Amenorrhea pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
m (Bot: Removing from Primary care)
 
(45 intermediate revisions by 3 users not shown)
Line 5: Line 5:


==Overview==
==Overview==
Amenorrhea is defined as absence of [[menstrual cycle]]. The [[pathophysiology]] of amenorrhea include [[hypothalamic]], [[pituitary]], [[thyroid]], [[adrenal]], [[ovarian]], [[uterine]], and [[vaginal]] causes. About 25 various [[genes]] are involved in pathogenesis of amenorrhea such as 3 different groups of [[Kallman syndrome|Kallmann syndrome]] related genes, [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis related genes, and [[obesity]] related [[genes]]. On [[gross pathology]], normal [[endometrium]] is characteristic findings of amenorrhea. Patients of amenorrhea from [[Craniopharyngioma]] have cystic mass filled with motor oil-like fluid on [[gross pathology]]. On [[microscopic]] [[histopathological]] analysis, [[craniopharyngioma]] presents as trabecular [[squamous epithelium]] surrounded by palisaded [[columnar epithelium]], small-to-medium sized cells with moderate amount of [[basophilic]] [[cytoplasm]], bland [[nuclei]], and [[Calcification|calcifications]]. On [[microscopic]] [[histopathological]] analysis, [[pituitary adenoma]] presents as loss of [[fibrous]] [[stroma]] and nested cells of normal [[anterior pituitary]] (based on the type of [[adenoma]]).
Amenorrhea is defined as absence of [[menstrual cycle]]. The causes of amenorrhea include [[hypothalamic]], [[pituitary]], [[thyroid]], [[adrenal]], [[ovarian]], [[uterine]], and [[vaginal]]. About 25 different [[genes]] are involved in the pathogenesis of amenorrhea including 3 different groups of [[Kallman syndrome|Kallmann syndrome]] related genes, [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis related genes, and [[obesity]] related [[genes]]. On [[gross pathology]], normal [[endometrium]] is the characteristic findings of amenorrhea. Patients of amenorrhea from [[Craniopharyngioma]] as have cystic mass filled with motor oil-like fluid on [[gross pathology]]. On [[microscopic]] [[histopathological]] analysis, [[craniopharyngioma]] presents as trabecular [[squamous epithelium]] surrounded by palisaded [[columnar epithelium]], small-to-medium sized cells with moderate amount of [[basophilic]] [[cytoplasm]], bland [[nuclei]], and [[Calcification|calcifications]]. On [[microscopic]] [[histopathological]] analysis, [[pituitary adenoma]] as a cause of amenorrhea presents as loss of [[fibrous]] [[stroma]] and nested cells of normal [[anterior pituitary]] (based on the type of [[adenoma]]).


==Pathophysiology==
==Pathophysiology==
Line 19: Line 19:
** During [[puberty]] the amplitude and frequency of [[GnRH]] pulses is significantly increased.
** During [[puberty]] the amplitude and frequency of [[GnRH]] pulses is significantly increased.
** [[GnRH]] secretion is regulated by certain [[neurotransmitters]] in [[brain]], such as [[dopamine]], endogenous [[opioids]], [[norepinephrine]], [[Gamma aminobutyric acid|gamma amino butyric acid (GABA)]], and [[Corticotropin releasing hormone|corticotropin releasing hormone (CRH)]]. Alteration in level and function of these [[neurotransmitters]] may lead to specific types of amenorrhea. For example [[stress]], [[exercise]], and [[malnutrition]] affects [[CRH]], [[β-endorphin]], and [[dopamine]], respectively.<ref name="pmid18574222">{{cite journal |vauthors=Golden NH, Carlson JL |title=The pathophysiology of amenorrhea in the adolescent |journal=Ann. N. Y. Acad. Sci. |volume=1135 |issue= |pages=163–78 |year=2008 |pmid=18574222 |doi=10.1196/annals.1429.014 |url=}}</ref>
** [[GnRH]] secretion is regulated by certain [[neurotransmitters]] in [[brain]], such as [[dopamine]], endogenous [[opioids]], [[norepinephrine]], [[Gamma aminobutyric acid|gamma amino butyric acid (GABA)]], and [[Corticotropin releasing hormone|corticotropin releasing hormone (CRH)]]. Alteration in level and function of these [[neurotransmitters]] may lead to specific types of amenorrhea. For example [[stress]], [[exercise]], and [[malnutrition]] affects [[CRH]], [[β-endorphin]], and [[dopamine]], respectively.<ref name="pmid18574222">{{cite journal |vauthors=Golden NH, Carlson JL |title=The pathophysiology of amenorrhea in the adolescent |journal=Ann. N. Y. Acad. Sci. |volume=1135 |issue= |pages=163–78 |year=2008 |pmid=18574222 |doi=10.1196/annals.1429.014 |url=}}</ref>
* The main trigger for [[puberty]] onset is not completely understood. After [[puberty]] onset, the [[negative feedback]] on [[GnRH]] is removed. Then, pulsatile [[GnRH]] secretion induce [[LH]] and [[FSH]] production which finally lead to [[ovulation]]. In the absence of [[pregnancy]], the [[follicle]] is turned to [[corpus luteum]]. [[Endometrium]] proliferates through [[estrogen]] release from [[corpus luteum]]. Withdrawal of [[progesterone]] from [[estrogen]]-mediated proliferated [[endometrium]] will result in [[Menstrual cycle|menstrual]] [[bleeding]].
* After the onset of [[puberty]], the [[negative feedback]] on [[GnRH]] is removed.  
* Pulsatile secretion of [[GnRH]] induce [[LH]] and [[FSH]] production which finally lead to [[ovulation]].
* In the absence of [[Fertilization|fertilisation]], the ovarian [[follicle]] is turned into [[corpus luteum]]. [[Endometrium]] proliferates through [[estrogen]] release from [[corpus luteum]]. Withdrawal of [[progesterone]] from [[estrogen]]-mediated proliferated [[endometrium]] results in [[Menstrual cycle|menstrual]] [[bleeding]].


==== Hypothalamic-pituitary-ovarian (HPO) axis maturation ====
==== Hypothalamic-pituitary-ovarian (HPO) axis maturation ====
* After activation of the [[Hypothalamic-pituitary-gonadal axis|HPO axis]] during 2nd [[trimester]] of [[pregnancy]], level of [[gonadotropins]] peak from mid to term [[pregnancy]]. After inhibition of [[placental]] [[hormones]]' [[feedback]], [[FSH]] and [[LH]] will increase slightly to mild secondary peak.  
* After activation of the [[Hypothalamic-pituitary-gonadal axis|HPO axis]] during second [[trimester]] of [[pregnancy]], the level of [[gonadotropins]] rises from mid to term [[pregnancy]]. After cessation of [[placental]] [[hormone]] [[feedback]], [[FSH]] and [[LH]] increases again slightly to mild secondary peak.  
* [[Negative feedback]] from [[adrenal]] [[androgens]] keep the [[gonadotropins]] in low plasma level until [[puberty]].<ref name="pmid9238251">{{cite journal |vauthors=Apter D |title=Development of the hypothalamic-pituitary-ovarian axis |journal=Ann. N. Y. Acad. Sci. |volume=816 |issue= |pages=9–21 |year=1997 |pmid=9238251 |doi= |url=}}</ref>
* Before [[puberty]], [[negative feedback]] from [[adrenal]] [[androgens]] keep the [[gonadotropins]] in low plasma level.<ref name="pmid9238251">{{cite journal |vauthors=Apter D |title=Development of the hypothalamic-pituitary-ovarian axis |journal=Ann. N. Y. Acad. Sci. |volume=816 |issue= |pages=9–21 |year=1997 |pmid=9238251 |doi= |url=}}</ref>
* Right before [[puberty]], the sensitivity of [[hypothalamus]] to [[adrenal]] [[androgens]]' [[negative feedback]] is decreased. This leads to increased production of GnRH and make it possible for [[GnRH]] to be raised in magnitude and frequency to induce an increase in [[LH]] and [[FSH]].<ref name="pmid4852310">{{cite journal |vauthors=Boyar RM, Rosenfeld RS, Kapen S, Finkelstein JW, Roffwarg HP, Weitzman ED, Hellman L |title=Human puberty. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep |journal=J. Clin. Invest. |volume=54 |issue=3 |pages=609–18 |year=1974 |pmid=4852310 |pmc=301594 |doi=10.1172/JCI107798 |url=}}</ref>
* Right before [[puberty]], the sensitivity of [[hypothalamus]] to [[negative feedback]] from [[adrenal]] [[androgens]] is decreased. This leads to increased production of GnRH from hypothalamus and make it possible for [[GnRH]] to be raised in magnitude and frequency to induce an increase in [[LH]] and [[FSH]].<ref name="pmid4852310">{{cite journal |vauthors=Boyar RM, Rosenfeld RS, Kapen S, Finkelstein JW, Roffwarg HP, Weitzman ED, Hellman L |title=Human puberty. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep |journal=J. Clin. Invest. |volume=54 |issue=3 |pages=609–18 |year=1974 |pmid=4852310 |pmc=301594 |doi=10.1172/JCI107798 |url=}}</ref>
* The complete maturation of [[Hypothalamic-pituitary-gonadal axis|HPO axis]] takes around 5-7 years from [[menstruation]] onset. Generally, during the first two years of [[menstruation]], the cycles are mostly [[Anovulatory cycle|anovulatory]].
* The complete maturation of [[Hypothalamic-pituitary-gonadal axis|HPO axis]] takes around 5-7 years from the onset of [[menstruation]]. Generally, during the first two years of [[menstruation]], the cycles are mostly [[Anovulatory cycle|anovulatory]] due to immature HPO axis.


===Pathogenesis===
===Pathogenesis===
*Amenorrhea is defined as absence of [[menstrual cycle]]. Primary amenorrhea is absence of [[menstruation]] from the beginning of [[puberty]], while secondary amenorrhea is disrupting the [[Menstrual cycle|menstrual cycles]] after several normal [[Menstrual cycle|cycles]].<ref name="pmid18574222" />
*Amenorrhea is defined as the absence of [[menstrual cycle]].<ref name="pmid18574222" />
*The [[pathophysiology]] of amenorrhea is multifactorial and include [[hypothalamic]], [[pituitary]], [[thyroid]], [[adrenal]], [[ovarian]], [[uterine]], and [[vaginal]] [[pathogenesis]].
**Primary amenorrhea is the absence of [[menstrual cycle]] by 16 years of age, in the presence of normal growth and secondary sexual characteristics.
**Secondary amenorrhea reflects absence of [[menstrual cycle]] for at least 3 months in a woman with normal [[menstruation]] cycles in the past.
*The [[pathophysiology]] of amenorrhea is multifactorial and include [[hypothalamic]], [[pituitary]], [[thyroid]], [[adrenal]], [[ovarian]], [[uterine]], and [[vaginal]] [[causes]].


==== Hypothalamic pathogenesis ====
==== Hypothalamic pathogenesis ====
*The most common cause of amenorrhea in adolescents is [[hypothalamic]] disorders and known as [[hypothalamic]] amenorrhea.
*The most common cause of amenorrhea in adolescents are [[hypothalamic]] disorders and is known as [[hypothalamic]] amenorrhea.
*In the initial 2-3 years after [[menarche]] onset, the [[Hypothalamic-pituitary-gonadal axis|HPO axis]] is still developing. Immature [[Hypothalamic-pituitary-gonadal axis|HPO axis]] may lead to [[Anovulatory cycle|anovulatory cycles]] which can cause abnormalities in [[menstrual cycles]].
*During the initial 2-3 years after the onset of [[menarche]], the [[Hypothalamic-pituitary-gonadal axis|HPO axis]] is still under development. Immature [[Hypothalamic-pituitary-gonadal axis|HPO axis]] may lead to [[Anovulatory cycle|anovulatory cycles]] which can cause abnormalities in [[menstrual cycles]].
*The most common cause of amenorrhea after 2-3 years of puberty onset include [[eating disorders]], excessive [[exercise]], medications, and psychosocial stress.<ref name="pmid17230292">{{cite journal |vauthors=Wiksten-Almströmer M, Hirschberg AL, Hagenfeldt K |title=Menstrual disorders and associated factors among adolescent girls visiting a youth clinic |journal=Acta Obstet Gynecol Scand |volume=86 |issue=1 |pages=65–72 |year=2007 |pmid=17230292 |doi=10.1080/00016340601034970 |url=}}</ref><ref name="pmid11574516">{{cite journal |vauthors=Perkins RB, Hall JE, Martin KA |title=Aetiology, previous menstrual function and patterns of neuro-endocrine disturbance as prognostic indicators in hypothalamic amenorrhoea |journal=Hum. Reprod. |volume=16 |issue=10 |pages=2198–205 |year=2001 |pmid=11574516 |doi= |url=}}</ref>
*The most common cause of amenorrhea after 2-3 years of onset of puberty include [[eating disorders]], excessive [[exercise]], [[medications]], and psychosocial stress.<ref name="pmid17230292">{{cite journal |vauthors=Wiksten-Almströmer M, Hirschberg AL, Hagenfeldt K |title=Menstrual disorders and associated factors among adolescent girls visiting a youth clinic |journal=Acta Obstet Gynecol Scand |volume=86 |issue=1 |pages=65–72 |year=2007 |pmid=17230292 |doi=10.1080/00016340601034970 |url=}}</ref><ref name="pmid11574516">{{cite journal |vauthors=Perkins RB, Hall JE, Martin KA |title=Aetiology, previous menstrual function and patterns of neuro-endocrine disturbance as prognostic indicators in hypothalamic amenorrhoea |journal=Hum. Reprod. |volume=16 |issue=10 |pages=2198–205 |year=2001 |pmid=11574516 |doi= |url=}}</ref>
*[[Leptin]] plays an important role in [[energy]] consumption, body composition, food intake along with sexual maturation and [[Reproductive system|reproductive]] improvement.  
*[[Leptin]] plays an important role in [[energy]] consumption, body composition, food intake along with sexual maturation and [[Reproductive system|reproductive]] improvement.  
**It is assumed that [[leptin]] has a role in the development of [[hypothalamic]] [[amenorrhea]].  
**It is assumed that [[leptin]] plays a role in the development of [[hypothalamic]] [[amenorrhea]].  
**[[Leptin]] receptors are in close relationship with [[hypothalamus]] and it is postulated that leptin regulates [[GnRH]] production and secretion.  
**[[Leptin]] receptors are in close relationship with [[hypothalamus]] and it is postulated that leptin regulates [[GnRH]] production and secretion.  
**The main reason of amenorrhea in patients with [[anorexia nervosa]] or excessive [[exercise]] is [[down-regulation]] of [[leptin]] receptors, which is elevated by [[refeeding]].<ref name="pmid17060920">{{cite journal |vauthors=Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B |title=The role of leptin in anorexia nervosa: clinical implications |journal=Mol. Psychiatry |volume=12 |issue=1 |pages=23–35 |year=2007 |pmid=17060920 |doi=10.1038/sj.mp.4001909 |url=}}</ref><ref name="pmid8923829">{{cite journal |vauthors=Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, Ma Z, Vignati L, Bowsher R, Herzog D, Klibanski A |title=Serum leptin levels in women with anorexia nervosa |journal=J. Clin. Endocrinol. Metab. |volume=81 |issue=11 |pages=3861–3 |year=1996 |pmid=8923829 |doi=10.1210/jcem.81.11.8923829 |url=}}</ref><ref name="pmid15817868">{{cite journal |vauthors=Haas V, Onur S, Paul T, Nutzinger DO, Bosy-Westphal A, Hauer M, Brabant G, Klein H, Müller MJ |title=Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery |journal=Am. J. Clin. Nutr. |volume=81 |issue=4 |pages=889–96 |year=2005 |pmid=15817868 |doi= |url=}}</ref>
**Patients with [[anorexia nervosa]] or excessive [[exercise]] have amenorrhea from [[down-regulation]] of [[leptin]] receptors, which can be elevated by [[refeeding]].<ref name="pmid17060920">{{cite journal |vauthors=Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B |title=The role of leptin in anorexia nervosa: clinical implications |journal=Mol. Psychiatry |volume=12 |issue=1 |pages=23–35 |year=2007 |pmid=17060920 |doi=10.1038/sj.mp.4001909 |url=}}</ref><ref name="pmid8923829">{{cite journal |vauthors=Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, Ma Z, Vignati L, Bowsher R, Herzog D, Klibanski A |title=Serum leptin levels in women with anorexia nervosa |journal=J. Clin. Endocrinol. Metab. |volume=81 |issue=11 |pages=3861–3 |year=1996 |pmid=8923829 |doi=10.1210/jcem.81.11.8923829 |url=}}</ref><ref name="pmid15817868">{{cite journal |vauthors=Haas V, Onur S, Paul T, Nutzinger DO, Bosy-Westphal A, Hauer M, Brabant G, Klein H, Müller MJ |title=Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery |journal=Am. J. Clin. Nutr. |volume=81 |issue=4 |pages=889–96 |year=2005 |pmid=15817868 |doi= |url=}}</ref>
**[[Leptin]] level in [[cachexic]] patients will increase after gaining appropriate weight in normal people, but will remain low in patients with amenorrhea.<ref name="pmid15240636">{{cite journal |vauthors=Misra M, Miller KK, Almazan C, Ramaswamy K, Aggarwal A, Herzog DB, Neubauer G, Breu J, Klibanski A |title=Hormonal and body composition predictors of soluble leptin receptor, leptin, and free leptin index in adolescent girls with anorexia nervosa and controls and relation to insulin sensitivity |journal=J. Clin. Endocrinol. Metab. |volume=89 |issue=7 |pages=3486–95 |year=2004 |pmid=15240636 |doi=10.1210/jc.2003-032251 |url=}}</ref><ref name="pmid10832726">{{cite journal |vauthors=Katzman DK, Golden NH, Neumark-Sztainer D, Yager J, Strober M |title=From prevention to prognosis: clinical research update on adolescent eating disorders |journal=Pediatr. Res. |volume=47 |issue=6 |pages=709–12 |year=2000 |pmid=10832726 |doi= |url=}}</ref>
**[[Leptin]] level in [[cachexic]] patients will increase after gaining appropriate weight in patients without amenorrhea, but will remain low in patients with amenorrhea.<ref name="pmid15240636">{{cite journal |vauthors=Misra M, Miller KK, Almazan C, Ramaswamy K, Aggarwal A, Herzog DB, Neubauer G, Breu J, Klibanski A |title=Hormonal and body composition predictors of soluble leptin receptor, leptin, and free leptin index in adolescent girls with anorexia nervosa and controls and relation to insulin sensitivity |journal=J. Clin. Endocrinol. Metab. |volume=89 |issue=7 |pages=3486–95 |year=2004 |pmid=15240636 |doi=10.1210/jc.2003-032251 |url=}}</ref><ref name="pmid10832726">{{cite journal |vauthors=Katzman DK, Golden NH, Neumark-Sztainer D, Yager J, Strober M |title=From prevention to prognosis: clinical research update on adolescent eating disorders |journal=Pediatr. Res. |volume=47 |issue=6 |pages=709–12 |year=2000 |pmid=10832726 |doi= |url=}}</ref>
*It has been observed that [[leptin]] levels in amenorrheic athletes are low as compared to non-athletes women or athletes with regular [[menses]].<ref name="pmid10846016">{{cite journal |vauthors=Thong FS, McLean C, Graham TE |title=Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors |journal=J. Appl. Physiol. |volume=88 |issue=6 |pages=2037–44 |year=2000 |pmid=10846016 |doi= |url=}}</ref><ref name="pmid10583427">{{cite journal |vauthors=Weimann E, Blum WF, Witzel C, Schwidergall S, Böhles HJ |title=Hypoleptinemia in female and male elite gymnasts |journal=Eur. J. Clin. Invest. |volume=29 |issue=10 |pages=853–60 |year=1999 |pmid=10583427 |doi= |url=}}</ref>
*It has been observed that [[leptin]] levels in amenorrheic athletes are low as compared to non-athletes women or athletes with regular [[menses]].<ref name="pmid10846016">{{cite journal |vauthors=Thong FS, McLean C, Graham TE |title=Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors |journal=J. Appl. Physiol. |volume=88 |issue=6 |pages=2037–44 |year=2000 |pmid=10846016 |doi= |url=}}</ref><ref name="pmid10583427">{{cite journal |vauthors=Weimann E, Blum WF, Witzel C, Schwidergall S, Böhles HJ |title=Hypoleptinemia in female and male elite gymnasts |journal=Eur. J. Clin. Invest. |volume=29 |issue=10 |pages=853–60 |year=1999 |pmid=10583427 |doi= |url=}}</ref>
*Administration of [[recombinant]] [[leptin]] for 3 months in women with conditions such as [[hypothalamic]] [[amenorrhea]], excessive [[exercises]] or [[weight loss]] has been associated with an increased level of [[LH]], [[FSH]], and [[estradiol]] and led to [[Ovulation|ovulatory]] cycles.<ref name="WeltChan2004">{{cite journal|last1=Welt|first1=Corrine K.|last2=Chan|first2=Jean L.|last3=Bullen|first3=John|last4=Murphy|first4=Robyn|last5=Smith|first5=Patricia|last6=DePaoli|first6=Alex M.|last7=Karalis|first7=Aspasia|last8=Mantzoros|first8=Christos S.|title=Recombinant Human Leptin in Women with Hypothalamic Amenorrhea|journal=New England Journal of Medicine|volume=351|issue=10|year=2004|pages=987–997|issn=0028-4793|doi=10.1056/NEJMoa040388}}</ref>
*Administration of [[recombinant]] [[leptin]] for 3 months in women with conditions such as [[hypothalamic]] [[amenorrhea]], excessive [[exercises]] or [[weight loss]] has been associated with an increased level of [[LH]], [[FSH]], and [[estradiol]] leading to [[Ovulation|ovulatory]] cycles.<ref name="WeltChan2004">{{cite journal|last1=Welt|first1=Corrine K.|last2=Chan|first2=Jean L.|last3=Bullen|first3=John|last4=Murphy|first4=Robyn|last5=Smith|first5=Patricia|last6=DePaoli|first6=Alex M.|last7=Karalis|first7=Aspasia|last8=Mantzoros|first8=Christos S.|title=Recombinant Human Leptin in Women with Hypothalamic Amenorrhea|journal=New England Journal of Medicine|volume=351|issue=10|year=2004|pages=987–997|issn=0028-4793|doi=10.1056/NEJMoa040388}}</ref>
*[[Antipsychotic drugs]] and other medications that have inhibitory effect on [[Dopamine receptor D2|dopamine D2 receptor]] leads to an increased level of [[prolactin]]. Higher levels of [[prolactin]] suppress pulsatile [[GnRH]] and block positive [[feedback]] of [[estradiol]] on [[hypothalamus]], leading to disruption of [[Hypothalamic-pituitary-gonadal axis|HPO axis]].<ref name="pmid12611781">{{cite journal |vauthors=Wieck A, Haddad PM |title=Antipsychotic-induced hyperprolactinaemia in women: pathophysiology, severity and consequences. Selective literature review |journal=Br J Psychiatry |volume=182 |issue= |pages=199–204 |year=2003 |pmid=12611781 |doi= |url=}}</ref>
*[[Antipsychotic drugs]] and other medications that have an inhibitory effect on [[Dopamine receptor D2|dopamine D2 receptor]] lead to an increased level of [[prolactin]]. Higher levels of [[prolactin]] suppress pulsatile [[GnRH]] secretion and block positive [[feedback]] of [[estradiol]] on [[hypothalamus]], leading to disruption of [[Hypothalamic-pituitary-gonadal axis|HPO axis]].<ref name="pmid12611781">{{cite journal |vauthors=Wieck A, Haddad PM |title=Antipsychotic-induced hyperprolactinaemia in women: pathophysiology, severity and consequences. Selective literature review |journal=Br J Psychiatry |volume=182 |issue= |pages=199–204 |year=2003 |pmid=12611781 |doi= |url=}}</ref>
*[[Stress]] and strenuous activities llike other [[metabolic]] or [[cardiovascular]] responses are regulated through [[Corticotropin releasing hormone|corticotropin releasing hormone (CRH)]], secreted by [[Paraventricular nucleus of hypothalamus|paraventricular nuclei of hypothalamus]]. [[CRH]] induce the release of  [[β-endorphin]], an endogenous [[opioid]]. Both [[CRH]] and [[β-endorphin]] suppress [[GnRH]] release. On the other hand, [[glucocorticoids]] suppress [[LH]] production from [[pituitary]] and also [[estrogen]]/[[progesterone]] from [[ovaries]].<ref name="pmid9238254">{{cite journal |vauthors=Magiakou MA, Mastorakos G, Webster E, Chrousos GP |title=The hypothalamic-pituitary-adrenal axis and the female reproductive system |journal=Ann. N. Y. Acad. Sci. |volume=816 |issue= |pages=42–56 |year=1997 |pmid=9238254 |doi= |url=}}</ref>
*[[Stress]] and strenuous activities like other [[metabolic]] or [[cardiovascular]] responses are regulated through [[Corticotropin releasing hormone|corticotropin releasing hormone (CRH)]], secreted by [[Paraventricular nucleus of hypothalamus|paraventricular nuclei of hypothalamus]]. [[CRH]] induce the release of  [[β-endorphin]], an endogenous [[opioid]]. Both [[CRH]] and [[β-endorphin]] suppress [[GnRH]] release. On the other hand, [[glucocorticoids]] suppress [[LH]] production from [[pituitary]] and also [[estrogen]]/[[progesterone]] from [[ovaries]].<ref name="pmid9238254">{{cite journal |vauthors=Magiakou MA, Mastorakos G, Webster E, Chrousos GP |title=The hypothalamic-pituitary-adrenal axis and the female reproductive system |journal=Ann. N. Y. Acad. Sci. |volume=816 |issue= |pages=42–56 |year=1997 |pmid=9238254 |doi= |url=}}</ref>
*[[Kallmann syndrome]], a [[genetic disorder]] caused by [[KAL1 gene|KAL gene]] [[mutation]], has disturbance in migration of [[olfactory nerves]] along with [[GnRH]] neurons. Lack of [[GnRH]] leads to absence of [[secondary sexual characteristics]] and amenorrhea.<ref name="pmid9793755">{{cite journal |vauthors=Seminara SB, Hayes FJ, Crowley WF |title=Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations |journal=Endocr. Rev. |volume=19 |issue=5 |pages=521–39 |year=1998 |pmid=9793755 |doi=10.1210/edrv.19.5.0344 |url=}}</ref>
*[[Kallmann syndrome]], a [[genetic disorder]] caused by [[KAL1 gene|KAL gene]] [[mutation]], has disturbance in migration of [[olfactory nerves]] along with [[GnRH]] neurons. Lack of [[GnRH]] leads to absence of [[secondary sexual characteristics]] and amenorrhea.<ref name="pmid9793755">{{cite journal |vauthors=Seminara SB, Hayes FJ, Crowley WF |title=Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations |journal=Endocr. Rev. |volume=19 |issue=5 |pages=521–39 |year=1998 |pmid=9793755 |doi=10.1210/edrv.19.5.0344 |url=}}</ref>


==== Pituitary pathogenesis ====
==== Pituitary pathogenesis ====
* One of the most prevalent [[anterior pituitary]] [[tumors]] is [[prolactinoma]]. Prolactinoma leads to increased prolactin secretion and along with the tumor's mass effect may cause suppression of GnRH.
* P[[prolactinoma|rolactinoma]] is one of the most common [[anterior pituitary]] [[tumors]]. [[Prolactinoma]] leads to [[Hyperprolactinemia|increased prolactin secretion]] and along with the [[Tumor|tumor's]] mass effect may cause suppression of [[Gonadotropin-releasing hormone|GnRH]].
* Second prevalent tumor in [[suprasellar]] region is [[craniopharyngioma]]. The [[tumor]] leads to [[LH]] and [[FSH]] disturbances, which may cause amenorrhea.<ref name="pmid16543382">{{cite journal |vauthors=Karavitaki N, Cudlip S, Adams CB, Wass JA |title=Craniopharyngiomas |journal=Endocr. Rev. |volume=27 |issue=4 |pages=371–97 |year=2006 |pmid=16543382 |doi=10.1210/er.2006-0002 |url=}}</ref>
* The second most common tumor in the [[suprasellar]] region is [[craniopharyngioma]]. The [[tumor]] leads to [[LH]] and [[FSH]] disturbances, which may cause amenorrhea.<ref name="pmid16543382">{{cite journal |vauthors=Karavitaki N, Cudlip S, Adams CB, Wass JA |title=Craniopharyngiomas |journal=Endocr. Rev. |volume=27 |issue=4 |pages=371–97 |year=2006 |pmid=16543382 |doi=10.1210/er.2006-0002 |url=}}</ref>


==== Thyroid pathogenesis ====
==== Thyroid pathogenesis ====
Line 55: Line 59:


==== Adrenal pathogenesis ====
==== Adrenal pathogenesis ====
* [[Congenital adrenal hyperplasia (CAH)]] is a group of [[genetic]] [[enzyme]] deficiency in [[adrenal gland]]. Most of the time the defect is in [[21-hydroxylase|21-hydroxylase enzyme]], leading to decreasing the main [[enzymes]]. To overcome the enzyme deficiency, [[CRH]] production is increased by [[hypothalamus]]. As mentioned before [[increased]] [[CRH]] can suppress [[GnRH]] and lead to amenorrhea.<ref name="SpeiserWhite2003">{{cite journal|last1=Speiser|first1=Phyllis W.|last2=White|first2=Perrin C.|title=Congenital Adrenal Hyperplasia|journal=New England Journal of Medicine|volume=349|issue=8|year=2003|pages=776–788|issn=0028-4793|doi=10.1056/NEJMra021561}}</ref>  
* [[Congenital adrenal hyperplasia (CAH)]] is a group of [[genetic]] [[enzyme]] deficiencies in [[adrenal gland]]. Most common is the defect in [[21-hydroxylase|21-hydroxylase enzyme]], which leads to decrease in the level of [[aldosterone]] and [[cortisol]]. To overcome the [[hormone]] deficiencies, [[CRH]] production is increased by the [[hypothalamus]]. As described earlier, [[increased]] level of [[CRH]] may suppress [[GnRH]] and lead to amenorrhea.<ref name="SpeiserWhite2003">{{cite journal|last1=Speiser|first1=Phyllis W.|last2=White|first2=Perrin C.|title=Congenital Adrenal Hyperplasia|journal=New England Journal of Medicine|volume=349|issue=8|year=2003|pages=776–788|issn=0028-4793|doi=10.1056/NEJMra021561}}</ref>  
* [[Cushing syndrome]] has increased level of [[cortisol]], that can directly inhibit [[Hypothalamic-pituitary-gonadal axis|HPO axis]] and cause amenorrhea.
* [[Cushing syndrome]] has an increased level of [[cortisol]], that can directly inhibit [[Hypothalamic-pituitary-gonadal axis|HPO axis]] and lead to amenorrhea.


==== Ovarian pathogenesis ====
==== Ovarian pathogenesis ====
* [[Polycystic ovary syndrome|Polycystic ovary syndrome (PCOS)]] is mainly due to [[insulin resistance]], that can be lead to [[androgen]] over-production ([[insulin]] reduces the [[Sex hormone-binding globulin|SHBG]] circulating in [[plasma]], causes increasing [[testosterone]]). In the [[ovary]] there will be increased response to [[GnRH]] for [[17-Hydroxyprogesterone|17-hydroxy progesterone]] and also [[Cytochrome P450|cytochrome P450c17]]; both lead to increasing [[androgens]] [[biosynthesis]].<ref name="pmid9302378">{{cite journal |vauthors=Gilling-Smith C, Story H, Rogers V, Franks S |title=Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome |journal=Clin. Endocrinol. (Oxf) |volume=47 |issue=1 |pages=93–9 |year=1997 |pmid=9302378 |doi= |url=}}</ref><ref name="pmid7671850">{{cite journal |vauthors=Ehrmann DA, Barnes RB, Rosenfield RL |title=Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion |journal=Endocr. Rev. |volume=16 |issue=3 |pages=322–53 |year=1995 |pmid=7671850 |doi=10.1210/edrv-16-3-322 |url=}}</ref> Finally, the pulsatility of [[GnRH]] will be disrupted and amenorrhea happens.<ref name="pmid9467578">{{cite journal |vauthors=Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC |title=Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone |journal=J. Clin. Endocrinol. Metab. |volume=83 |issue=2 |pages=582–90 |year=1998 |pmid=9467578 |doi=10.1210/jcem.83.2.4604 |url=}}</ref>
* In [[Polycystic ovary syndrome|polycystic ovary syndrome (PCOS)]] [[insulin resistance]] leads to increased [[androgen]] production ([[insulin]] reduces the [[Sex hormone-binding globulin|SHBG]] circulating in [[plasma]], causing increased [[testosterone]]). In [[ovary|ovaries]], increased stimulation from [[GnRH]] leads to increased production of [[17-Hydroxyprogesterone|17-hydroxy progesterone]] and [[Cytochrome P450|cytochrome P450c17]] which promotes [[androgens]] [[biosynthesis]].<ref name="pmid9302378">{{cite journal |vauthors=Gilling-Smith C, Story H, Rogers V, Franks S |title=Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome |journal=Clin. Endocrinol. (Oxf) |volume=47 |issue=1 |pages=93–9 |year=1997 |pmid=9302378 |doi= |url=}}</ref><ref name="pmid7671850">{{cite journal |vauthors=Ehrmann DA, Barnes RB, Rosenfield RL |title=Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion |journal=Endocr. Rev. |volume=16 |issue=3 |pages=322–53 |year=1995 |pmid=7671850 |doi=10.1210/edrv-16-3-322 |url=}}</ref> Finally, the pulsatility of [[GnRH]] will be disrupted leading to amenorrhea .<ref name="pmid9467578">{{cite journal |vauthors=Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC |title=Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone |journal=J. Clin. Endocrinol. Metab. |volume=83 |issue=2 |pages=582–90 |year=1998 |pmid=9467578 |doi=10.1210/jcem.83.2.4604 |url=}}</ref>
* [[Primary ovarian failure|Primary ovarian insufficiency]] occurs due to several pathologies, all of them lead to [[ovarian failure]] and decrease in [[esterogen]]. In [[galactosemia]], it is assumed that [[galactose]] and its metabolites are toxic to [[ovarian]] tissue.<ref name="pmid6782485">{{cite journal |vauthors=Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R |title=Hypergonadotropic hypogonadism in female patients with galactosemia |journal=N. Engl. J. Med. |volume=304 |issue=17 |pages=994–8 |year=1981 |pmid=6782485 |doi=10.1056/NEJM198104233041702 |url=}}</ref>
* [[Primary ovarian failure|Primary ovarian insufficiency]] is multifactorial and leads to [[ovarian failure]] and decrease in [[estrogen]] which leads to amenorrhea. (In [[galactosemia]], it is assumed that [[galactose]] and its metabolites are toxic to [[ovarian]] tissue.)<ref name="pmid6782485">{{cite journal |vauthors=Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R |title=Hypergonadotropic hypogonadism in female patients with galactosemia |journal=N. Engl. J. Med. |volume=304 |issue=17 |pages=994–8 |year=1981 |pmid=6782485 |doi=10.1056/NEJM198104233041702 |url=}}</ref>


==== Uterine pathogenesis ====
==== Uterine pathogenesis ====
* The main [[pathogenesis]] of amenorrhea in [[androgen insensitivity syndrome]] is absence of [[uterus]]. The patient is [[Genotype|genotypely]] male, 46 XY; but has not experienced [[sexual characteristics]] due to lack of functional effect of [[Androgen|androgen hormones]] on their receptors.
* The main [[pathogenesis]] of amenorrhea in [[androgen insensitivity syndrome]] is the absence of [[uterus]]. The patient is [[Genotype|genotypically]] male, 46 XY; but with absent [[sexual characteristics]] due to lack of functional effect of [[Androgen|androgen hormones]] on their receptors.
* One of the acquired conditions that can lead to amenorrhea is [[Asherman syndrome]]. The base of this syndrome is any condition that can harm the [[endometrium]], such as [[scarring]] from [[surgical procedure]] or [[adhesion]] from severe [[infection]].
* One of the acquired conditions that can lead to amenorrhea is [[Asherman syndrome]]. The basis of [[Asherman syndrome]] is any condition that can alter the normal histology of [[endometrium]], such as [[scarring]] from [[surgical procedure]] or [[adhesion]] from severe [[infection]].
* [[Mayer-Rokitansky-Hauser syndrome|Mayer-Rokitansky-Kuster-Hauser syndrome]] is complete [[agenesis]] of [[uterine]], blind ended [[vagina]]. The lack of [[uterine]] and [[endometrium]] is the main [[pathogenesis]] of amenorrhea. The main reason of [[Uterine atresia|uterine agenesis]] is overactivation of [[Antimullerian hormone|anti-mullerian hormone]] in [[embryogenesis]] period.<ref name="pmid4020785">{{cite journal |vauthors=Varner RE, Younger JB, Blackwell RE |title=Müllerian dysgenesis |journal=J Reprod Med |volume=30 |issue=6 |pages=443–50 |year=1985 |pmid=4020785 |doi= |url=}}</ref> [[Cervical]] [[agenesis]] also follow the similar process.
* [[Mayer-Rokitansky-Hauser syndrome|Mayer-Rokitansky-Kuster-Hauser syndrome]] is complete [[agenesis]] of [[uterine]], blind ended [[vagina]]. The lack of [[uterine]] and [[endometrium]] is the main [[pathogenesis]] of amenorrhea. The main reason of [[Uterine atresia|uterine agenesis]] is overactivation of [[Antimullerian hormone|anti-mullerian hormone]] in [[embryogenesis]] period.<ref name="pmid4020785">{{cite journal |vauthors=Varner RE, Younger JB, Blackwell RE |title=Müllerian dysgenesis |journal=J Reprod Med |volume=30 |issue=6 |pages=443–50 |year=1985 |pmid=4020785 |doi= |url=}}</ref> [[Cervical]] [[agenesis]] also follow the similar process.
* [[Imperforate hymen|Imperforated hymen]], [[Vaginal septum|transverse vaginal septum]], and [[vaginal agenesis]] are other [[anatomical]] disorders of [[female reproductive system]] that can lead to amenorrhea.<ref name="pmid12758224">{{cite journal |vauthors=Edmonds DK |title=Congenital malformations of the genital tract and their management |journal=Best Pract Res Clin Obstet Gynaecol |volume=17 |issue=1 |pages=19–40 |year=2003 |pmid=12758224 |doi= |url=}}</ref>  
* [[Imperforate hymen|Imperforated hymen]], [[Vaginal septum|transverse vaginal septum]], and [[vaginal agenesis]] are other [[anatomical]] disorders of [[female reproductive system]] that can lead to amenorrhea.<ref name="pmid12758224">{{cite journal |vauthors=Edmonds DK |title=Congenital malformations of the genital tract and their management |journal=Best Pract Res Clin Obstet Gynaecol |volume=17 |issue=1 |pages=19–40 |year=2003 |pmid=12758224 |doi= |url=}}</ref>  
Line 70: Line 74:
==Genetics==
==Genetics==
=== The major genes in amenorrhea ===
=== The major genes in amenorrhea ===
<span style="font-size:85%">'''Abbreviations (alphabetic):'''<br>
 
'''CHD7:''' Chromodomain [[helicase]] DNA-binding protein 7 gene, '''DAX1:''' DSS-AHC on the [[X-chromosome]] 1, '''EBF2:''' Early [[B-cell]] factor 2 gene, '''FGF8:''' [[Fibroblast growth factor 8]] gene, '''FGFR1:''' [[Fibroblast growth factor receptor 1]] gene, '''FSH:''' [[Follicle stimulating hormone]], '''GnRH:''' [[Gonadotropin releasing hormone]], '''GnRH1:''' [[Gonadotropin releasing hormone]] 1 gene, '''GnRHR:''' [[Gonadotropin releasing hormone]] receptor gene, '''GPR54:''' [[G protein-coupled receptor|G protein-coupled receptor-54]] gene, '''HESX-1:''' [[Homeobox]] gene 1, '''HPG axis:''' Hypothalamus-pituitary-gonadal axis, '''HS6ST1:''' [[Heparan sulfate]] 6-O-sulphotransferase 1 gene, '''KAL1:''' [[Kallman syndrome|Kallmann syndrome]] 1 gene, '''LEP:''' [[Leptin]] gene''', LEPR:''' [[Leptin receptor]] gene''', LH:''' [[Luteinizing hormone]], '''LHX3:''' LIM [[homeobox]] gene 3''', NEC1:''' [[Neuroendocrine]] convertase 1, '''NELF:''' Nasal embryonic LH-releasing hormone factor gene, '''NK3R:''' [[Neurokinin]] 3 receptor gene, '''NKB:''' [[Neurokinin B]] gene,  '''NR0B:''' [[Nuclear receptor]] 0B, '''NR5A1:''' [[Nuclear receptor]] 5A1, '''OMIM:''' [[Online Mendelian Inheritance in Man]], '''PC1:''' [[Proprotein]] convertase 1''', PROK2 :''' [[Prokineticin]] 2 gene, '''PROKR2:''' [[Prokineticin]] 2 receptor gene, '''PROP-1:''' [[PROP]] paired-like homeobox 1, '''RPX:''' [[Rathke pouch]] homeobox, '''SF-1:''' [[Steroidogenic]] factor 1, '''TAC3:''' [[Tachykinin]] 3 gene,'''TACR3:''' [[Tachykinin]] 3 receptor gene,
</span>
{| class="wikitable"
{| class="wikitable"
!Groups  
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Groups  
!Gene
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Gene
!Other name(s)
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Other name(s)
!OMIM number
! style="background:#4479BA; color: #FFFFFF;" align="center" + |OMIM number
!Chromosome
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Chromosome
!Function
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Function
!Other related disorders
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Other related disorders
|-
|-
| rowspan="15" |'''Kallmann syndrome'''  
| rowspan="15" style="background:#DCDCDC;" align="center" + |'''Kallmann syndrome'''  
and  
and  


'''Isolated hypogonadotropic hypogonadism'''<ref name="BonomiLibri2011">{{cite journal|last1=Bonomi|first1=Marco|last2=Libri|first2=Domenico Vladimiro|last3=Guizzardi|first3=Fabiana|last4=Guarducci|first4=Elena|last5=Maiolo|first5=Elisabetta|last6=Pignatti|first6=Elisa|last7=Asci|first7=Roberta|last8=Persani|first8=Luca|title=New understandings of the genetic basis of isolated idiopathic central hypogonadism|journal=Asian Journal of Andrology|volume=14|issue=1|year=2011|pages=49–56|issn=1008-682X|doi=10.1038/aja.2011.68}}</ref>
'''Isolated hypogonadotropic hypogonadism'''<ref name="BonomiLibri2011">{{cite journal|last1=Bonomi|first1=Marco|last2=Libri|first2=Domenico Vladimiro|last3=Guizzardi|first3=Fabiana|last4=Guarducci|first4=Elena|last5=Maiolo|first5=Elisabetta|last6=Pignatti|first6=Elisa|last7=Asci|first7=Roberta|last8=Persani|first8=Luca|title=New understandings of the genetic basis of isolated idiopathic central hypogonadism|journal=Asian Journal of Andrology|volume=14|issue=1|year=2011|pages=49–56|issn=1008-682X|doi=10.1038/aja.2011.68}}</ref>
|'''KAL1'''
| style="background:#DCDCDC;" align="center" + |'''KAL1'''
|[[KAL1 gene|KAL1]], [[anosmin-1]]
|[[KAL1 gene|KAL1]], [[anosmin-1]]
|308700  
|308700  
Line 102: Line 104:
* [[Cerebellar ataxia]]
* [[Cerebellar ataxia]]
|-
|-
|'''FGFR1'''  
| style="background:#DCDCDC;" align="center" + |'''FGFR1'''  
|KAL2
|KAL2
|136350  
|136350  
Line 117: Line 119:
* Bimanual [[synkinesis]]
* Bimanual [[synkinesis]]
|-
|-
|'''PROKR2'''
| style="background:#DCDCDC;" align="center" + |'''PROKR2'''
|KAL3
|KAL3
|607123  
|607123  
Line 133: Line 135:
* [[Epilepsy]]
* [[Epilepsy]]
|-
|-
|'''PROK2'''  
| style="background:#DCDCDC;" align="center" + |'''PROK2'''  
|KAL4
|KAL4
|607002
|607002
|3p21.1
|3p21.1
|-
|-
|'''CHD7'''  
| style="background:#DCDCDC;" align="center" + |'''CHD7'''  
|KAL5
|KAL5
|608892  
|608892  
Line 153: Line 155:
** [[Ear|'''E'''ar]] anomalies
** [[Ear|'''E'''ar]] anomalies
|-
|-
|'''FGF8'''  
| style="background:#DCDCDC;" align="center" + |'''FGF8'''  
|KAL6
|KAL6
|600483
|600483
Line 168: Line 170:
* [[Cerebellar]] developmental abnormalities
* [[Cerebellar]] developmental abnormalities
|-
|-
|'''GPR54'''  
| style="background:#DCDCDC;" align="center" + |'''GPR54'''  
|KISS1R
|KISS1R
|604161  
|604161  
Line 176: Line 178:
| -
| -
|-
|-
|'''KISS1'''
| style="background:#DCDCDC;" align="center" + |'''KISS1'''
|KISS1, kisspeptin1  
|KISS1, kisspeptin1  
|603286  
|603286  
Line 184: Line 186:
| -
| -
|-
|-
|'''HS6ST1'''
| style="background:#DCDCDC;" align="center" + |'''HS6ST1'''
| -
| -
|604846  
|604846  
Line 194: Line 196:
| -
| -
|-
|-
|'''TAC3'''  
| style="background:#DCDCDC;" align="center" + |'''TAC3'''  
|NKB
|NKB
|162330  
|162330  
Line 207: Line 209:
* [[Cryptorchidism]]
* [[Cryptorchidism]]
|-
|-
|'''TACR3'''
| style="background:#DCDCDC;" align="center" + |'''TACR3'''
|NK3R
|NK3R
|152332
|152332
|4q25
|4q25
|-
|-
|'''GnRH1'''  
| style="background:#DCDCDC;" align="center" + |'''GnRH1'''  
| -
| -
|152760  
|152760  
Line 221: Line 223:
* [[Teeth]] abnormal [[maturation]] and biomineralization
* [[Teeth]] abnormal [[maturation]] and biomineralization
|-
|-
|'''GnRHR'''  
| style="background:#DCDCDC;" align="center" + |'''GnRHR'''  
| -
| -
|138850  
|138850  
Line 233: Line 235:
* Failure to impact from exogenous [[GnRH]]
* Failure to impact from exogenous [[GnRH]]
|-
|-
|'''NELF'''
| style="background:#DCDCDC;" align="center" + |'''NELF'''
| -
| -
|608137  
|608137  
|''9q34.3''
|''9q34.3''
|
|
* ''Modulating [[neuron]] migration in developmental process''
* Modulating [[neuron]] migration in developmental process
* ''[[Olfactory]] axons and also [[GnRH]] [[neurons]] functions''
* [[Olfactory]] axons and also [[GnRH]] [[neurons]] functions
| -
| -
|-
|-
|'''EBF2'''
| style="background:#DCDCDC;" align="center" + |'''EBF2'''
| -
| -
|609934  
|609934  
Line 250: Line 252:
| -
| -
|-
|-
| rowspan="5" |'''HPG axis development'''
| rowspan="5" style="background:#DCDCDC;" align="center" + |'''HPG axis development'''
|'''DAX1'''
| style="background:#DCDCDC;" align="center" + |'''DAX1'''
|NR0B
|NR0B
|300473  
|300473  
Line 262: Line 264:
* Congenital [[Adrenal cortex insufficiency|adrenal cortex hypoplasia]]
* Congenital [[Adrenal cortex insufficiency|adrenal cortex hypoplasia]]
|-
|-
|'''SF-1'''
| style="background:#DCDCDC;" align="center" + |'''SF-1'''
|NR5A1
|NR5A1
|184757  
|184757  
Line 275: Line 277:
* [[Hypospadias]]
* [[Hypospadias]]
|-
|-
|'''HESX-1'''
| style="background:#DCDCDC;" align="center" + |'''HESX-1'''
|RPX
|RPX
|601802  
|601802  
|''3p14.3''
|''3p14.3''
|
|
* ''[[Pituitary]] development''
* [[Pituitary]] development
* ''Midfacial differentiation''
* Midfacial differentiation
* ''[[Mutation]] may lead to [[pituitary]] [[hypoplasia]]''
* [[Mutation]] may lead to [[pituitary]] [[hypoplasia]]
|
|
* Septooptic dysplasia
* Septooptic dysplasia
Line 292: Line 294:
* Abnormalities in the [[corpus callosum]], [[hippocampus]], and [[septum pellucidum]]
* Abnormalities in the [[corpus callosum]], [[hippocampus]], and [[septum pellucidum]]
|-
|-
|'''LHX3'''
| style="background:#DCDCDC;" align="center" + |'''LHX3'''
|LIM3
|LIM3
|600577  
|600577  
Line 305: Line 307:
* Skeletal abnormalities
* Skeletal abnormalities
|-
|-
|'''PROP-1'''
| style="background:#DCDCDC;" align="center" + |'''PROP-1'''
| -
| -
|601538  
|601538  
|''5q35.3''
|''5q35.3''
|
|
* ''Developing anterior [[pituitary gland]]''
* Developing anterior [[pituitary gland]]
* ''[[Gonadotrophs]]''
* [[Gonadotrophs]]
* ''[[Thyrotrophs|Tthyrotrophs]]''
* [[Thyrotrophs|Tthyrotrophs]]
* ''[[Somatotrophs]]''
* [[Somatotrophs]]
* ''[[Lactotrophs|Lactotrophs]]''
* [[Lactotrophs|Lactotrophs]]
* Low [[LH]] and [[FSH]] delay the [[puberty]]
* Low [[LH]] and [[FSH]] delay the [[puberty]]
|
|
Line 321: Line 323:
* [[Libido]]/[[Lactation]] problems
* [[Libido]]/[[Lactation]] problems
|-
|-
| rowspan="3" |'''Obesity related'''  
| rowspan="3" style="background:#DCDCDC;" align="center" + |'''Obesity related'''  
'''hypogonadotropic hypogonadism'''
'''hypogonadotropic hypogonadism'''
|'''LEP'''
| style="background:#DCDCDC;" align="center" + |'''LEP'''
|OB  
|OB  
|164160  
|164160  
|''7q32.1''  
|''7q32.1''  
| rowspan="2" |
| rowspan="2" |
* ''Modulation of [[body weight]]''
* Modulation of [[body weight]]
* Beginning the [[puberty]]
* Beginning the [[puberty]]
* [[Recombinant]] [[leptin]] injection in female mice result in [[puberty]]  
* [[Recombinant]] [[leptin]] injection in female mice result in [[puberty]]  
Line 338: Line 340:
* [[Immune]] or [[inflammatory response]] disorders
* [[Immune]] or [[inflammatory response]] disorders
|-
|-
|'''LEPR'''
| style="background:#DCDCDC;" align="center" + |'''LEPR'''
|OBR
|OBR
|601007
|601007
|''1p31.3''
|''1p31.3''
|-
|-
|'''PC1'''
| style="background:#DCDCDC;" align="center" + |'''PC1'''
|NEC1
|NEC1
|162150  
|162150  
|''5q15''
|''5q15''
|
|
* ''Regulates [[neuroendocrine]] pathway''
* Regulates [[neuroendocrine]] pathway
* [[Proopiomelanocortin]] (POMC) cleavage
* [[Proopiomelanocortin]] (POMC) cleavage
* Processing [[proinsulin]] and [[proglucagon]] in [[pancreas]].
* Processing [[proinsulin]] and [[proglucagon]] in [[pancreas]].
Line 355: Line 357:
* Abnormal glucose [[homeostasis]]
* Abnormal glucose [[homeostasis]]
* [[Hypocortisolism]]
* [[Hypocortisolism]]
* Elevated plasma [[proinsulin]], and also [[POMC]]  
* Elevated plasma [[proinsulin]], and also [[POMC]]
|-
| colspan="7" style="background:#DCDCDC;" + |
<span style="font-size:85%">'''Abbreviations (alphabetic):'''<br>
'''CHD7:''' Chromodomain [[helicase]] DNA-binding protein 7 gene, '''DAX1:''' DSS-AHC on the [[X-chromosome]] 1, '''EBF2:''' Early [[B-cell]] factor 2 gene, '''FGF8:''' [[Fibroblast growth factor 8]] gene, '''FGFR1:''' [[Fibroblast growth factor receptor 1]] gene, '''FSH:''' [[Follicle stimulating hormone]], '''GnRH:''' [[Gonadotropin releasing hormone]], '''GnRH1:''' [[Gonadotropin releasing hormone]] 1 gene, '''GnRHR:''' [[Gonadotropin releasing hormone]] receptor gene, '''GPR54:''' [[G protein-coupled receptor|G protein-coupled receptor-54]] gene, '''HESX-1:''' [[Homeobox]] gene 1, '''HPG axis:''' Hypothalamus-pituitary-gonadal axis, '''HS6ST1:''' [[Heparan sulfate]] 6-O-sulphotransferase 1 gene, '''KAL1:''' [[Kallman syndrome|Kallmann syndrome]] 1 gene, '''LEP:''' [[Leptin]] gene''', LEPR:''' [[Leptin receptor]] gene''', LH:''' [[Luteinizing hormone]], '''LHX3:''' LIM [[homeobox]] gene 3''', NEC1:''' [[Neuroendocrine]] convertase 1, '''NELF:''' Nasal embryonic LH-releasing hormone factor gene, '''NK3R:''' [[Neurokinin]] 3 receptor gene, '''NKB:''' [[Neurokinin B]] gene,  '''NR0B:''' [[Nuclear receptor]] 0B, '''NR5A1:''' [[Nuclear receptor]] 5A1, '''OMIM:''' [[Online Mendelian Inheritance in Man]], '''PC1:''' [[Proprotein]] convertase 1''', PROK2 :''' [[Prokineticin]] 2 gene, '''PROKR2:''' [[Prokineticin]] 2 receptor gene, '''PROP-1:''' [[PROP]] paired-like homeobox 1, '''RPX:''' [[Rathke pouch]] homeobox, '''SF-1:''' [[Steroidogenic]] factor 1, '''TAC3:''' [[Tachykinin]] 3 gene,'''TACR3:''' [[Tachykinin]] 3 receptor gene,
</span>
|}
|}


=== Kisspeptin system (KISS1R and KISS1) ===
=== Kisspeptin system (KISS1R and KISS1) ===
* The GPR54 [[gene]], also called KISS1R, with [[Online Mendelian Inheritance in Man|Online Mendelian Inheritance in Man (OMIM)]] number of 604161 is on chromosome 19p13.3. The KISS1 gene, also called [[Kisspeptin|kisspeptin1]], with [[OMIM]] number of 603286 is on [[chromosome]] 1q32,
* The GPR54 [[gene]], also called KISS1R, with [[Online Mendelian Inheritance in Man|Online Mendelian Inheritance in Man (OMIM)]] number of 604161 is on chromosome 19p13.3. The KISS1 gene, also known as [[Kisspeptin|kisspeptin1]], with [[OMIM]] number of 603286 is on [[chromosome]] 1q32.
* The [[GnRH]] secretion has to be pulsatile to stimulate [[gonadotropins]]. In regulation of [[GnRH]] secretion, [[kisspeptin]] and the related [[G-protein coupled receptor]] (KISS1R or GPR54) have key roles. [[Kisspeptin|Kisspeptins]] are encoded by KISS1 gene, [[neuropeptides]] secreted from [[hypothalamus]] nuclei. It is found that patients with idiopathic [[hypogonadotropic hypogonadism]] have KISS1 receptor (GPR54) inactivating [[gene]] [[mutations]].<ref name="pmid12944565">{{cite journal |vauthors=de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E |title=Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue=19 |pages=10972–6 |year=2003 |pmid=12944565 |pmc=196911 |doi=10.1073/pnas.1834399100 |url=}}</ref><ref name="SeminaraMessager2003">{{cite journal|last1=Seminara|first1=Stephanie B.|last2=Messager|first2=Sophie|last3=Chatzidaki|first3=Emmanouella E.|last4=Thresher|first4=Rosemary R.|last5=Acierno|first5=James S.|last6=Shagoury|first6=Jenna K.|last7=Bo-Abbas|first7=Yousef|last8=Kuohung|first8=Wendy|last9=Schwinof|first9=Kristine M.|last10=Hendrick|first10=Alan G.|last11=Zahn|first11=Dirk|last12=Dixon|first12=John|last13=Kaiser|first13=Ursula B.|last14=Slaugenhaupt|first14=Susan A.|last15=Gusella|first15=James F.|last16=O'Rahilly|first16=Stephen|last17=Carlton|first17=Mark B.L.|last18=Crowley|first18=William F.|last19=Aparicio|first19=Samuel A.J.R.|last20=Colledge|first20=William H.|title=TheGPR54Gene as a Regulator of Puberty|journal=New England Journal of Medicine|volume=349|issue=17|year=2003|pages=1614–1627|issn=0028-4793|doi=10.1056/NEJMoa035322}}</ref>
* [[Kisspeptin]] and related [[G-protein coupled receptor]] (KISS1R or GPR54) have key roles in the regulation of [[GnRH]] secretion. The [[GnRH]] secretion has to be pulsatile to stimulate [[gonadotropins]]. [[Kisspeptin|Kisspeptins]] are encoded by KISS1 gene, [[neuropeptides]] secreted from [[hypothalamus]] nuclei. It has been observed that patients with idiopathic [[hypogonadotropic hypogonadism]] have KISS1 receptor (GPR54) inactivating [[gene]] [[mutations]].<ref name="pmid12944565">{{cite journal |vauthors=de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E |title=Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue=19 |pages=10972–6 |year=2003 |pmid=12944565 |pmc=196911 |doi=10.1073/pnas.1834399100 |url=}}</ref><ref name="SeminaraMessager2003">{{cite journal|last1=Seminara|first1=Stephanie B.|last2=Messager|first2=Sophie|last3=Chatzidaki|first3=Emmanouella E.|last4=Thresher|first4=Rosemary R.|last5=Acierno|first5=James S.|last6=Shagoury|first6=Jenna K.|last7=Bo-Abbas|first7=Yousef|last8=Kuohung|first8=Wendy|last9=Schwinof|first9=Kristine M.|last10=Hendrick|first10=Alan G.|last11=Zahn|first11=Dirk|last12=Dixon|first12=John|last13=Kaiser|first13=Ursula B.|last14=Slaugenhaupt|first14=Susan A.|last15=Gusella|first15=James F.|last16=O'Rahilly|first16=Stephen|last17=Carlton|first17=Mark B.L.|last18=Crowley|first18=William F.|last19=Aparicio|first19=Samuel A.J.R.|last20=Colledge|first20=William H.|title=TheGPR54Gene as a Regulator of Puberty|journal=New England Journal of Medicine|volume=349|issue=17|year=2003|pages=1614–1627|issn=0028-4793|doi=10.1056/NEJMoa035322}}</ref>
* By the time of [[puberty]], the KISS1 genes become activated through [[neuroanatomical]] and functional changes from environmental triggers, critical for [[brain]] sexual [[maturation]] and HPG activation with pulsatile [[GnRH]].<ref name="pmid23015158">{{cite journal| author=Kaur KK, Allahbadia G, Singh M| title=Kisspeptins in human reproduction-future therapeutic potential. | journal=J Assist Reprod Genet | year= 2012 | volume= 29 | issue= 10 | pages= 999-1011 | pmid=23015158 | doi=10.1007/s10815-012-9856-1 | pmc=3492584 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23015158  }}</ref>
* By the time of onset of [[puberty]], the KISS1 genes become activated through [[neuroanatomical]] and functional changes from environmental triggers, critical for [[brain]] sexual [[maturation]] and hypothalamic–pituitary–gonadal axis (HPG axis) activation with pulsatile [[GnRH]].<ref name="pmid23015158">{{cite journal| author=Kaur KK, Allahbadia G, Singh M| title=Kisspeptins in human reproduction-future therapeutic potential. | journal=J Assist Reprod Genet | year= 2012 | volume= 29 | issue= 10 | pages= 999-1011 | pmid=23015158 | doi=10.1007/s10815-012-9856-1 | pmc=3492584 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23015158  }}</ref>
* Along HPG axis [[neurons]], [[gamma-aminobutyric acid]] is [[inhibitory]] and [[glutamate]] is [[Excitatory neurotransmitter|excitatory neurotransmitters]]. In related KNDy [[neurons]] in [[arcuate nucleus]], the materials secreted are included [[kisspeptin]], [[neurokinin B]], and [[dynorphin A]]. Before the [[puberty]] begins, inhibitory [[dynorphin A]] is the dominant element; decreased by stimulatory effect of [[neurokinin B]], when [[puberty]] started. Conclusively, [[kisspeptin]] and [[GnRH]]/[[LH]] are increased.<ref name="UenoyamaTsukamura2014">{{cite journal|last1=Uenoyama|first1=Yoshihisa|last2=Tsukamura|first2=Hiroko|last3=Maeda|first3=Kei-ichiro|title=KNDy neuron as a gatekeeper of puberty onset|journal=Journal of Obstetrics and Gynaecology Research|volume=40|issue=6|year=2014|pages=1518–1526|issn=13418076|doi=10.1111/jog.12398}}</ref>
* Along HPG axis [[neurons]], [[gamma-aminobutyric acid]] is [[inhibitory]] and [[glutamate]] is [[Excitatory neurotransmitter|excitatory neurotransmitters]]. In related KNDy [[neurons]] in [[arcuate nucleus]], the materials secreted are included [[kisspeptin]], [[neurokinin B]], and [[dynorphin A]]. Before [[puberty]] begins, inhibitory [[dynorphin A]] is the dominant element; decreased by stimulatory effect of [[neurokinin B]], when [[puberty]] started. Conclusively, [[kisspeptin]] and [[GnRH]]/[[LH]] are increased.<ref name="UenoyamaTsukamura2014">{{cite journal|last1=Uenoyama|first1=Yoshihisa|last2=Tsukamura|first2=Hiroko|last3=Maeda|first3=Kei-ichiro|title=KNDy neuron as a gatekeeper of puberty onset|journal=Journal of Obstetrics and Gynaecology Research|volume=40|issue=6|year=2014|pages=1518–1526|issn=13418076|doi=10.1111/jog.12398}}</ref>


=== Kallmann syndrome 1 (KAL1) ===
=== Kallmann syndrome 1 (KAL1) ===
* The [[KAL1 gene|KAL1]] [[gene]], also called [[anosmin-1]], with [[OMIM]] number of 308700 is on [[chromosome]] Xp22.3, encode an [[Extracellular matrix protein|extracellular matrix glycoprotein]].  
* The [[KAL1 gene|KAL1]] [[gene]], also called [[anosmin-1]], with [[OMIM]] number of 308700 is on [[chromosome]] Xp22.3, and encodes an [[Extracellular matrix protein|extracellular matrix glycoprotein]].  
* [[Anosmin-1]] is expressed at five weeks of [[gestation]] in [[forebrain]] area of near [[olfactory bulbs]], stimulate the [[afferent fibers]] projections from there.<ref name="pmid10340754">{{cite journal |vauthors=Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C |title=Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome |journal=Dev. Dyn. |volume=215 |issue=1 |pages=26–44 |year=1999 |pmid=10340754 |doi=10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D |url=}}</ref>
* [[Anosmin-1]] is expressed at five weeks of [[gestation]] in [[forebrain]] near [[olfactory bulbs]] and stimulate the [[afferent fibers]] projections around it.<ref name="pmid10340754">{{cite journal |vauthors=Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C |title=Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome |journal=Dev. Dyn. |volume=215 |issue=1 |pages=26–44 |year=1999 |pmid=10340754 |doi=10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D |url=}}</ref>
* [[X-linked]] [[Kallman syndrome|Kallmann syndrome]] is directly associated with [[KAL1 gene|KAL1]] deletion. It is assumed to result in an absence of [[Olfactory system|olfactory fibers]] along with disturbed migration of [[GnRH]] [[neurons]], supposed to form from migrated [[olfactory placode]].<ref name="pmid2687610">{{cite journal |vauthors=Schwanzel-Fukuda M, Bick D, Pfaff DW |title=Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome |journal=Brain Res. Mol. Brain Res. |volume=6 |issue=4 |pages=311–26 |year=1989 |pmid=2687610 |doi= |url=}}</ref>
* [[X-linked]] [[Kallman syndrome|Kallmann syndrome]] is directly associated with [[KAL1 gene|KAL1]] deletion. It is assumed to result in an absence of [[Olfactory system|olfactory fibers]] along with disrupted migration of [[GnRH]] [[neurons]], that are supposed to from migrated [[olfactory placode]].<ref name="pmid2687610">{{cite journal |vauthors=Schwanzel-Fukuda M, Bick D, Pfaff DW |title=Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome |journal=Brain Res. Mol. Brain Res. |volume=6 |issue=4 |pages=311–26 |year=1989 |pmid=2687610 |doi= |url=}}</ref>
* Male patient with [[KAL1 gene|KAL1]] [[mutation]] would have central [[hypogonadism]] and [[anosmia]]/[[hyposmia]]. Additionally, the more [[diseases]] are assumed to relate with [[KAL1 gene]], such as midline [[facial]] defects ([[cleft lip]] and/or [[cleft palate]]), short [[metacarpals]], [[renal agenesis]], [[sensorineural hearing loss]], bimanual [[synkinesis]], [[oculomotor]] abnormalities, and [[cerebellar ataxia]].<ref name="pmid17624596">{{cite journal |vauthors=Trarbach EB, Silveira LG, Latronico AC |title=Genetic insights into human isolated gonadotropin deficiency |journal=Pituitary |volume=10 |issue=4 |pages=381–91 |year=2007 |pmid=17624596 |doi=10.1007/s11102-007-0061-7 |url=}}</ref>
* Male patient with [[KAL1 gene|KAL1]] [[mutation]] would have central [[hypogonadism]] and [[anosmia]]/[[hyposmia]]. Additionally, the more [[diseases]] are assumed to relate with [[KAL1 gene]], such as midline [[facial]] defects ([[cleft lip]] and/or [[cleft palate]]), short [[metacarpals]], [[renal agenesis]], [[sensorineural hearing loss]], bimanual [[synkinesis]], [[oculomotor]] abnormalities, and [[cerebellar ataxia]].<ref name="pmid17624596">{{cite journal |vauthors=Trarbach EB, Silveira LG, Latronico AC |title=Genetic insights into human isolated gonadotropin deficiency |journal=Pituitary |volume=10 |issue=4 |pages=381–91 |year=2007 |pmid=17624596 |doi=10.1007/s11102-007-0061-7 |url=}}</ref>


=== Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8) ===
=== Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8) ===
* The [[FGFR1]] [[gene]], also called KAL2, with [[OMIM]] number of 136350 is on [[chromosome]] 8q12, encode a receptor [[Tyrosine kinase|tyrosine kinase protein]]. The [[FGF8]] gene, also called KAL6, is on [[chromosome]] 10q24.
* The [[FGFR1]] [[gene]], also called KAL2, with [[OMIM]] number of 136350 is on [[chromosome]] 8q12, encode a receptor [[Tyrosine kinase|tyrosine kinase protein]]. The [[FGF8]] gene, also called KAL6, is on [[chromosome]] 10q24.
* [[FGFR1]] pathway is assumed to be the main role in [[embryogenesis]], [[homeostasis]], and [[wound healing]]. [[FGF8]] critical role in primary generation of [[neural tissue]] has been established by so many researchers.<ref name="pmid15548653">{{cite journal |vauthors=González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM |title=Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism |journal=J. Neurosci. |volume=24 |issue=46 |pages=10384–92 |year=2004 |pmid=15548653 |doi=10.1523/JNEUROSCI.3400-04.2004 |url=}}</ref>
* [[FGFR1]] pathway is assumed to be the main role in [[embryogenesis]], [[homeostasis]], and [[wound healing]]. [[FGF8]] plays a critical role in the primary generation of [[neural tissue]].<ref name="pmid15548653">{{cite journal |vauthors=González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM |title=Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism |journal=J. Neurosci. |volume=24 |issue=46 |pages=10384–92 |year=2004 |pmid=15548653 |doi=10.1523/JNEUROSCI.3400-04.2004 |url=}}</ref>
* On the other hand, interaction between [[FGFR1]], [[FGF8]], and [[heparan sulfate]] helps [[olfactory bulb]] to become differentiated and developed, also facilitates [[GnRH]] [[neurons]] migration and function.<ref name="pmid12571102">{{cite journal |vauthors=Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK |title=FGF signaling through FGFR1 is required for olfactory bulb morphogenesis |journal=Development |volume=130 |issue=6 |pages=1101–11 |year=2003 |pmid=12571102 |doi= |url=}}</ref>
* On the other hand, interaction between [[FGFR1]], [[FGF8]], and [[heparan sulfate]] helps the [[olfactory bulb]] to become differentiated and developed and also facilitates [[GnRH]] [[neurons]] in migration and function.<ref name="pmid12571102">{{cite journal |vauthors=Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK |title=FGF signaling through FGFR1 is required for olfactory bulb morphogenesis |journal=Development |volume=130 |issue=6 |pages=1101–11 |year=2003 |pmid=12571102 |doi= |url=}}</ref>
* Dominant [[deletion mutation]] of [[FGFR1]] gene is found to cause a 30% decrease in [[hypothalamic]] [[GnRH]] [[neurons]].<ref name="pmid15459253">{{cite journal |vauthors=Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI |title=Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population |journal=Mol. Endocrinol. |volume=19 |issue=1 |pages=225–36 |year=2005 |pmid=15459253 |doi=10.1210/me.2004-0330 |url=}}</ref> Other defects related to [[FGFR1]] are including [[cleft palate]] or [[Cleft lip|lip]], dental [[agenesis]] and bimanual [[synkinesis]].<ref name="pmid17624596" /> Other disorders related to [[FGF8]] are including [[cardiac]], [[craniofacial]], [[forebrain]], [[midbrain]], and [[cerebellar]] developmental abnormalities.
* Dominant [[deletion mutation]] of [[FGFR1]] gene is associated with a 30% decrease in [[hypothalamic]] [[GnRH]] [[neurons]].<ref name="pmid15459253">{{cite journal |vauthors=Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI |title=Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population |journal=Mol. Endocrinol. |volume=19 |issue=1 |pages=225–36 |year=2005 |pmid=15459253 |doi=10.1210/me.2004-0330 |url=}}</ref> Other defects related to [[FGFR1]] includes [[cleft palate]] or [[Cleft lip|lip]], dental [[agenesis]] and bimanual [[synkinesis]].<ref name="pmid17624596" />  


=== Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1) ===
=== Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1) ===
* The HS6ST1 [[gene]] with [[OMIM]] number of 604846 is on [[chromosome]] 2q21, has some functions in [[extracellular]] sugar modifications; but has already found mutated in [[hypogonadism]].<ref name="pmid21700882">{{cite journal |vauthors=Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE |title=Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=28 |pages=11524–9 |year=2011 |pmid=21700882 |pmc=3136273 |doi=10.1073/pnas.1102284108 |url=}}</ref>  
* The HS6ST1 [[gene]] with [[OMIM]] number of 604846 is on [[chromosome]] 2q21 has been found to be mutated in [[hypogonadism]].<ref name="pmid21700882">{{cite journal |vauthors=Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE |title=Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=28 |pages=11524–9 |year=2011 |pmid=21700882 |pmc=3136273 |doi=10.1073/pnas.1102284108 |url=}}</ref>  


* The modifications of [[heparan sulfate]] [[polysaccharides]] in [[extracellular matrix]] have some roles in [[FGFR]]-[[FGF1|FGF]] and also [[Anosmin-1|anosmin1]]-[[cell membrane]] interactions.<ref name="pmid15096041">{{cite journal |vauthors=Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ |title=Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly |journal=Biochemistry |volume=43 |issue=16 |pages=4724–30 |year=2004 |pmid=15096041 |doi=10.1021/bi0352320 |url=}}</ref><ref name="pmid16677626">{{cite journal |vauthors=Hudson ML, Kinnunen T, Cinar HN, Chisholm AD |title=C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations |journal=Dev. Biol. |volume=294 |issue=2 |pages=352–65 |year=2006 |pmid=16677626 |doi=10.1016/j.ydbio.2006.02.036 |url=}}</ref>
* The modifications of [[heparan sulfate]] [[polysaccharides]] in [[extracellular matrix]] have some role in [[FGFR]]-[[FGF1|FGF]] and also [[Anosmin-1|anosmin1]]-[[cell membrane]] interactions.<ref name="pmid15096041">{{cite journal |vauthors=Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ |title=Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly |journal=Biochemistry |volume=43 |issue=16 |pages=4724–30 |year=2004 |pmid=15096041 |doi=10.1021/bi0352320 |url=}}</ref><ref name="pmid16677626">{{cite journal |vauthors=Hudson ML, Kinnunen T, Cinar HN, Chisholm AD |title=C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations |journal=Dev. Biol. |volume=294 |issue=2 |pages=352–65 |year=2006 |pmid=16677626 |doi=10.1016/j.ydbio.2006.02.036 |url=}}</ref>
* This [[gene]] has been found mutated in both [[Kallman syndrome|Kallmann syndrome]] and idiopathic [[hypogonadism]], with various course and timing or [[GnRH]] deficiencies.<ref name="pmid21700882" />  
* This [[gene]] may be mutated in both [[Kallman syndrome|Kallmann syndrome]] and idiopathic [[hypogonadism]] resulting in various courses, disruption pf frequency of [[GnRH]] secretion, and/or [[GnRH]] deficiencies.<ref name="pmid21700882" />


=== Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2) ===
=== Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2) ===
* The [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] [[genes]], also called KAL4 and KAL3, with [[OMIM]] numbers of 607002 and 607123 are on [[chromosomes]] 3p21.1 and 20p13, respectively. They are believed to be cause of [[Kallman syndrome|Kallmann syndrome]].
* The [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] [[genes]], also called KAL4 and KAL3, with [[OMIM]] numbers of 607002 and 607123 are on [[chromosomes]] 3p21.1 and 20p13, respectively. They are believed to be a cause of [[Kallman syndrome|Kallmann syndrome]].
* [[Prokineticin|PROKR2]] is a [[G protein coupled receptor|G protein coupled receptor (GPCR)]], has a major role in [[olfactory bulb]] development; the [[mutation]] may lead to severe [[gonadal]] [[atrophy]].<ref name="pmid16537498">{{cite journal |vauthors=Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y |title=Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue=11 |pages=4140–5 |year=2006 |pmid=16537498 |pmc=1449660 |doi=10.1073/pnas.0508881103 |url=}}</ref>
* [[Prokineticin|PROKR2]] is a [[G protein coupled receptor|G protein coupled receptor (GPCR)]], has a major role in [[olfactory bulb]] development; and its [[mutation]] may lead to severe [[gonadal]] [[atrophy]].<ref name="pmid16537498">{{cite journal |vauthors=Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y |title=Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue=11 |pages=4140–5 |year=2006 |pmid=16537498 |pmc=1449660 |doi=10.1073/pnas.0508881103 |url=}}</ref>
* In [[prokineticin]] system, there are two receptors ([[Prokineticin receptor 1|PROKR1]] and [[Prokineticin receptor 2|PROKR2]]) and two [[ligands]] ([[Prokineticin|PROK1]] and [[Prokineticin|PROK2]]). [[Prokineticin|PROK1]] and its receptor ([[Prokineticin receptor 1|PROKR1]]) have some roles in [[gastrointestinal]] system [[motility]]. However, [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] are parts of [[neuroendocrine system]], located in [[arcuate nucleus]], [[olfactory tract]], and [[suprachiasmatic nucleus]].<ref name="pmid11259612">{{cite journal |vauthors=Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY |title=Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle |journal=Mol. Pharmacol. |volume=59 |issue=4 |pages=692–8 |year=2001 |pmid=11259612 |doi= |url=}}</ref>
* In [[prokineticin]] system, there are two receptors ([[Prokineticin receptor 1|PROKR1]] and [[Prokineticin receptor 2|PROKR2]]) and two [[ligands]] ([[Prokineticin|PROK1]] and [[Prokineticin|PROK2]]). [[Prokineticin|PROK1]] and its receptor ([[Prokineticin receptor 1|PROKR1]]) have some role in [[gastrointestinal]] system [[motility]]. [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] are parts of [[neuroendocrine system]], located in [[arcuate nucleus]], [[olfactory tract]], and [[suprachiasmatic nucleus]].<ref name="pmid11259612">{{cite journal |vauthors=Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY |title=Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle |journal=Mol. Pharmacol. |volume=59 |issue=4 |pages=692–8 |year=2001 |pmid=11259612 |doi= |url=}}</ref>
* It seems that mutated versions of [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] could lead to decrease [[GnRH]] production and [[hypogonadism]]. Other disorders caused by their [[mutations]] are including [[fibrous dysplasia]], [[sleep disorder]], severe [[obesity]], [[synkinesis]], and [[epilepsy]].<ref name="pmid18559922">{{cite journal |vauthors=Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N |title=Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum |journal=J. Clin. Endocrinol. Metab. |volume=93 |issue=9 |pages=3551–9 |year=2008 |pmid=18559922 |pmc=2567850 |doi=10.1210/jc.2007-2654 |url=}}</ref>
* The mutated versions of [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] could lead to decrease [[GnRH]] production and [[hypogonadism]]. Other disorders caused by [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] [[mutations]] include [[fibrous dysplasia]], [[sleep disorder]], severe [[obesity]], [[synkinesis]], and [[epilepsy]].<ref name="pmid18559922">{{cite journal |vauthors=Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N |title=Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum |journal=J. Clin. Endocrinol. Metab. |volume=93 |issue=9 |pages=3551–9 |year=2008 |pmid=18559922 |pmc=2567850 |doi=10.1210/jc.2007-2654 |url=}}</ref>


=== Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3) ===
=== Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3) ===
* The [[Tachykinin|TAC3]] and [[Tachykinin receptor 3|TACR3]] [[genes]], also called [[Neurokinin B|neurokinin B (NKB)]] and [[neurokinin]] 3 receptor (NK3R), with [[OMIM]] numbers of 162330 and 152332, are on [[chromosomes]] 12q13–q21 and 4q25, respectively.<ref name="pmid19079066">{{cite journal |vauthors=Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK |title=TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction |journal=Nat. Genet. |volume=41 |issue=3 |pages=354–358 |year=2009 |pmid=19079066 |pmc=4312696 |doi=10.1038/ng.306 |url=}}</ref>
* The [[Tachykinin|TAC3]] and [[Tachykinin receptor 3|TACR3]] [[genes]], also called [[Neurokinin B|neurokinin B (NKB)]] and [[neurokinin]] 3 receptor (NK3R), with [[OMIM]] numbers of 162330 and 152332, are on [[chromosomes]] 12q13–q21 and 4q25, respectively.<ref name="pmid19079066">{{cite journal |vauthors=Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK |title=TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction |journal=Nat. Genet. |volume=41 |issue=3 |pages=354–358 |year=2009 |pmid=19079066 |pmc=4312696 |doi=10.1038/ng.306 |url=}}</ref>
* During the surveys, it has found that normal function of [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system is necessary for an intact HPG axis and also its development during [[puberty]]. On the other hand, [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system disturbance is declared to cause [[micropenis]] and also [[cryptorchidism]] in males, showing the major role in fetal [[gonadotropins]] secretion.<ref name="pmid15212980">{{cite journal |vauthors=Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML |title=mRNA expression of tachykinins and tachykinin receptors in different human tissues |journal=Eur. J. Pharmacol. |volume=494 |issue=2-3 |pages=233–9 |year=2004 |pmid=15212980 |doi=10.1016/j.ejphar.2004.05.016 |url=}}</ref>
* It is postulated that the normal function of [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system is necessary for an intact HPG axis and its development during [[puberty]]. On the other hand, [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system disturbance may cause [[micropenis]] and [[cryptorchidism]] in males, showing the major role of [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]]  in fetal [[gonadotropins]] secretion.<ref name="pmid15212980">{{cite journal |vauthors=Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML |title=mRNA expression of tachykinins and tachykinin receptors in different human tissues |journal=Eur. J. Pharmacol. |volume=494 |issue=2-3 |pages=233–9 |year=2004 |pmid=15212980 |doi=10.1016/j.ejphar.2004.05.016 |url=}}</ref>
* [[Tachykinin receptor 3|TACR3]] encoded protein (NK3R) is [[G protein-coupled receptor|GPCR]], initially produced in [[central nervous system]]. The major mechanism, through which the mutated [[gene]] may lead to [[neuroendocrine]] disturbance and delayed [[puberty]], is not completely discovered.<ref name="pmid19719764">{{cite journal |vauthors=Semple RK, Topaloglu AK |title=The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions |journal=Clin. Endocrinol. (Oxf) |volume=72 |issue=4 |pages=427–35 |year=2010 |pmid=19719764 |doi=10.1111/j.1365-2265.2009.03687.x |url=}}</ref>
* [[Tachykinin receptor 3|TACR3]] encoded protein (NK3R) is [[G protein-coupled receptor|GPCR]], initially produced in [[central nervous system]]. The major mechanism, through which the mutated [[gene]] may lead to [[neuroendocrine]] disturbance and delayed [[puberty]], is not yet discovered completely.<ref name="pmid19719764">{{cite journal |vauthors=Semple RK, Topaloglu AK |title=The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions |journal=Clin. Endocrinol. (Oxf) |volume=72 |issue=4 |pages=427–35 |year=2010 |pmid=19719764 |doi=10.1111/j.1365-2265.2009.03687.x |url=}}</ref>
* [[Tachykinin|TAC3]] encoded protein (NKB) is produced in [[arcuate nucleus]] of [[hypothalamus]] and play an important role in [[GnRH]] secretion. Parallel to that, [[kisspeptin]] is also produced and secreted in [[arcuate nucleus]], whereas, both of them inhibited by [[estrogen]]. It may be considered that [[kisspeptin]] and [[Neurokinin B|NKB]] have same roles in diverting [[negative feedback]] from [[sex hormones]] to [[GnRH]]. Their mutation showed to related with [[hypogonadism]].  
* [[Tachykinin|TAC3]] encoded protein (NKB) is produced in [[arcuate nucleus]] of [[hypothalamus]] and play an important role in [[GnRH]] secretion. [[Kisspeptin]] is also produced and secreted in [[arcuate nucleus]], whereas, both of them are inhibited by [[estrogen]]. It may be considered that [[kisspeptin]] and [[Neurokinin B|NKB]] have identical roles in diverting [[negative feedback]] from [[sex hormones]] to [[GnRH]]. Their mutation has been shown to be related with [[hypogonadism]].  


=== Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR) ===
=== Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR) ===
* The [[Gonadotropin-releasing hormone|GnRH1]] and [[GnRHR]] [[genes]] with [[OMIM]] numbers of 152760 and 138850 are on [[chromosomes]] 8p21–8p11.2 and 4q21.2, respectively.<ref name="pmid19535795">{{cite journal |vauthors=Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J |title=Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation |journal=N. Engl. J. Med. |volume=360 |issue=26 |pages=2742–8 |year=2009 |pmid=19535795 |doi=10.1056/NEJMoa0900136 |url=}}</ref>
* The [[Gonadotropin-releasing hormone|GnRH1]] and [[GnRHR]] [[genes]] with [[OMIM]] numbers of 152760 and 138850 are on [[chromosomes]] 8p21–8p11.2 and 4q21.2, respectively.<ref name="pmid19535795">{{cite journal |vauthors=Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J |title=Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation |journal=N. Engl. J. Med. |volume=360 |issue=26 |pages=2742–8 |year=2009 |pmid=19535795 |doi=10.1056/NEJMoa0900136 |url=}}</ref>
* In HPG axis, [[GnRH]] is one of the most effective elements; therefore, its defect could directly influence the axis and slow down the progress. Mutated [[gene]] in mice make them sexually infantile, [[infertile]], and with low [[sex hormones]] and [[gonadotropins]].<ref name="pmid198666">{{cite journal |vauthors=Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G |title=Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism |journal=Nature |volume=269 |issue=5626 |pages=338–40 |year=1977 |pmid=198666 |doi= |url=}}</ref>
* In HPG axis, [[GnRH]] is one of the most effective elements; therefore, a defect could directly influence the axis and slow down the progress.
* The GnRHR [[gene]] is also responsible for [[gonadal]] normal functions, its mutation could lead to [[hypogonadism]] and delayed [[puberty]]. It seems that the [[mutation]] has other outcomes, such as [[atrophic]] [[gonads]] along with low [[LH]]/[[FSH]] and [[sex hormones]], sexual [[puberty]] disturbance, inability to [[Conceive a child|conceive]], and failure to impact from exogenous [[GnRH]]. <ref name="pmid20068010">{{cite journal |vauthors=Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM |title=Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice |journal=Endocrinology |volume=151 |issue=3 |pages=1142–52 |year=2010 |pmid=20068010 |doi=10.1210/en.2009-0598 |url=}}</ref>
* The GnRHR [[gene]] is also responsible for [[gonadal]] normal functions and its mutation could lead to [[hypogonadism]] and delayed [[puberty]]. The [[mutation]] in GnRHR has also been associated with conditions such as [[atrophic]] [[gonads]] along with low [[LH]]/[[FSH]] and [[sex hormones]], sexual [[puberty]] disturbance, inability to [[Conceive a child|conceive]], and failure to impact from exogenous [[GnRH]].<ref name="pmid20068010">{{cite journal |vauthors=Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM |title=Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice |journal=Endocrinology |volume=151 |issue=3 |pages=1142–52 |year=2010 |pmid=20068010 |doi=10.1210/en.2009-0598 |url=}}</ref>
* These [[genes]] variable expressivity could cause spectrum of symptoms, from fertile eunuch syndrome and partial idiopathic [[hypogonadotropic hypogonadism]] to complete [[GnRH]] resistance (i.e., characterized by [[cryptorchidism]]), [[microphallus]], very low [[LH]]/[[FSH]], and delayed [[puberty]].<ref name="pmid12536356">{{cite journal |vauthors=Silveira LF, MacColl GS, Bouloux PM |title=Hypogonadotropic hypogonadism |journal=Semin. Reprod. Med. |volume=20 |issue=4 |pages=327–38 |year=2002 |pmid=12536356 |doi=10.1055/s-2002-36707 |url=}}</ref>
* [[Gonadotropin-releasing hormone|GnRH1]] and [[GnRHR]] [[genes]] have variable expression and cause a spectrum of symptoms, from fertile eunuch syndrome and partial idiopathic [[hypogonadotropic hypogonadism]] to complete [[GnRH]] resistance (i.e., characterized by [[cryptorchidism]]), [[microphallus]], very low [[LH]]/[[FSH]], and delayed [[puberty]].<ref name="pmid12536356">{{cite journal |vauthors=Silveira LF, MacColl GS, Bouloux PM |title=Hypogonadotropic hypogonadism |journal=Semin. Reprod. Med. |volume=20 |issue=4 |pages=327–38 |year=2002 |pmid=12536356 |doi=10.1055/s-2002-36707 |url=}}</ref>
* The other disorders that have found to be related to [[GnRH]] mutation are including [[tooth]] abnormal [[maturation]] and biomineralization.<ref name="pmid17948256">{{cite journal |vauthors=Tiong J, Locastro T, Wray S |title=Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization |journal=Dev. Dyn. |volume=236 |issue=11 |pages=2980–92 |year=2007 |pmid=17948256 |doi=10.1002/dvdy.21332 |url=}}</ref>
* The other disorders that have been found to be related to [[GnRH]] mutation are [[tooth]] [[maturation]] and biomineralization.<ref name="pmid17948256">{{cite journal |vauthors=Tiong J, Locastro T, Wray S |title=Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization |journal=Dev. Dyn. |volume=236 |issue=11 |pages=2980–92 |year=2007 |pmid=17948256 |doi=10.1002/dvdy.21332 |url=}}</ref>


=== Chromodomain helicase DNA-binding protein 7 (CHD7)  ===
=== Chromodomain helicase DNA-binding protein 7 (CHD7)  ===
* The [[CHD7]] gene, also called as KAL5, with [[OMIM]] number of 608892 is on [[chromosome]] 8q12.1.
* The [[CHD7]] gene, also called as KAL5, with [[OMIM]] number of 608892 is on [[chromosome]] 8q12.1.
* The main result of the [[CHD7]] gene [[mutation]] is [[autosomal dominant]] [[CHARGE syndrome]], combination of [[hypogonadism]] and [[Kallman syndrome|Kallmann syndrome]], which included:<ref name="pmid188349672">{{cite journal |vauthors=Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC |title=Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Am. J. Hum. Genet. |volume=83 |issue=4 |pages=511–9 |year=2008 |pmid=18834967 |pmc=2561938 |doi=10.1016/j.ajhg.2008.09.005 |url=}}</ref>
* [[CHD7]] gene [[mutation]] results in [[autosomal dominant]] [[CHARGE syndrome]], which is a combination of [[hypogonadism]] and [[Kallman syndrome|Kallmann syndrome]], and includes:<ref name="pmid188349672">{{cite journal |vauthors=Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC |title=Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Am. J. Hum. Genet. |volume=83 |issue=4 |pages=511–9 |year=2008 |pmid=18834967 |pmc=2561938 |doi=10.1016/j.ajhg.2008.09.005 |url=}}</ref>
** [[Coloboma|'''C'''olobomata]]
** [[Coloboma|'''C'''oloboma]]
** [[Heart|'''H'''eart]] anomalies
** [[Heart|'''H'''eart]] anomalies
** [[Choanal atresia|Choanal '''A'''tresia]]  
** [[Choanal atresia|Choanal '''A'''tresia]]  
Line 410: Line 417:
** [[Genital|'''G'''enital]] anomalies
** [[Genital|'''G'''enital]] anomalies
** [[Ear|'''E'''ar]] anomalies
** [[Ear|'''E'''ar]] anomalies
* In patients with [[hypogonadism]] or [[Kallman syndrome|Kallmann syndrome]] with specific features, such as [[semicircular canals]] [[hypoplasia]] or [[aplasia]], [[dysmorphic]] ears, and also [[deafness]], would be better to screen for [[CHD7]] [[gene]] situation.
* Screening for [[CHD7]] [[gene]] mutation may be done in patients with [[hypogonadism]] or [[Kallman syndrome|Kallmann syndrome]] with specific features such as [[semicircular canals|semicircular canal]] [[hypoplasia]] or [[aplasia]], [[dysmorphic]] ears, and [[deafness|deafness.]]


=== Nasal embryonic LH-releasing hormone factor (NELF) ===
=== Nasal embryonic LH-releasing hormone factor (NELF) ===
* The NELF [[gene]] with [[OMIM]] number of 608137 is on [[chromosome]] ''9q34.3; it is mostly in [[nervous tissues]] specifically during [[fetal development]] and also may be found in [[olfactory bulb]] and [[pituitary]] [[LH]] releasing cells.''
* The NELF [[gene]] with [[OMIM]] number of 608137 is on [[chromosome]] ''9q34.3''; present mostly in [[nervous tissues]] specifically during [[fetal development]] and may be found in [[olfactory bulb]] and [[pituitary]] [[LH]] releasing cells.
* ''The most common function is in [[olfactory]] axons and also [[GnRH]] [[neurons]], before and during [[neuron]] migration in developmental process.''<ref name="pmid108987962">{{cite journal |vauthors=Kramer PR, Wray S |title=Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons |journal=Genes Dev. |volume=14 |issue=14 |pages=1824–34 |year=2000 |pmid=10898796 |pmc=316793 |doi= |url=}}</ref>
* The most common function is in [[olfactory]] axons and [[GnRH]] [[neurons]], before and during [[neuron]] migration in the developmental process.<ref name="pmid108987962">{{cite journal |vauthors=Kramer PR, Wray S |title=Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons |journal=Genes Dev. |volume=14 |issue=14 |pages=1824–34 |year=2000 |pmid=10898796 |pmc=316793 |doi= |url=}}</ref>
* It is assumed to has some relations with Kallmann syndrome. <ref name="pmid21300340">{{cite journal |vauthors=Xu N, Kim HG, Bhagavath B, Cho SG, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AM, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim SH, Cameron RS, Layman LC |title=Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Fertil. Steril. |volume=95 |issue=5 |pages=1613–20.e1–7 |year=2011 |pmid=21300340 |pmc=3888818 |doi=10.1016/j.fertnstert.2011.01.010 |url=}}</ref>


=== Early B-cell factor 2 (EBF2) ===
=== Early B-cell factor 2 (EBF2) ===
* The EBF2 [[gene]] with [[OMIM]] number of 609934 is on [[chromosome]] ''8p21.2; mostly expressed in mice [[osteoblasts]] and [[osteoclast]] cells.''<ref name="pmid12466206">{{cite journal |vauthors=Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG |title=Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice |journal=Development |volume=130 |issue=2 |pages=401–10 |year=2003 |pmid=12466206 |doi= |url=}}</ref>
* The EBF2 [[gene]] with [[OMIM]] number of 609934 is on [[chromosome]] ''8p21.2''; mostly expressed in mice [[osteoblasts]] and [[osteoclast]] cells.<ref name="pmid12466206">{{cite journal |vauthors=Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG |title=Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice |journal=Development |volume=130 |issue=2 |pages=401–10 |year=2003 |pmid=12466206 |doi= |url=}}</ref>
* The gene is believed to has an effective role in HPG axis. In mutated version, it can cause defect in the axis, leading to secondary [[hypogonadism]].<ref name="pmid16423815">{{cite journal |vauthors=Trarbach EB, Baptista MT, Garmes HM, Hackel C |title=Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients |journal=J. Endocrinol. |volume=187 |issue=3 |pages=361–8 |year=2005 |pmid=16423815 |doi=10.1677/joe.1.06103 |url=}}</ref>
* EBF2 [[gene]] plays an effective role in HPG axis. Mutation in  EBF2 [[gene]] can result in disruption of HPG axis, leading to secondary [[hypogonadism]].<ref name="pmid16423815">{{cite journal |vauthors=Trarbach EB, Baptista MT, Garmes HM, Hackel C |title=Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients |journal=J. Endocrinol. |volume=187 |issue=3 |pages=361–8 |year=2005 |pmid=16423815 |doi=10.1677/joe.1.06103 |url=}}</ref>


=== DSS-AHC on the X-chromosome 1 (DAX1) ===
=== DSS-AHC on the X-chromosome 1 (DAX1) ===
* The [[DAX1]] [[gene]], also called [[nuclear receptor]] 0B (NR0B), with [[OMIM]] number of 300473 is on [[chromosome]] ''Xp21.2, mostly expressed in all members of HPG axis ([[hypothalamus]], [[pituitary]], and [[gonads]]).''<ref name="pmid8593542">{{cite journal |vauthors=Guo W, Burris TP, McCabe ER |title=Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis |journal=Biochem. Mol. Med. |volume=56 |issue=1 |pages=8–13 |year=1995 |pmid=8593542 |doi= |url=}}</ref>  
* The [[DAX1]] [[gene]], also called [[nuclear receptor]] 0B (NR0B), with [[OMIM]] number of 300473 is on [[chromosome]] ''Xp21.2'', and expressed in all members of HPG axis ([[hypothalamus]], [[pituitary]], and [[gonads]]).<ref name="pmid8593542">{{cite journal |vauthors=Guo W, Burris TP, McCabe ER |title=Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis |journal=Biochem. Mol. Med. |volume=56 |issue=1 |pages=8–13 |year=1995 |pmid=8593542 |doi= |url=}}</ref>  
* During the [[spermatogenesis]] and [[steroidogenesis]], it seems that both [[Sertoli cell|sertoli]] and [[leydig cells]] have increased the expression of [[DAX1]] gene. It is assumed that during [[puberty]], the peak expression of [[DAX1]] occurred.<ref name="pmid16834661">{{cite journal |vauthors=Kojima Y, Sasaki S, Hayashi Y, Umemoto Y, Morohashi K, Kohri K |title=Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia |journal=Int. J. Urol. |volume=13 |issue=6 |pages=785–93 |year=2006 |pmid=16834661 |doi=10.1111/j.1442-2042.2006.01403.x |url=}}</ref>
* During the [[spermatogenesis]] and [[steroidogenesis]], both [[Sertoli cell|sertoli]] and [[leydig cells]] have increased expression of [[DAX1]] gene. It is assumed that during [[puberty]], the peak expression of [[DAX1]] is observed.<ref name="pmid16834661">{{cite journal |vauthors=Kojima Y, Sasaki S, Hayashi Y, Umemoto Y, Morohashi K, Kohri K |title=Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia |journal=Int. J. Urol. |volume=13 |issue=6 |pages=785–93 |year=2006 |pmid=16834661 |doi=10.1111/j.1442-2042.2006.01403.x |url=}}</ref>
* Other [[disease]] that can be caused by [[DAX1]] mutation is congenital [[Adrenal cortex insufficiency|adrenal cortex hypoplasia]].<ref name="pmid7990953">{{cite journal |vauthors=Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER |title=An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita |journal=Nature |volume=372 |issue=6507 |pages=635–41 |year=1994 |pmid=7990953 |doi=10.1038/372635a0 |url=}}</ref>
* Other [[disease]] that can be caused by [[DAX1]] mutation is congenital [[Adrenal cortex insufficiency|adrenal cortex hypoplasia]].<ref name="pmid7990953">{{cite journal |vauthors=Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER |title=An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita |journal=Nature |volume=372 |issue=6507 |pages=635–41 |year=1994 |pmid=7990953 |doi=10.1038/372635a0 |url=}}</ref>


=== Steroidogenic factor 1 (SF1) ===
=== Steroidogenic factor 1 (SF1) ===
* The [[SF1 (gene)|SF1]] [[gene]], also called [[nuclear receptor]] 5A1 (NR5A1), with [[OMIM]] number of 184757 is on [[chromosome]] ''9q33.3, has some roles in [[reproduction]], [[steroidogenesis]], and [[sexual differentiation]].''
* The [[SF1 (gene)|SF1]] [[gene]], also called [[nuclear receptor]] 5A1 (NR5A1), with [[OMIM]] number of 184757 is on [[chromosome]] 9q33.3, has some role in [[reproduction]], [[steroidogenesis]], and [[sexual differentiation]].  
* It is mainly expressed in [[Sertoli cell|sertoli]] and [[leydig cells]], plays an important role in [[steroidogenesis]] and [[spermatogenesis]]. The [[SF1]] is believed to experience increase in expression during [[childhood]] into [[adolescence]], become dominantly expressed by [[leydig cells]] in [[puberty]].<ref name="pmid16834661" />
* It is mainly expressed in [[Sertoli cell|sertoli]] and [[leydig cells]], and plays an important role in [[steroidogenesis]] and [[spermatogenesis]]. The [[SF1]] is believed to have an increase in expression from [[childhood]] until [[adolescence]], and is dominantly expressed by [[leydig cells]] in [[puberty]].<ref name="pmid16834661" />
* It seems that other diseases can be caused by [[SF1 (gene)|SF1]] mutation, such as male [[pseudohermaphroditism]], [[Denys-Drash syndrome]], and also [[hypospadias]].<ref name="pmid9590178">{{cite journal |vauthors=Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA |title=Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression |journal=Cell |volume=93 |issue=3 |pages=445–54 |year=1998 |pmid=9590178 |doi= |url=}}</ref>
* Other diseases that may be caused by [[SF1 (gene)|SF1]] mutation include male [[pseudohermaphroditism]], [[Denys-Drash syndrome]], and also [[hypospadias]].<ref name="pmid9590178">{{cite journal |vauthors=Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA |title=Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression |journal=Cell |volume=93 |issue=3 |pages=445–54 |year=1998 |pmid=9590178 |doi= |url=}}</ref>


=== Homeobox gene 1 (HESX1) ===
=== Homeobox gene 1 (HESX1) ===
* The [[HESX1]] [[gene]], also called [[Rathke pouch]] [[Homeobox gene|homeobox]] (RPX), with [[OMIM]] number of 601802 is on [[chromosome]] ''3p14.3, starts to express during [[embryogenesis]] and help the formation of [[Rathke pouch]] and [[anterior pituitary]].''<ref name="pmid9620767">{{cite journal |vauthors=Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC |title=Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse |journal=Nat. Genet. |volume=19 |issue=2 |pages=125–33 |year=1998 |pmid=9620767 |doi=10.1038/477 |url=}}</ref>
* The [[HESX1]] [[gene]], also called [[Rathke pouch]] [[Homeobox gene|homeobox]] (RPX), with [[OMIM]] number of 601802 is on [[chromosome]] 3p14.3, initially expressed during [[embryogenesis]] and help the formation of [[Rathke pouch]] and [[anterior pituitary]]''.''<ref name="pmid9620767">{{cite journal |vauthors=Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC |title=Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse |journal=Nat. Genet. |volume=19 |issue=2 |pages=125–33 |year=1998 |pmid=9620767 |doi=10.1038/477 |url=}}</ref>
* ''The main function of [[HESX1]] gene is [[pituitary]] development and also midfacial differentiation. [[Mutation]] may lead to [[pituitary]] [[hypoplasia]] and decreased level of all [[anterior pituitary]] [[hormones]].''<ref name="pmid11136712">{{cite journal |vauthors=Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson IC, Beddington RS |title=Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia |journal=Hum. Mol. Genet. |volume=10 |issue=1 |pages=39–45 |year=2001 |pmid=11136712 |doi= |url=}}</ref>
* [[HESX1]] gene has an important role in [[pituitary]] development and midfacial differentiation. [[Mutation]] may lead to [[pituitary]] [[hypoplasia]] and decreased level of all [[anterior pituitary]] [[hormones]].<ref name="pmid11136712">{{cite journal |vauthors=Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson IC, Beddington RS |title=Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia |journal=Hum. Mol. Genet. |volume=10 |issue=1 |pages=39–45 |year=2001 |pmid=11136712 |doi= |url=}}</ref>
* Other disorders resulting from [[HESX1]] [[mutation]] are including septooptic dysplasia, reduced [[prosencephalon]], [[anophthalmia]], [[microphthalmia]], defective [[olfactory]] development, [[Rathke pouch]] bifurcations, and also abnormalities in the [[corpus callosum]], [[hippocampus]], and [[septum pellucidum]].<ref name="pmid9620767" />
* Other disorders resulting from [[HESX1]] [[mutation]] <nowiki/>include septo optic dysplasia, reduced [[prosencephalon]], [[anophthalmia]], [[microphthalmia]], defective [[olfactory]] development, [[Rathke pouch]] bifurcations, and abnormalities in the [[corpus callosum]], [[hippocampus]], and [[septum pellucidum]].<ref name="pmid9620767" />


=== LIM homeobox gene 3 (LHX3) ===
=== LIM homeobox gene 3 (LHX3) ===
* The [[LHX3|LHX3 gene]], also called LIM3, with [[OMIM]] number of 600577 is on [[chromosome]] ''9q34.3, mainly expressed in developing anterior [[pituitary gland]].''<ref name="pmid18407919">{{cite journal |vauthors=Rajab A, Kelberman D, de Castro SC, Biebermann H, Shaikh H, Pearce K, Hall CM, Shaikh G, Gerrelli D, Grueters A, Krude H, Dattani MT |title=Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss |journal=Hum. Mol. Genet. |volume=17 |issue=14 |pages=2150–9 |year=2008 |pmid=18407919 |doi=10.1093/hmg/ddn114 |url=}}</ref>
* The [[LHX3|LHX3 gene]], also called LIM3, with [[OMIM]] number of 600577 is on [[chromosome]] 9q34.3, mainly expressed in developing anterior [[pituitary gland]].<ref name="pmid18407919">{{cite journal |vauthors=Rajab A, Kelberman D, de Castro SC, Biebermann H, Shaikh H, Pearce K, Hall CM, Shaikh G, Gerrelli D, Grueters A, Krude H, Dattani MT |title=Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss |journal=Hum. Mol. Genet. |volume=17 |issue=14 |pages=2150–9 |year=2008 |pmid=18407919 |doi=10.1093/hmg/ddn114 |url=}}</ref>
* It seems that [[LHX3|LHX3 gene]] function is very important in development of [[pituitary gland]] and its [[hormone]] secretion. Therefore, mutation in the gene is related to combined pituitary hormone deficiency (CPHD).<ref name="pmid10835633">{{cite journal |vauthors=Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, Duriez B, Cacheux V, Moers Av, Goossens M, Grüters A, Amselem S |title=Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency |journal=Nat. Genet. |volume=25 |issue=2 |pages=182–6 |year=2000 |pmid=10835633 |doi=10.1038/76041 |url=}}</ref>
* [[LHX3|LHX3 gene]] function is important in development of [[pituitary gland]] and pituitary [[hormone|hormones]] secretion. Mutation in the [[LHX3|LHX3 gene]] may result in combined pituitary hormone deficiency (CPHD).<ref name="pmid10835633">{{cite journal |vauthors=Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, Duriez B, Cacheux V, Moers Av, Goossens M, Grüters A, Amselem S |title=Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency |journal=Nat. Genet. |volume=25 |issue=2 |pages=182–6 |year=2000 |pmid=10835633 |doi=10.1038/76041 |url=}}</ref>
* The [[LHX3|LHX3 gene]] [[mutation]] can also result in neonatal [[hypoglycemia]], short neck with limited rotation, mild [[Sensorineural hearing loss|sensorineural hearing loss,]] skin laxity, and skeletal abnormalities.<ref name="pmid18407919" />
* [[LHX3|LHX3 gene]] [[mutation]] may also result in neonatal [[hypoglycemia]], short neck with limited rotation, mild [[Sensorineural hearing loss|sensorineural hearing loss,]] skin laxity, and skeletal abnormalities.<ref name="pmid18407919" />


=== PROP paired-like homeobox 1 (PROP1) ===
=== PROP paired-like homeobox 1 (PROP1) ===
* The [[PROP1|PROP1 gene]] with [[OMIM]] number of 601538 is on [[chromosome]] ''5q35.3, with a main rule in developing anterior [[pituitary gland]] and also proper development of [[gonadotrophs]], [[thyrotrophs]], [[somatotrophs]], and [[Lactotrophs|lactotrophs.]]''<ref name="pmid9824293">{{cite journal |vauthors=Duquesnoy P, Roy A, Dastot F, Ghali I, Teinturier C, Netchine I, Cacheux V, Hafez M, Salah N, Chaussain JL, Goossens M, Bougnères P, Amselem S |title=Human Prop-1: cloning, mapping, genomic structure. Mutations in familial combined pituitary hormone deficiency |journal=FEBS Lett. |volume=437 |issue=3 |pages=216–20 |year=1998 |pmid=9824293 |doi= |url=}}</ref>
* The [[PROP1|PROP1 gene]] with [[OMIM]] number of 601538 is on [[chromosome]] 5q35.3, with a role in developing anterior [[pituitary gland]] and associated cells such as [[gonadotrophs]], [[thyrotrophs]], [[somatotrophs]], and [[Lactotrophs|lactotrophs.]]<ref name="pmid9824293">{{cite journal |vauthors=Duquesnoy P, Roy A, Dastot F, Ghali I, Teinturier C, Netchine I, Cacheux V, Hafez M, Salah N, Chaussain JL, Goossens M, Bougnères P, Amselem S |title=Human Prop-1: cloning, mapping, genomic structure. Mutations in familial combined pituitary hormone deficiency |journal=FEBS Lett. |volume=437 |issue=3 |pages=216–20 |year=1998 |pmid=9824293 |doi= |url=}}</ref>
* When [[PROP1|PROP1 gene]] become inactivated through [[mutation]], patient may experience deficiency in [[LH]], [[FSH]], [[GH]], [[TSH]], and [[prolactin]] serum levels. Lack of [[LH]] and [[FSH]] would prevent the patient entering the [[puberty]].<ref name="pmid9462743">{{cite journal |vauthors=Wu W, Cogan JD, Pfäffle RW, Dasen JS, Frisch H, O'Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA, Rosenfeld MG |title=Mutations in PROP1 cause familial combined pituitary hormone deficiency |journal=Nat. Genet. |volume=18 |issue=2 |pages=147–9 |year=1998 |pmid=9462743 |doi=10.1038/ng0298-147 |url=}}</ref>
* Mutated [[PROP1|PROP1 gene]] can lead to deficiency of [[LH]], [[FSH]], [[GH]], [[TSH]], and [[prolactin]]. Decreased level of [[LH]] and [[FSH]] may also delay or inhibit the onset of [[puberty]].<ref name="pmid9462743">{{cite journal |vauthors=Wu W, Cogan JD, Pfäffle RW, Dasen JS, Frisch H, O'Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA, Rosenfeld MG |title=Mutations in PROP1 cause familial combined pituitary hormone deficiency |journal=Nat. Genet. |volume=18 |issue=2 |pages=147–9 |year=1998 |pmid=9462743 |doi=10.1038/ng0298-147 |url=}}</ref>
* Regarding the [[gene]] function in different cell types of [[pituitary]], it can be concluded that the [[PROP1|PROP1 gene]] [[mutation]] can lead to [[thyroid]] dysfunctions, [[growth retardation]], and [[libido]]/[[lactation]] problems.
* [[Pituitary]] [[Hormone|hormones]] have a vital role in regulating other endocrine organs via [[TRH]], [[Adrenocorticotropic hormone|ACTH]], [[FSH]] or [[LH]] and a mutation in [[PROP1|PROP1 gene]] can lead to [[thyroid]] dysfunctions, [[growth retardation]], and [[libido]]/[[lactation]] problems.


=== Leptin and leptin receptor (LEP and LEPR) ===
=== Leptin and leptin receptor (LEP and LEPR) ===
* The [[LEP]] and [[LEPR|LEPR genes]], also called OB and OBR, with [[OMIM]] numbers of 164160 and 601007 are on [[chromosome]]<nowiki/>s ''7q32.1 and 1p31.3, respectively; both of them have major roles in modulation of [[body weight]][[Lactotrophs|.]]''
* The [[LEP]] and [[LEPR|LEPR genes]], also called OB and OBR, with [[OMIM]] numbers of 164160 and 601007 are on [[chromosome]]<nowiki/>s 7q32.1 and 1p31.3, respectively; with a major role in modulation of [[body weight]][[Lactotrophs|.]]
* These [[genes]] are believed to carry the message of beginning the [[puberty]], [[recombinant]] [[leptin]] injection in female mice may result in [[puberty]] and also cure their [[maturation]] problems.<ref name="pmid8589726">{{cite journal |vauthors=Chehab FF, Lim ME, Lu R |title=Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin |journal=Nat. Genet. |volume=12 |issue=3 |pages=318–20 |year=1996 |pmid=8589726 |doi=10.1038/ng0396-318 |url=}}</ref>
* These [[genes]] are believed to carry the message of onset of [[puberty]]. Recent studies have shown that  [[recombinant]] [[leptin]] injection in female mice may result in [[puberty]] and cure their [[maturation]] ([[secondary sexual characteristics]]) problems.<ref name="pmid8589726">{{cite journal |vauthors=Chehab FF, Lim ME, Lu R |title=Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin |journal=Nat. Genet. |volume=12 |issue=3 |pages=318–20 |year=1996 |pmid=8589726 |doi=10.1038/ng0396-318 |url=}}</ref>
* It seems that [[leptin]] level in human beings become increased about 50% just before [[puberty]] and also during the [[puberty]].<ref name="pmid9100574">{{cite journal |vauthors=Mantzoros CS, Flier JS, Rogol AD |title=A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty |journal=J. Clin. Endocrinol. Metab. |volume=82 |issue=4 |pages=1066–70 |year=1997 |pmid=9100574 |doi=10.1210/jcem.82.4.3878 |url=}}</ref>
* It has been observed that [[leptin]] levels increase by 50% just before the onset of [[puberty]] and during [[puberty]].<ref name="pmid9100574">{{cite journal |vauthors=Mantzoros CS, Flier JS, Rogol AD |title=A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty |journal=J. Clin. Endocrinol. Metab. |volume=82 |issue=4 |pages=1066–70 |year=1997 |pmid=9100574 |doi=10.1210/jcem.82.4.3878 |url=}}</ref>
* [[Mutation]] in these [[genes]] may also result in disorders in [[hematopoiesis]], [[angiogenesis]], [[wound healing]], and the [[immune]] or [[inflammatory response]].
* [[Mutation]] in [[LEP]] and [[LEPR|LEPR genes]] may result in dysfunctional [[hematopoiesis]], [[angiogenesis]], [[wound healing]], and the [[immune]] or [[inflammatory response]].


=== Proprotein convrtase 1 (PC1) ===
=== Proprotein convertase 1 (PC1) ===
* The PC1 [[gene]], also called [[neuroendocrine]] convertase 1 (NEC1), with [[OMIM]] number of 162150 is on [[chromosome]] ''5q15, mainly regulates [[neuroendocrine]] pathway.''
* The PC1 [[gene]], also known as [[neuroendocrine]] convertase 1 (NEC1), with [[OMIM]] number of 162150 is on [[chromosome]] 5q15, and regulates [[neuroendocrine]] pathway.
* PC1 gene has the dramatic role of [[proopiomelanocortin]] (POMC) cleavage. On the other hand, they help processing [[proinsulin]] and [[proglucagon]] in [[pancreas]].<ref name="pmid7797529">{{cite journal |vauthors=Jansen E, Ayoubi TA, Meulemans SM, Van de Ven WJ |title=Neuroendocrine-specific expression of the human prohormone convertase 1 gene. Hormonal regulation of transcription through distinct cAMP response elements |journal=J. Biol. Chem. |volume=270 |issue=25 |pages=15391–7 |year=1995 |pmid=7797529 |doi= |url=}}</ref>
* PC1 gene has a dominant role in [[proopiomelanocortin]] (POMC) cleavage. PC1 gene also has a role in processing [[proinsulin]] and [[proglucagon]] in [[pancreas]].<ref name="pmid7797529">{{cite journal |vauthors=Jansen E, Ayoubi TA, Meulemans SM, Van de Ven WJ |title=Neuroendocrine-specific expression of the human prohormone convertase 1 gene. Hormonal regulation of transcription through distinct cAMP response elements |journal=J. Biol. Chem. |volume=270 |issue=25 |pages=15391–7 |year=1995 |pmid=7797529 |doi= |url=}}</ref>
* There is assumed relationship between PC1 [[gene]] [[mutation]] and [[hypogonadotropic hypogonadism]] along with extreme childhood [[obesity]], abnormal glucose [[homeostasis]], [[hypocortisolism]], elevated plasma [[proinsulin]], and also [[POMC]] concentrations.<ref name="pmid9207799">{{cite journal |vauthors=Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S |title=Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene |journal=Nat. Genet. |volume=16 |issue=3 |pages=303–6 |year=1997 |pmid=9207799 |doi=10.1038/ng0797-303 |url=}}</ref>  
* Recent studies have shown that PC1 [[gene]] [[mutation]] and [[hypogonadotropic hypogonadism]] may result in extreme childhood [[obesity]], abnormal glucose [[homeostasis]], [[hypocortisolism]], elevated plasma [[proinsulin]], and [[POMC]] concentrations.<ref name="pmid9207799">{{cite journal |vauthors=Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S |title=Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene |journal=Nat. Genet. |volume=16 |issue=3 |pages=303–6 |year=1997 |pmid=9207799 |doi=10.1038/ng0797-303 |url=}}</ref>  


=== Makorin RING-finger protein 3 (MKRN3) ===
=== Makorin RING-finger protein 3 (MKRN3) ===
* Newly discovered MKRN3 gene has a role in [[ubiquitination]] and [[cell signaling]]. The gene family [[proteins]] are majorly expressed in fetal [[brain]] during development, especially in [[arcuate nucleus]].  
* Newly discovered MKRN3 gene has a role in [[ubiquitination]] and [[cell signaling]]. The gene family [[proteins]] are majorly expressed in fetal [[brain]] during development, especially in [[arcuate nucleus]].  
* It seems that the gene amplification is on its peak after [[birth]], gradually declined by the time, and finally raised again when [[puberty]] begins. Therefore, it is believed to be one of the factors of starting the [[puberty]], along with [[Kisspeptin|kisspeptins]] and [[neurokinin B]].<ref name="Hughes2013">{{cite journal|last1=Hughes|first1=Ieuan A.|title=Releasing the Brake on Puberty|journal=New England Journal of Medicine|volume=368|issue=26|year=2013|pages=2513–2515|issn=0028-4793|doi=10.1056/NEJMe1306743}}</ref>
* The process of gene amplification is on its peak after [[birth]], which gradually declines with time, and finally rises again with onset of [[puberty]]. Thus MKRN3 gene is believed to be one of the factors in onset of [[puberty]], along with [[Kisspeptin|kisspeptins]] and [[neurokinin B]].<ref name="Hughes2013">{{cite journal|last1=Hughes|first1=Ieuan A.|title=Releasing the Brake on Puberty|journal=New England Journal of Medicine|volume=368|issue=26|year=2013|pages=2513–2515|issn=0028-4793|doi=10.1056/NEJMe1306743}}</ref>


=== Estrogen receptor α (ESR1) ===
=== Estrogen receptor α (ESR1) ===
* [[Estrogen receptor]] [[mutations]] are very rare, reported as a case report with delayed [[puberty]].<ref name="QuaynorStradtman2013">{{cite journal|last1=Quaynor|first1=Samuel D.|last2=Stradtman|first2=Earl W.|last3=Kim|first3=Hyung-Goo|last4=Shen|first4=Yiping|last5=Chorich|first5=Lynn P.|last6=Schreihofer|first6=Derek A.|last7=Layman|first7=Lawrence C.|title=Delayed Puberty and Estrogen Resistance in a Woman with Estrogen Receptor α Variant|journal=New England Journal of Medicine|volume=369|issue=2|year=2013|pages=164–171|issn=0028-4793|doi=10.1056/NEJMoa1303611}}</ref>
* [[Estrogen receptor]] [[mutations]] are very rare, and were reported in a case report of delayed [[puberty]].<ref name="QuaynorStradtman2013">{{cite journal|last1=Quaynor|first1=Samuel D.|last2=Stradtman|first2=Earl W.|last3=Kim|first3=Hyung-Goo|last4=Shen|first4=Yiping|last5=Chorich|first5=Lynn P.|last6=Schreihofer|first6=Derek A.|last7=Layman|first7=Lawrence C.|title=Delayed Puberty and Estrogen Resistance in a Woman with Estrogen Receptor α Variant|journal=New England Journal of Medicine|volume=369|issue=2|year=2013|pages=164–171|issn=0028-4793|doi=10.1056/NEJMoa1303611}}</ref>
* [[Estradiol]] effects on [[breast]] maturation and also presents a [[negative feedback]] to [[hypothalamus]] and [[pituitary]], by means of [[Estrogen receptor alpha|estrogen receptor α]] (encoded by ESR1 [[gene]]).<ref name="pmid18635656">{{cite journal |vauthors=Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM |title=Classical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing |journal=Endocrinology |volume=149 |issue=11 |pages=5328–34 |year=2008 |pmid=18635656 |pmc=2584581 |doi=10.1210/en.2008-0520 |url=}}</ref>  
* [[Estradiol]] promotes [[breast]] maturation and provides [[negative feedback]] to [[hypothalamus]] and [[pituitary]], by means of [[Estrogen receptor alpha|estrogen receptor α]] (encoded by ESR1 [[gene]]).<ref name="pmid18635656">{{cite journal |vauthors=Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM |title=Classical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing |journal=Endocrinology |volume=149 |issue=11 |pages=5328–34 |year=2008 |pmid=18635656 |pmc=2584581 |doi=10.1210/en.2008-0520 |url=}}</ref>  
* Female mice with mutated ESR1 [[gene]] may have [[hypoplastic]] uterus plus [[hemorrhagic]], multicystic [[ovary]] without [[corpus luteum]]; which is make them [[infertile]].<ref name="pmid8248223">{{cite journal |vauthors=Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O |title=Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue=23 |pages=11162–6 |year=1993 |pmid=8248223 |pmc=47942 |doi= |url=}}</ref>
* Female mice with mutated ESR1 [[gene]] have [[hypoplastic]] uterus with [[hemorrhagic|hemorrhage]], multicystic [[ovary]] without [[corpus luteum]]; which is make them [[infertile]].<ref name="pmid8248223">{{cite journal |vauthors=Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O |title=Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue=23 |pages=11162–6 |year=1993 |pmid=8248223 |pmc=47942 |doi= |url=}}</ref>


==Associated Conditions==
==Associated Conditions==
Line 474: Line 480:
{{Family tree | | | C01 | | | | C02 | | | | C03 | | C01= '''''Primary [[amenorrhea]]'''''| C02= '''''Secondary [[amenorrhea]]'''''| C03= '''''Functional [[amenorrhea]]'''''}}
{{Family tree | | | C01 | | | | C02 | | | | C03 | | C01= '''''Primary [[amenorrhea]]'''''| C02= '''''Secondary [[amenorrhea]]'''''| C03= '''''Functional [[amenorrhea]]'''''}}
{{Family tree | | | |!| | | | | |!| | | | | |!| | }}
{{Family tree | | | |!| | | | | |!| | | | | |!| | }}
{{Family tree |boxstyle=text-align: left; | | | C01 | | | | C02 | | | | C03 | | C01=• [[Kallmann syndrome]]<br> • [[Turner syndrome]]<br> • [[Noonan syndrome]]<br> • [[Gonadal dysgenesis]]<br> • [[Chemotherapy]]/[[Radiation therapy]]<br> • [[Coxsackie]]<br> • [[Galactosemia]]<br> • Autoimmune oophiritis<br> • [[Adenylosuccinate lyase deficiency|Lyase deficiency]]<br> • [[Congenital lipoid adrenal hyperplasia]]<br> • [[Androgen insensitivity]]<br> • Congenital [[hypopituitarism]]<br> • [[Bardet-Biedl syndrome]]<br> • [[CHARGE syndrome]]<br> • [[Gaucher disease]]<br> • [[Septo-optic dysplasia]]<br>• [[Cystic Fibrosis]]<br> • [[Thalassemia]]| C02= • [[Astrocytoma]]<br> • [[Germinoma]]<br> • [[Glioma]]<br> • [[Craniopharyngioma]]<br> • [[Prolactinoma]]<br> • [[Langerhans cell histiocytosis]]<br> • [[Rathke pouch]] cyst<br> • Isolated hypogonadotropic [[hypogonadism]] <br> • [[Hypothalamic-pituitary-gonadal axis|HPO axis]] development disturbance<br> • Post [[central nervous system]] [[Infection]]<br> • [[Chemotherapy]]/[[Radiation therapy]]<br> • [[Trauma]]<br> • [[Asthma]] <br> • [[Inflammatory bowel disease]] <br> • [[Celiac disease]] <br> • [[Juvenile rheumatoid arthritis]]<br> • [[Sickle cell disease]]<br> • [[Hemosiderosis]]<br> • [[Chronic renal disease]]<br> • [[AIDS]]<br> • [[Diabetes mellitus]] <br> • [[Hypothyroidism]]<br> • [[Hyperprolactinemia]]<br> • [[Growth hormone deficiency]] <br> • [[Cushing syndrome]]|C03=• [[Stress]]<br> • Excessive [[exercise]]<br> • [[Malnutrition]]<br> • [[Obesity]] <br> • [[Anorexia nervosa]]<br> • [[Bulimia]] }}
{{Family tree |boxstyle=text-align: left; | | | C01 | | | | C02 | | | | C03 | | C01=• [[Kallmann syndrome]]<br> • [[Turner syndrome]]<br> • [[Noonan syndrome]]<br> • [[Gonadal dysgenesis]]<br> • [[Chemotherapy]]/[[Radiation therapy]]<br> • [[Coxsackie]]<br> • [[Galactosemia]]<br> • [[Autoimmune]] [[oophiritis]]<br> • [[Adenylosuccinate lyase deficiency|Lyase deficiency]]<br> • [[Congenital lipoid adrenal hyperplasia]]<br> • [[Androgen insensitivity]]<br> • [[Congenital]] [[hypopituitarism]]<br> • [[Bardet-Biedl syndrome]]<br> • [[CHARGE syndrome]]<br> • [[Gaucher disease]]<br> • [[Septo-optic dysplasia]]<br>• [[Cystic Fibrosis]]<br> • [[Thalassemia]]| C02= • [[Astrocytoma]]<br> • [[Germinoma]]<br> • [[Glioma]]<br> • [[Craniopharyngioma]]<br> • [[Prolactinoma]]<br> • [[Langerhans cell histiocytosis]]<br> • [[Rathke pouch]] cyst<br> • Isolated hypogonadotropic [[hypogonadism]] <br> • [[Hypothalamic-pituitary-gonadal axis|HPO axis]] development disturbance<br> • Post [[central nervous system]] [[Infection]]<br> • [[Chemotherapy]]/[[Radiation therapy]]<br> • [[Trauma]]<br> • [[Asthma]] <br> • [[Inflammatory bowel disease]] <br> • [[Celiac disease]] <br> • [[Juvenile rheumatoid arthritis]]<br> • [[Sickle cell disease]]<br> • [[Hemosiderosis]]<br> • [[Chronic renal disease]]<br> • [[AIDS]]<br> • [[Diabetes mellitus]] <br> • [[Hypothyroidism]]<br> • [[Hyperprolactinemia]]<br> • [[Growth hormone deficiency]] <br> • [[Cushing syndrome]]|C03=• [[Stress]]<br> • Excessive [[exercise]]<br> • [[Malnutrition]]<br> • [[Obesity]] <br> • [[Anorexia nervosa]]<br> • [[Bulimia]] }}


{{Family tree/end}}
{{Family tree/end}}
Line 482: Line 488:


*On [[gross pathology]], normal [[endometrium]] in proliferative or [[Luteal phase|luteal phases]] are characteristic findings of amenorrhea.
*On [[gross pathology]], normal [[endometrium]] in proliferative or [[Luteal phase|luteal phases]] are characteristic findings of amenorrhea.
*In any other cases of amenorrhea secondary to other causes, the related [[gross pathology]] is expected.
*In cases of amenorrhea which are secondary to other causes, the related [[gross pathology]] would be seen.
*[[Craniopharyngioma]] [[gross pathology]] is cystic mass filled with motor oil-like fluid.<ref name="pmid21584897">{{cite journal |vauthors=Fernandez-Miranda JC, Gardner PA, Snyderman CH, Devaney KO, Strojan P, Suárez C, Genden EM, Rinaldo A, Ferlito A |title=Craniopharyngioma: a pathologic, clinical, and surgical review |journal=Head Neck |volume=34 |issue=7 |pages=1036–44 |year=2012 |pmid=21584897 |doi=10.1002/hed.21771 |url=}}</ref> <br> <br><br><br><br><br> <br><br><br><br><br> <br><br><br> <br>
*[[Craniopharyngioma]] on [[gross pathology]] presents as cystic mass filled with motor oil-like fluid.<ref name="pmid21584897">{{cite journal |vauthors=Fernandez-Miranda JC, Gardner PA, Snyderman CH, Devaney KO, Strojan P, Suárez C, Genden EM, Rinaldo A, Ferlito A |title=Craniopharyngioma: a pathologic, clinical, and surgical review |journal=Head Neck |volume=34 |issue=7 |pages=1036–44 |year=2012 |pmid=21584897 |doi=10.1002/hed.21771 |url=}}</ref> <br> <br><br><br><br><br> <br><br><br><br><br> <br><br><br> <br>


==Microscopic Pathology==
==Microscopic Pathology==
*On [[microscopic]] [[histopathological]] analysis, trabecular [[squamous epithelium]] surrounded by palisaded [[columnar epithelium]], small-to-medium sized cells with moderate amount of [[basophilic]] [[cytoplasm]], bland [[nuclei]], and [[Calcification|calcifications]] are characteristic findings of [[craniopharyngioma]].
*On [[microscopic]] [[histopathological]] analysis, [[craniopharyngioma]] as a cause of amenorrhea will have the following features:
*On [[microscopic]] [[histopathological]] analysis, loss of [[fibrous]] [[stroma]] and nested cells of normal [[anterior pituitary]] (based on the type of [[adenoma]]) are characteristic findings of [[pituitary adenoma]].
**Trabecular [[squamous epithelium]] surrounded by palisaded [[columnar epithelium]]
**Small-to-medium sized cells with moderate amount of [[basophilic]] [[cytoplasm]]
**Bland [[nuclei]]
**[[Calcification|Calcifications]]
*On [[microscopic]] [[histopathological]] analysis, [[pituitary adenoma]] as a cause of amenorrhea will have the following features:
**Loss of [[fibrous]] [[stroma]]  
**Nested cells of normal [[anterior pituitary]] (based on the type of [[adenoma]])


<gallery align="left">
<gallery align="left">
Line 504: Line 516:
{{WH}}
{{WH}}
{{WS}}
{{WS}}
[[Category:Medicine]]
[[Category:Endocrinology]]
[[Category:Up-To-Date]]
[[Category:Gynecology]]
[[Category:Obstetrics]]

Latest revision as of 20:22, 29 July 2020

Amenorrhea Microchapters

Home

Patient Information

Primary amenorrhea
Secondary amenorrhea

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Amenorrhea from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Amenorrhea pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Amenorrhea pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Amenorrhea pathophysiology

CDC on Amenorrhea pathophysiology

Amenorrhea pathophysiology in the news

Blogs on Amenorrhea pathophysiology

Directions to Hospitals Treating Amenorrhea

Risk calculators and risk factors for Amenorrhea pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Eiman Ghaffarpasand, M.D. [2]

Overview

Amenorrhea is defined as absence of menstrual cycle. The causes of amenorrhea include hypothalamic, pituitary, thyroid, adrenal, ovarian, uterine, and vaginal. About 25 different genes are involved in the pathogenesis of amenorrhea including 3 different groups of Kallmann syndrome related genes, hypothalamus-pituitary-gonadal (HPG) axis related genes, and obesity related genes. On gross pathology, normal endometrium is the characteristic findings of amenorrhea. Patients of amenorrhea from Craniopharyngioma as have cystic mass filled with motor oil-like fluid on gross pathology. On microscopic histopathological analysis, craniopharyngioma presents as trabecular squamous epithelium surrounded by palisaded columnar epithelium, small-to-medium sized cells with moderate amount of basophilic cytoplasm, bland nuclei, and calcifications. On microscopic histopathological analysis, pituitary adenoma as a cause of amenorrhea presents as loss of fibrous stroma and nested cells of normal anterior pituitary (based on the type of adenoma).

Pathophysiology

Physiology of normal puberty

Menarche and Menstruation

Hypothalamic-pituitary-ovarian (HPO) axis maturation

Pathogenesis

Hypothalamic pathogenesis

Pituitary pathogenesis

Thyroid pathogenesis

Adrenal pathogenesis

Ovarian pathogenesis

Uterine pathogenesis

Genetics

The major genes in amenorrhea

Groups Gene Other name(s) OMIM number Chromosome Function Other related disorders
Kallmann syndrome

and

Isolated hypogonadotropic hypogonadism[29]

KAL1 KAL1, anosmin-1 308700 Xp22.3
FGFR1 KAL2 136350 8q12
PROKR2 KAL3 607123 20p13
PROK2 KAL4 607002 3p21.1
CHD7 KAL5 608892 8q12.1
FGF8 KAL6 600483 10q24
GPR54 KISS1R 604161 19p13.3
  • Regulation of GnRH secretion
-
KISS1 KISS1, kisspeptin1 603286 1q32 -
HS6ST1 - 604846 2q21 -
TAC3 NKB 162330 12q13–q21
TACR3 NK3R 152332 4q25
GnRH1 - 152760 8p21–8p11.2
  • One of the most important elements in HPG axis
GnRHR - 138850 4q21.2
NELF - 608137 9q34.3 -
EBF2 - 609934 8p21.2
  • Effective role in HPG axis
-
HPG axis development DAX1 NR0B 300473 Xp21.2
SF-1 NR5A1 184757 9q33.3
HESX-1 RPX 601802 3p14.3
LHX3 LIM3 600577 9q34.3
PROP-1 - 601538 5q35.3
Obesity related

hypogonadotropic hypogonadism

LEP OB 164160 7q32.1
LEPR OBR 601007 1p31.3
PC1 NEC1 162150 5q15

Abbreviations (alphabetic):
CHD7: Chromodomain helicase DNA-binding protein 7 gene, DAX1: DSS-AHC on the X-chromosome 1, EBF2: Early B-cell factor 2 gene, FGF8: Fibroblast growth factor 8 gene, FGFR1: Fibroblast growth factor receptor 1 gene, FSH: Follicle stimulating hormone, GnRH: Gonadotropin releasing hormone, GnRH1: Gonadotropin releasing hormone 1 gene, GnRHR: Gonadotropin releasing hormone receptor gene, GPR54: G protein-coupled receptor-54 gene, HESX-1: Homeobox gene 1, HPG axis: Hypothalamus-pituitary-gonadal axis, HS6ST1: Heparan sulfate 6-O-sulphotransferase 1 gene, KAL1: Kallmann syndrome 1 gene, LEP: Leptin gene, LEPR: Leptin receptor gene, LH: Luteinizing hormone, LHX3: LIM homeobox gene 3, NEC1: Neuroendocrine convertase 1, NELF: Nasal embryonic LH-releasing hormone factor gene, NK3R: Neurokinin 3 receptor gene, NKB: Neurokinin B gene, NR0B: Nuclear receptor 0B, NR5A1: Nuclear receptor 5A1, OMIM: Online Mendelian Inheritance in Man, PC1: Proprotein convertase 1, PROK2 : Prokineticin 2 gene, PROKR2: Prokineticin 2 receptor gene, PROP-1: PROP paired-like homeobox 1, RPX: Rathke pouch homeobox, SF-1: Steroidogenic factor 1, TAC3: Tachykinin 3 gene,TACR3: Tachykinin 3 receptor gene,

Kisspeptin system (KISS1R and KISS1)

Kallmann syndrome 1 (KAL1)

Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8)

Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1)

Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2)

Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3)

Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR)

Chromodomain helicase DNA-binding protein 7 (CHD7)

Nasal embryonic LH-releasing hormone factor (NELF)

Early B-cell factor 2 (EBF2)

DSS-AHC on the X-chromosome 1 (DAX1)

Steroidogenic factor 1 (SF1)

Homeobox gene 1 (HESX1)

LIM homeobox gene 3 (LHX3)

PROP paired-like homeobox 1 (PROP1)

Leptin and leptin receptor (LEP and LEPR)

Proprotein convertase 1 (PC1)

Makorin RING-finger protein 3 (MKRN3)

Estrogen receptor α (ESR1)

Associated Conditions

The associated conditions that are related to amenorrhea, are as following:[75]

 
 
 
 
 
 
 
 
Associated conditions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Primary amenorrhea
 
 
 
Secondary amenorrhea
 
 
 
Functional amenorrhea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kallmann syndrome
Turner syndrome
Noonan syndrome
Gonadal dysgenesis
Chemotherapy/Radiation therapy
Coxsackie
Galactosemia
Autoimmune oophiritis
Lyase deficiency
Congenital lipoid adrenal hyperplasia
Androgen insensitivity
Congenital hypopituitarism
Bardet-Biedl syndrome
CHARGE syndrome
Gaucher disease
Septo-optic dysplasia
Cystic Fibrosis
Thalassemia
 
 
 
Astrocytoma
Germinoma
Glioma
Craniopharyngioma
Prolactinoma
Langerhans cell histiocytosis
Rathke pouch cyst
• Isolated hypogonadotropic hypogonadism
HPO axis development disturbance
• Post central nervous system Infection
Chemotherapy/Radiation therapy
Trauma
Asthma
Inflammatory bowel disease
Celiac disease
Juvenile rheumatoid arthritis
Sickle cell disease
Hemosiderosis
Chronic renal disease
AIDS
Diabetes mellitus
Hypothyroidism
Hyperprolactinemia
Growth hormone deficiency
Cushing syndrome
 
 
 
Stress
• Excessive exercise
Malnutrition
Obesity
Anorexia nervosa
Bulimia
 

Gross Pathology

Gross pathology of craniopharyngioma in third ventricle brain, biphasic mixture - Source: Librepathology

Microscopic Pathology

References

  1. Chumlea WC, Schubert CM, Roche AF, Kulin HE, Lee PA, Himes JH, Sun SS (2003). "Age at menarche and racial comparisons in US girls". Pediatrics. 111 (1): 110–3. PMID 12509562.
  2. "Menstruation in Girls and Adolescents: Using the Menstrual Cycle as a Vital Sign - ACOG".
  3. 3.0 3.1 Golden NH, Carlson JL (2008). "The pathophysiology of amenorrhea in the adolescent". Ann. N. Y. Acad. Sci. 1135: 163–78. doi:10.1196/annals.1429.014. PMID 18574222.
  4. Apter D (1997). "Development of the hypothalamic-pituitary-ovarian axis". Ann. N. Y. Acad. Sci. 816: 9–21. PMID 9238251.
  5. Boyar RM, Rosenfeld RS, Kapen S, Finkelstein JW, Roffwarg HP, Weitzman ED, Hellman L (1974). "Human puberty. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep". J. Clin. Invest. 54 (3): 609–18. doi:10.1172/JCI107798. PMC 301594. PMID 4852310.
  6. Wiksten-Almströmer M, Hirschberg AL, Hagenfeldt K (2007). "Menstrual disorders and associated factors among adolescent girls visiting a youth clinic". Acta Obstet Gynecol Scand. 86 (1): 65–72. doi:10.1080/00016340601034970. PMID 17230292.
  7. Perkins RB, Hall JE, Martin KA (2001). "Aetiology, previous menstrual function and patterns of neuro-endocrine disturbance as prognostic indicators in hypothalamic amenorrhoea". Hum. Reprod. 16 (10): 2198–205. PMID 11574516.
  8. Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B (2007). "The role of leptin in anorexia nervosa: clinical implications". Mol. Psychiatry. 12 (1): 23–35. doi:10.1038/sj.mp.4001909. PMID 17060920.
  9. Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, Ma Z, Vignati L, Bowsher R, Herzog D, Klibanski A (1996). "Serum leptin levels in women with anorexia nervosa". J. Clin. Endocrinol. Metab. 81 (11): 3861–3. doi:10.1210/jcem.81.11.8923829. PMID 8923829.
  10. Haas V, Onur S, Paul T, Nutzinger DO, Bosy-Westphal A, Hauer M, Brabant G, Klein H, Müller MJ (2005). "Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery". Am. J. Clin. Nutr. 81 (4): 889–96. PMID 15817868.
  11. Misra M, Miller KK, Almazan C, Ramaswamy K, Aggarwal A, Herzog DB, Neubauer G, Breu J, Klibanski A (2004). "Hormonal and body composition predictors of soluble leptin receptor, leptin, and free leptin index in adolescent girls with anorexia nervosa and controls and relation to insulin sensitivity". J. Clin. Endocrinol. Metab. 89 (7): 3486–95. doi:10.1210/jc.2003-032251. PMID 15240636.
  12. Katzman DK, Golden NH, Neumark-Sztainer D, Yager J, Strober M (2000). "From prevention to prognosis: clinical research update on adolescent eating disorders". Pediatr. Res. 47 (6): 709–12. PMID 10832726.
  13. Thong FS, McLean C, Graham TE (2000). "Plasma leptin in female athletes: relationship with body fat, reproductive, nutritional, and endocrine factors". J. Appl. Physiol. 88 (6): 2037–44. PMID 10846016.
  14. Weimann E, Blum WF, Witzel C, Schwidergall S, Böhles HJ (1999). "Hypoleptinemia in female and male elite gymnasts". Eur. J. Clin. Invest. 29 (10): 853–60. PMID 10583427.
  15. Welt, Corrine K.; Chan, Jean L.; Bullen, John; Murphy, Robyn; Smith, Patricia; DePaoli, Alex M.; Karalis, Aspasia; Mantzoros, Christos S. (2004). "Recombinant Human Leptin in Women with Hypothalamic Amenorrhea". New England Journal of Medicine. 351 (10): 987–997. doi:10.1056/NEJMoa040388. ISSN 0028-4793.
  16. Wieck A, Haddad PM (2003). "Antipsychotic-induced hyperprolactinaemia in women: pathophysiology, severity and consequences. Selective literature review". Br J Psychiatry. 182: 199–204. PMID 12611781.
  17. Magiakou MA, Mastorakos G, Webster E, Chrousos GP (1997). "The hypothalamic-pituitary-adrenal axis and the female reproductive system". Ann. N. Y. Acad. Sci. 816: 42–56. PMID 9238254.
  18. Seminara SB, Hayes FJ, Crowley WF (1998). "Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations". Endocr. Rev. 19 (5): 521–39. doi:10.1210/edrv.19.5.0344. PMID 9793755.
  19. Karavitaki N, Cudlip S, Adams CB, Wass JA (2006). "Craniopharyngiomas". Endocr. Rev. 27 (4): 371–97. doi:10.1210/er.2006-0002. PMID 16543382.
  20. Koutras DA (1997). "Disturbances of menstruation in thyroid disease". Ann. N. Y. Acad. Sci. 816: 280–4. PMID 9238278.
  21. Poppe K, Velkeniers B, Glinoer D (2007). "Thyroid disease and female reproduction". Clin. Endocrinol. (Oxf). 66 (3): 309–21. doi:10.1111/j.1365-2265.2007.02752.x. PMID 17302862.
  22. Speiser, Phyllis W.; White, Perrin C. (2003). "Congenital Adrenal Hyperplasia". New England Journal of Medicine. 349 (8): 776–788. doi:10.1056/NEJMra021561. ISSN 0028-4793.
  23. Gilling-Smith C, Story H, Rogers V, Franks S (1997). "Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome". Clin. Endocrinol. (Oxf). 47 (1): 93–9. PMID 9302378.
  24. Ehrmann DA, Barnes RB, Rosenfield RL (1995). "Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion". Endocr. Rev. 16 (3): 322–53. doi:10.1210/edrv-16-3-322. PMID 7671850.
  25. Pastor CL, Griffin-Korf ML, Aloi JA, Evans WS, Marshall JC (1998). "Polycystic ovary syndrome: evidence for reduced sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone". J. Clin. Endocrinol. Metab. 83 (2): 582–90. doi:10.1210/jcem.83.2.4604. PMID 9467578.
  26. Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R (1981). "Hypergonadotropic hypogonadism in female patients with galactosemia". N. Engl. J. Med. 304 (17): 994–8. doi:10.1056/NEJM198104233041702. PMID 6782485.
  27. Varner RE, Younger JB, Blackwell RE (1985). "Müllerian dysgenesis". J Reprod Med. 30 (6): 443–50. PMID 4020785.
  28. Edmonds DK (2003). "Congenital malformations of the genital tract and their management". Best Pract Res Clin Obstet Gynaecol. 17 (1): 19–40. PMID 12758224.
  29. Bonomi, Marco; Libri, Domenico Vladimiro; Guizzardi, Fabiana; Guarducci, Elena; Maiolo, Elisabetta; Pignatti, Elisa; Asci, Roberta; Persani, Luca (2011). "New understandings of the genetic basis of isolated idiopathic central hypogonadism". Asian Journal of Andrology. 14 (1): 49–56. doi:10.1038/aja.2011.68. ISSN 1008-682X.
  30. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003). "Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54". Proc. Natl. Acad. Sci. U.S.A. 100 (19): 10972–6. doi:10.1073/pnas.1834399100. PMC 196911. PMID 12944565.
  31. Seminara, Stephanie B.; Messager, Sophie; Chatzidaki, Emmanouella E.; Thresher, Rosemary R.; Acierno, James S.; Shagoury, Jenna K.; Bo-Abbas, Yousef; Kuohung, Wendy; Schwinof, Kristine M.; Hendrick, Alan G.; Zahn, Dirk; Dixon, John; Kaiser, Ursula B.; Slaugenhaupt, Susan A.; Gusella, James F.; O'Rahilly, Stephen; Carlton, Mark B.L.; Crowley, William F.; Aparicio, Samuel A.J.R.; Colledge, William H. (2003). "TheGPR54Gene as a Regulator of Puberty". New England Journal of Medicine. 349 (17): 1614–1627. doi:10.1056/NEJMoa035322. ISSN 0028-4793.
  32. Kaur KK, Allahbadia G, Singh M (2012). "Kisspeptins in human reproduction-future therapeutic potential". J Assist Reprod Genet. 29 (10): 999–1011. doi:10.1007/s10815-012-9856-1. PMC 3492584. PMID 23015158.
  33. Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-ichiro (2014). "KNDy neuron as a gatekeeper of puberty onset". Journal of Obstetrics and Gynaecology Research. 40 (6): 1518–1526. doi:10.1111/jog.12398. ISSN 1341-8076.
  34. Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C (1999). "Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome". Dev. Dyn. 215 (1): 26–44. doi:10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D. PMID 10340754.
  35. Schwanzel-Fukuda M, Bick D, Pfaff DW (1989). "Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome". Brain Res. Mol. Brain Res. 6 (4): 311–26. PMID 2687610.
  36. 36.0 36.1 Trarbach EB, Silveira LG, Latronico AC (2007). "Genetic insights into human isolated gonadotropin deficiency". Pituitary. 10 (4): 381–91. doi:10.1007/s11102-007-0061-7. PMID 17624596.
  37. González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004). "Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism". J. Neurosci. 24 (46): 10384–92. doi:10.1523/JNEUROSCI.3400-04.2004. PMID 15548653.
  38. Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK (2003). "FGF signaling through FGFR1 is required for olfactory bulb morphogenesis". Development. 130 (6): 1101–11. PMID 12571102.
  39. Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI (2005). "Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population". Mol. Endocrinol. 19 (1): 225–36. doi:10.1210/me.2004-0330. PMID 15459253.
  40. 40.0 40.1 Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE (2011). "Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism". Proc. Natl. Acad. Sci. U.S.A. 108 (28): 11524–9. doi:10.1073/pnas.1102284108. PMC 3136273. PMID 21700882.
  41. Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ (2004). "Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly". Biochemistry. 43 (16): 4724–30. doi:10.1021/bi0352320. PMID 15096041.
  42. Hudson ML, Kinnunen T, Cinar HN, Chisholm AD (2006). "C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations". Dev. Biol. 294 (2): 352–65. doi:10.1016/j.ydbio.2006.02.036. PMID 16677626.
  43. Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y (2006). "Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2". Proc. Natl. Acad. Sci. U.S.A. 103 (11): 4140–5. doi:10.1073/pnas.0508881103. PMC 1449660. PMID 16537498.
  44. Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY (2001). "Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle". Mol. Pharmacol. 59 (4): 692–8. PMID 11259612.
  45. Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N (2008). "Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum". J. Clin. Endocrinol. Metab. 93 (9): 3551–9. doi:10.1210/jc.2007-2654. PMC 2567850. PMID 18559922.
  46. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK (2009). "TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction". Nat. Genet. 41 (3): 354–358. doi:10.1038/ng.306. PMC 4312696. PMID 19079066.
  47. Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML (2004). "mRNA expression of tachykinins and tachykinin receptors in different human tissues". Eur. J. Pharmacol. 494 (2–3): 233–9. doi:10.1016/j.ejphar.2004.05.016. PMID 15212980.
  48. Semple RK, Topaloglu AK (2010). "The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions". Clin. Endocrinol. (Oxf). 72 (4): 427–35. doi:10.1111/j.1365-2265.2009.03687.x. PMID 19719764.
  49. Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J (2009). "Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation". N. Engl. J. Med. 360 (26): 2742–8. doi:10.1056/NEJMoa0900136. PMID 19535795.
  50. Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM (2010). "Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice". Endocrinology. 151 (3): 1142–52. doi:10.1210/en.2009-0598. PMID 20068010.
  51. Silveira LF, MacColl GS, Bouloux PM (2002). "Hypogonadotropic hypogonadism". Semin. Reprod. Med. 20 (4): 327–38. doi:10.1055/s-2002-36707. PMID 12536356.
  52. Tiong J, Locastro T, Wray S (2007). "Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization". Dev. Dyn. 236 (11): 2980–92. doi:10.1002/dvdy.21332. PMID 17948256.
  53. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC (2008). "Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome". Am. J. Hum. Genet. 83 (4): 511–9. doi:10.1016/j.ajhg.2008.09.005. PMC 2561938. PMID 18834967.
  54. Kramer PR, Wray S (2000). "Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons". Genes Dev. 14 (14): 1824–34. PMC 316793. PMID 10898796.
  55. Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG (2003). "Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice". Development. 130 (2): 401–10. PMID 12466206.
  56. Trarbach EB, Baptista MT, Garmes HM, Hackel C (2005). "Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients". J. Endocrinol. 187 (3): 361–8. doi:10.1677/joe.1.06103. PMID 16423815.
  57. Guo W, Burris TP, McCabe ER (1995). "Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis". Biochem. Mol. Med. 56 (1): 8–13. PMID 8593542.
  58. 58.0 58.1 Kojima Y, Sasaki S, Hayashi Y, Umemoto Y, Morohashi K, Kohri K (2006). "Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia". Int. J. Urol. 13 (6): 785–93. doi:10.1111/j.1442-2042.2006.01403.x. PMID 16834661.
  59. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER (1994). "An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita". Nature. 372 (6507): 635–41. doi:10.1038/372635a0. PMID 7990953.
  60. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA (1998). "Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression". Cell. 93 (3): 445–54. PMID 9590178.
  61. 61.0 61.1 Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC (1998). "Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse". Nat. Genet. 19 (2): 125–33. doi:10.1038/477. PMID 9620767.
  62. Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson IC, Beddington RS (2001). "Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia". Hum. Mol. Genet. 10 (1): 39–45. PMID 11136712.
  63. 63.0 63.1 Rajab A, Kelberman D, de Castro SC, Biebermann H, Shaikh H, Pearce K, Hall CM, Shaikh G, Gerrelli D, Grueters A, Krude H, Dattani MT (2008). "Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss". Hum. Mol. Genet. 17 (14): 2150–9. doi:10.1093/hmg/ddn114. PMID 18407919.
  64. Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, Duriez B, Cacheux V, Moers A, Goossens M, Grüters A, Amselem S (2000). "Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency". Nat. Genet. 25 (2): 182–6. doi:10.1038/76041. PMID 10835633. Vancouver style error: initials (help)
  65. Duquesnoy P, Roy A, Dastot F, Ghali I, Teinturier C, Netchine I, Cacheux V, Hafez M, Salah N, Chaussain JL, Goossens M, Bougnères P, Amselem S (1998). "Human Prop-1: cloning, mapping, genomic structure. Mutations in familial combined pituitary hormone deficiency". FEBS Lett. 437 (3): 216–20. PMID 9824293.
  66. Wu W, Cogan JD, Pfäffle RW, Dasen JS, Frisch H, O'Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA, Rosenfeld MG (1998). "Mutations in PROP1 cause familial combined pituitary hormone deficiency". Nat. Genet. 18 (2): 147–9. doi:10.1038/ng0298-147. PMID 9462743.
  67. Chehab FF, Lim ME, Lu R (1996). "Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin". Nat. Genet. 12 (3): 318–20. doi:10.1038/ng0396-318. PMID 8589726.
  68. Mantzoros CS, Flier JS, Rogol AD (1997). "A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty". J. Clin. Endocrinol. Metab. 82 (4): 1066–70. doi:10.1210/jcem.82.4.3878. PMID 9100574.
  69. Jansen E, Ayoubi TA, Meulemans SM, Van de Ven WJ (1995). "Neuroendocrine-specific expression of the human prohormone convertase 1 gene. Hormonal regulation of transcription through distinct cAMP response elements". J. Biol. Chem. 270 (25): 15391–7. PMID 7797529.
  70. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S (1997). "Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene". Nat. Genet. 16 (3): 303–6. doi:10.1038/ng0797-303. PMID 9207799.
  71. Hughes, Ieuan A. (2013). "Releasing the Brake on Puberty". New England Journal of Medicine. 368 (26): 2513–2515. doi:10.1056/NEJMe1306743. ISSN 0028-4793.
  72. Quaynor, Samuel D.; Stradtman, Earl W.; Kim, Hyung-Goo; Shen, Yiping; Chorich, Lynn P.; Schreihofer, Derek A.; Layman, Lawrence C. (2013). "Delayed Puberty and Estrogen Resistance in a Woman with Estrogen Receptor α Variant". New England Journal of Medicine. 369 (2): 164–171. doi:10.1056/NEJMoa1303611. ISSN 0028-4793.
  73. Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM (2008). "Classical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing". Endocrinology. 149 (11): 5328–34. doi:10.1210/en.2008-0520. PMC 2584581. PMID 18635656.
  74. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993). "Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene". Proc. Natl. Acad. Sci. U.S.A. 90 (23): 11162–6. PMC 47942. PMID 8248223.
  75. Fernandez-Miranda JC, Gardner PA, Snyderman CH, Devaney KO, Strojan P, Suárez C, Genden EM, Rinaldo A, Ferlito A (2012). "Craniopharyngioma: a pathologic, clinical, and surgical review". Head Neck. 34 (7): 1036–44. doi:10.1002/hed.21771. PMID 21584897.

Template:WH Template:WS