclic AMP-dependent protein kinase, stimulating the neuron. D1 receptors regulate neuronal growth and development, mediate some behavioral responses, and modulate dopamine receptor D2-mediated events.[5] Alternative transcription initiation sites result in two transcript variants of the gene.[6] D1-D2 dopamine receptor heteromer formation is observed.

Production

The DRD1 gene expresses primarily in the caudate putamen in humans, and in the caudate putamen, the nucleus accumbens and the olfactory tubercle in mouse. Gene expression patterns from the Allen Brain Atlases in mouse and human can be found here.

Ligands

There are a number of ligands selective for the D1 receptors. To date, most of the known ligands are based on dihydrexidine or the prototypical benzazepine partial agonist SKF-38393 (one derivative being the prototypical antagonist SCH-23390).[7] D1 receptor has a high degree of structural homology to another dopamine receptor, D5, and they both bind similar drugs.[8] As a result, none of the known orthosteric ligands is selective for the D1 vs. the D5 receptor, but the benzazepines generally are more selective for the D1 and D5 receptors versus the D2-like family.[7] Some of the benzazepines have high intrinsic activity whereas others do not. In 2015 the first positive allosteric modulator for the human D1 receptor was discovered by high-throughput screening.[9]

Agonists

File:D1 agonists.png
Chemical structures of selective D1 receptor agonists.[10][11]

Several D1 receptor agonists are used clinically. These include apomorphine, pergolide, rotigotine, and terguride. All of these drugs are preferentially D2-like receptor agonists. Fenoldopam is a selective D1 receptor partial agonist that does not cross the blood-brain-barrier and is used intravenously in the treatment of hypertension. Dihydrexidine and adrogolide (ABT-431) (a prodrug of A-86929 with improved bioavailability) are the only selective, centrally active D1-like receptor agonists that have been studied clinically in humans.[12] They produced dose-limiting profound hypotension and dyskinesias, respectively, and were not further developed for clinical use.[12][13][14]

List of D1 receptor agonists

  • Dihydrexidine derivatives
    • A-86929 - full agonist with 14-fold selectivity for D1-like receptors over D2[7][11][15]
    • Dihydrexidine - full agonist with 10-fold selectivity for D1-like receptors over D2 that has been in Phase IIa clinical trials as a cognitive enhancer.[16][17] It also showed profound antiparkinson effects in MPTP-treated primates,[18] but caused profound hypotension in one early clinical trial in Parkinson's disease.[7] Although dihydrexidine has significant D2 properties, it is highly biased at D2 receptors and was used for the first demonstration of functional selectivity[19] with dopamine receptors.[20][21]
    • Dinapsoline - full agonist with 5-fold selectivity for D1-like receptors over D2[7]
    • Dinoxyline - full agonist with approximately equal affinity for D1-like and D2 receptors[7]
    • Doxanthrine - full agonist with 168-fold selectivity for D1-like receptors over D2[7]
  • Benzazepine derivatives
  • Others
    • Stepholidine - alkaloid with D1 agonist and D2 antagonist properties, showing antipsychotic effects
    • A-68930
    • A-77636
    • CY-208,243 - high intrinsic activity partial agonist with moderate selectivity for D1-like over D2-like receptors, member of ergoline ligand family like pergolide and bromocriptine.
    • SKF-89145
    • SKF-89626
    • 7,8-Dihydroxy-5-phenyl-octahydrobenzo[h]isoquinoline: extremely potent, high-affinity full agonist[22]
    • Cabergoline - weak D1 agonism, highly selective for D2, and various serotonin receptors
    • Pergolide - (similar to cabergoline) weak D1 agonism, highly selective for D2, and various serotonin receptors

Antagonists

Many typical and atypical antipsychotics are D1 receptor antagonists in addition to D2 receptor antagonists. No other D1 receptor antagonists have been approved for clinical use. Ecopipam is a selective D1-like receptor antagonist that has been studied clinically in humans in the treatment of a variety of conditions, including schizophrenia, cocaine abuse, obesity, pathological gambling, and Tourette's syndrome, with efficacy in some of these conditions seen. The drug produced mild-to-moderate, reversible depression and anxiety in clinical studies however and has yet to complete development for any indication.

List of D1 receptor antagonists

  • Benzazepine derivatives
    • SCH-23,390 - 100-fold selectivity for D1 over D5[7]
    • SKF-83,959 - 7-fold selectivity for D1 over D5 with negligible affinity for other receptors;[7] acts as an antagonist at D1 but as an agonist at D5
    • Ecopipam (SCH-39,166) - a selective D1/D5 antagonist that was being developed as an anti-obesity medication but was discontinued[7]

Protein–protein interactions

Dopamine receptor D1 has been shown to interact with:

Receptor oligomers

The D1 receptor forms heteromers with the following receptors: dopamine D2, D3,[25] histamine H3,[26] μ opioid.[27]

  • D1–D2
  • D1−H3−NMDA receptor complex − a target to prevent neurodegeneration[28]

See also

References

  1. Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (September 1990). "Molecular cloning and expression of the gene for a human D1 dopamine receptor". Nature. 347 (6288): 72–6. doi:10.1038/347072a0. PMID 2144334.
  2. Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HH, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (September 1990). "Cloning and expression of human and rat D1dopamine receptors". Nature. 347 (6288): 76–80. doi:10.1038/347076a0. PMID 2168520.
  3. Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y (September 1990). "Human dopamine D1 receptor encoded by an intronless gene on chromosome 5". Nature. 347 (6288): 80–3. doi:10.1038/347080a0. PMID 1975640.
  4. 4.0 4.1 Schetz JA, Sibley DR (2007). "Chapter 7: Dopaminergic Neurotransmission". In Sibley DR. Handbook of Contemporary Neuropharmacology. Hoboken, NJ: Wiley-Interscience. p. 226. ISBN 9780471660538. Localization of the D1 receptor messenger ribonucleic acid (mRNA) expression has been mapped using Northern analysis and in situ hybridization (for a review, see [54]). Expression of D1 receptor mRNA is highest in the caudate putamen, nucleus accumbens, and olfactory tubercle. Lower levels of expression are found in the basolateral amygdala, cerebral cortex, septum, thalamus, and hypothalamus.
  5. ML Paul; AM Graybiel; JC David; HA Robertson (1992). "D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease". The Journal of Neuroscience. 12 (10): 3729–3742.
  6. "Entrez Gene: DRD1 dopamine receptor D1".
  7. 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14 Zhang J, Xiong B, Zhen X, Zhang A (2009). "Dopamine D1 receptor ligands: where are we now and where are we going". Med Res Rev. 29 (2): 272–294. doi:10.1002/med.20130. PMID 18642350.
  8. Sunahara RK, Guan HC, O'Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HH, Niznik HB (1991). "Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1". Nature. 350 (6319): 614–9. doi:10.1038/350614a0. PMID 1826762.
  9. Lewis MA, Hunihan L, Watson J, Gentles RG, Hu S, Huang Y, Bronson J, Macor JE, Beno BR, Ferrante M, Hendricson A, Knox RJ, Molski TF, Kong Y, Cvijic ME, Rockwell KL, Weed MR, Cacace AM, Westphal RS, Alt A, Brown JM (2015). "Discovery of D1 Dopamine Receptor Positive Allosteric Modulators: Characterization of Pharmacology and Identification of Residues that Regulate Species Selectivity". J. Pharmacol. Exp. Ther. 354 (3): 340–9. doi:10.1124/jpet.115.224071. PMID 26109678.
  10. Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE (November 2006). "trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist". J. Med. Chem. 49 (23): 6848–57. doi:10.1021/jm0604979. PMID 17154515.
  11. 11.0 11.1 Michaelides MR, Hong Y, DiDomenico S, Asin KE, Britton DR, Lin CW, Williams M, Shiosaki K (1995). "(5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431)". J. Med. Chem. 38 (18): 3445–7. doi:10.1021/jm00018a002. PMID 7658429.
  12. 12.0 12.1 Rosell, Daniel R; Zaluda, Lauren C; McClure, Margaret M; Perez-Rodriguez, M Mercedes; Strike, K Sloan; Barch, Deanna M; Harvey, Philip D; Girgis, Ragy R; Hazlett, Erin A; Mailman, Richard B; Abi-Dargham, Anissa; Lieberman, Jeffrey A; Siever, Larry J (2014). "Effects of the D1 Dopamine Receptor Agonist Dihydrexidine (DAR-0100A) on Working Memory in Schizotypal Personality Disorder". Neuropsychopharmacology. 40 (2): 446–453. doi:10.1038/npp.2014.192. ISSN 0893-133X. PMC 4443959. PMID 25074637.
  13. Blanchet PJ, Fang J, Gillespie M, Sabounjian L, Locke KW, Gammans R, Mouradian MM, Chase TN (1998). "Effects of the full dopamine D1 receptor agonist dihydrexidine in Parkinson's disease". Clin Neuropharmacol. 21 (6): 339–43. PMID 9844789.
  14. Giardina, William J.; Williams, Michael (2006). "Adrogolide HCl (ABT-431; DAS-431), a Prodrug of the Dopamine D1 Receptor Agonist, A-86929: Preclinical Pharmacology and Clinical Data". CNS Drug Reviews. 7 (3): 305–316. doi:10.1111/j.1527-3458.2001.tb00201.x. ISSN 1080-563X. PMID 11607045.
  15. Yamashita M, Yamada K, Tomioka K (2004). "Construction of arene-fused-piperidine motifs by asymmetric addition of 2-trityloxymethylaryllithiums to nitroalkenes: the asymmetric synthesis of a dopamine D1 full agonist, A-86929". J. Am. Chem. Soc. 126 (7): 1954–5. doi:10.1021/ja031760n. PMID 14971926.
  16. Mu Q, Johnson K, Morgan PS, Grenesko EL, Molnar CE, Anderson B, Nahas Z, Kozel FA, Kose S, Knable M, Fernandes P, Nichols DE, Mailman RB, George MS (2007). "A single 20 mg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia". Schizophr Res. 94 (1–3): 332–341. doi:10.1016/j.schres.2007.03.033. PMID 17596915.
  17. George MS, Molnar CE, Grenesko EL, Anderson B, Mu Q, Johnson K, Nahas Z, Knable M, Fernandes P, Juncos J, Huang X, Nichols DE, Mailman RB (2007). "A single 20 mg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia". Schizophr Res. 93 (1–3): 42–50. doi:10.1016/j.schres.2007.03.011. PMID 17467956.
  18. Taylor JR, Lawrence MS, Redmond DE, Elsworth JD, Roth RH, Nichols DE, Mailman RB (1991). "Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys". Eur J Pharmacol. 199 (3): 389–391. doi:10.1016/0014-2999(91)90508-N. PMID 1680717.
  19. Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (January 2007). "Functional selectivity and classical concepts of quantitative pharmacology". J. Pharmacol. Exp. Ther. 320 (1): 1–13. doi:10.1124/jpet.106.104463. PMID 16803859.
  20. Mottola DM, Kilts JD, Lewis MM, Connery HS, Walker QD, Jones SR, Booth RG, Hyslop DK, Piercey M, Wightman RM, Lawler CP, Nichols DE, Mailman RB (June 2002). "Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase". J. Pharmacol. Exp. Ther. 301 (3): 1166–78. doi:10.1124/jpet.301.3.1166. PMID 12023552.
  21. Kilts JD, Connery HS, Arrington EG, Lewis MM, Lawler CP, Oxford GS, O'Malley KL, Todd RD, Blake BL, Nichols DE, Mailman RB (June 2002). "Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs". J. Pharmacol. Exp. Ther. 301 (3): 1179–89. doi:10.1124/jpet.301.3.1179. PMID 12023553.
  22. Bonner LA, Chemel BR, Watts VJ, Nichols DE (September 2010). "Facile synthesis of octahydrobenzo[h]isoquinolines: novel and highly potent D1 dopamine agonists". Bioorg. Med. Chem. 18 (18): 6763–70. doi:10.1016/j.bmc.2010.07.052. PMC 2941879. PMID 20709559.
  23. 23.0 23.1 Bermak JC, Li M, Bullock C, Weingarten P, Zhou QY (Feb 2002). "Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus". Eur. J. Cell Biol. 81 (2): 77–85. doi:10.1078/0171-9335-00222. PMID 11893085.
  24. Bermak JC, Li M, Bullock C, Zhou QY (May 2001). "Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein". Nat. Cell Biol. 3 (5): 492–8. doi:10.1038/35074561. PMID 11331877.
  25. Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008). "Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum". J. Biol. Chem. 283 (38): 26016–25. doi:10.1074/jbc.M710349200. PMC 2533781. PMID 18644790.
  26. Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, Canela EI, Leurs R, Ferré S, Lluís C, Franco R (2009). "Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors". Br. J. Pharmacol. 157 (1): 64–75. doi:10.1111/j.1476-5381.2009.00152.x. PMC 2697789. PMID 19413572.
  27. Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O'Dowd BF (2008). "Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells". Eur. J. Pharmacol. 581 (3): 235–43. doi:10.1016/j.ejphar.2007.11.060. PMID 18237729.
  28. Rodríguez-Ruiz M, Moreno E, Moreno-Delgado D, Navarro G, Mallol J, Cortés A, Lluís C, Canela EI, Casadó V, McCormick PJ, Franco R (2016). "Heteroreceptor Complexes Formed by Dopamine D1, Histamine H3, and N-Methyl-D-Aspartate Glutamate Receptors as Targets to Prevent Neuronal Death in Alzheimer's Disease". Mol. Neurobiol. doi:10.1007/s12035-016-9995-y. PMID 27370794.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.