H box gene transcriptions: Difference between revisions

Jump to navigation Jump to search
mNo edit summary
Line 59: Line 59:
|accessdate=16 March 2021 }}</ref>
|accessdate=16 March 2021 }}</ref>


==Consensus sequences==
==H box consensus sequences==


"The box H/ACA snoRNAs were most recently recognized as a small RNA family by virtue of an ACA trinucleotide located 3 nt upstream of the mature snoRNA 3' end (41). In addition to this ACA box, they have the consensus H box sequence (5'-ANANNA-3') but have no other primary sequence identity. Despite this lack of primary sequence conservation, the H and ACA boxes are embedded in an evolutionarily conserved hairpin-hinge-hairpin-tail core secondary structure with the H box in the single-stranded hinge region and the ACA box in the single-stranded tail (5, 16)."<ref name=Mitchell>{{ cite journal
"The box H/ACA snoRNAs were most recently recognized as a small RNA family by virtue of an ACA trinucleotide located 3 nt upstream of the mature snoRNA 3' end (41). In addition to this ACA box, they have the consensus H box sequence (5'-ANANNA-3') but have no other primary sequence identity. Despite this lack of primary sequence conservation, the H and ACA boxes are embedded in an evolutionarily conserved hairpin-hinge-hairpin-tail core secondary structure with the H box in the single-stranded hinge region and the ACA box in the single-stranded tail (5, 16)."<ref name=Mitchell>{{ cite journal
Line 95: Line 95:
|pmid=
|pmid=
|accessdate=2014-06-08 }}</ref>
|accessdate=2014-06-08 }}</ref>
==H-box consensus sequences==
The earlier H-box consensus sequence is CCTACC(N)<sub>7</sub>CT.<ref name=Loake/>


H box in ''Solanaceae'' has the following consensus sequence 3'-CC(A/T)ACCNNNNNNN(A/C)T-5'.<ref name=Grandbastien>{{ cite journal
H box in ''Solanaceae'' has the following consensus sequence 3'-CC(A/T)ACCNNNNNNN(A/C)T-5'.<ref name=Grandbastien>{{ cite journal
Line 130: Line 134:
# inverse, positive strand, negative direction, is SuccessablesHACAi+-.bas, looking for 3'-ACCACA-5', 1, 3'-ACCACA-5', 3764,
# inverse, positive strand, negative direction, is SuccessablesHACAi+-.bas, looking for 3'-ACCACA-5', 1, 3'-ACCACA-5', 3764,
# inverse, positive strand, positive direction, is SuccessablesHACAi++.bas, looking for 3'-ACCACA-5', 2, 3'-ACCACA-5', 511, 3'-ACCACA-5', 530.
# inverse, positive strand, positive direction, is SuccessablesHACAi++.bas, looking for 3'-ACCACA-5', 2, 3'-ACCACA-5', 511, 3'-ACCACA-5', 530.
==H-box samplings==
{{main|Model samplings}}
Copying a responsive elements consensus sequence AAAAAAAA and putting the sequence in "⌘F" finds none between ZNF497 and A1BG or none between ZSCAN22 and A1BG as can be found by the computer programs.
For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:
# negative strand, negative direction, looking for AAAAAAAA, 0.
# positive strand, negative direction, looking for AAAAAAAA, 0.
# positive strand, positive direction, looking for AAAAAAAA, 0.
# negative strand, positive direction, looking for AAAAAAAA, 0.
# complement, negative strand, negative direction, looking for TTTTTTTT, 0.
# complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
# inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
# inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
# inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
# inverse negative strand, negative direction, looking for AAAAAAAA, 0.
# inverse positive strand, negative direction, looking for AAAAAAAA, 0.
# inverse positive strand, positive direction, looking for AAAAAAAA, 0.
# inverse negative strand, positive direction, looking for AAAAAAAA, 0.
===AAA UTRs===
{{main|UTR promoter gene transcriptions}}
===AAA core promoters===
{{main|Core promoter gene transcriptions}}
===AAA proximal promoters===
{{main|Proximal promoter gene transcriptions}}
===AAA distal promoters===
{{main|Distal promoter gene transcriptions}}
==Acknowledgements==
The content on this page was first contributed by: Henry A. Hoff.


==See also==
==See also==
{{div col|colwidth=20em}}
{{div col|colwidth=20em}}
* [[A1BG gene transcription core promoters]]
* [[A1BG gene transcriptions]]
* [[A1BG regulatory elements and regions]]
* [[A1BG response element gene transcriptions]]
* [[A1BG response element negative results]]
* [[A1BG response element positive results]]
* [[Complex locus A1BG and ZNF497]]
* [[GA responsive complex gene transcription laboratory]]
* [[GA responsive complex gene transcription laboratory]]
* [[H and ACA box gene transcriptions]]
* [[H and ACA box gene transcriptions]]
Line 142: Line 191:


==External links==
==External links==
* [http://www.genome.jp/ GenomeNet KEGG database]
* [http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene Home - Gene - NCBI]
* [http://www.ncbi.nlm.nih.gov/sites/gquery NCBI All Databases Search]
* [http://www.ncbi.nlm.nih.gov/ncbisearch/ NCBI Site Search]
* [http://www.ncbi.nlm.nih.gov/pccompound PubChem Public Chemical Database]


<!-- footer templates -->
<!-- footer templates -->
{{Gene project}}{{Sisterlinks|H boxes}}
{{Gene project}}


<!-- footer categories -->
<!-- footer categories -->
[[Category:Gene project lectures]]
[[Category:Resources last modified in March 2021]]
[[Category:Gene lectures]]
[[Category:Genetics lectures]]
[[Category:Gene transcription lectures]]
[[Category:Phosphate lectures]]
[[Category:Resources last modified in January 2020]]

Revision as of 03:57, 17 March 2021

Editor-In-Chief: Henry A. Hoff

File:A green bean.jpg
Green beans grow from Phaseolus vulgaris. Credit: wanko from Japan.{{free media}}

The "H-box [is] from the bean chalcone synthase gene Chs15 [23,24]."[1]

The "Phaseolus vulgaris chalcone synthase (PvCHS15)" gene has three H boxes between the G box and the TATA box, where each binds to MYB, KAP 2, and KAP 1 downstream from the G box, respectively.[1]

"Functional studies with the H-box indicated that it cannot function to a high level alone. Gain of function experiments, however, show that it is active in combination with a G-Box element [...] in transgenic tobacco plants in establishing the characteristic tissue-specific pattern of expression and mutations in either the H-box or G-Box reduced the response to tobacco mosaic virus (TMV) infection [24,30]."[1]

"A bZIP protein from soybean binds to the G-Box in the bean Chs15 promoter [36•]. This protein, G/HBF-1, can also bind to the adjacent H-box."[1]

"Although the mRNA and protein levels of G/HBF-1 do not increase during the induction of its putative target genes, the protein itself is rapidly phosphorylated and in vitro phosphorylation enhances binding to one (H-box III) out of the three H-boxes present in the Chs15 promoter."[1]

H box in animals

"A testis/brain RNA-binding protein, TB-RBP, binds to the Y- and H-boxes in the Prm2 3′ UTR and represses translation of a reporter mRNA in rabbit reticulocyte lysates [9]. The Y- and H-boxes are found in many transcripts expressed in the testis and brain, including Prm1, Prm2, Tnp1, and Tau [10]."[2]

H-boxes

"Two distinct sequence elements, the H-box (consensus CCTACC(N)7CT) and the G-box (CACGTG), are required for stimulation of the chs15 promoter by 4-CA."[3]

H box consensus sequences

"The box H/ACA snoRNAs were most recently recognized as a small RNA family by virtue of an ACA trinucleotide located 3 nt upstream of the mature snoRNA 3' end (41). In addition to this ACA box, they have the consensus H box sequence (5'-ANANNA-3') but have no other primary sequence identity. Despite this lack of primary sequence conservation, the H and ACA boxes are embedded in an evolutionarily conserved hairpin-hinge-hairpin-tail core secondary structure with the H box in the single-stranded hinge region and the ACA box in the single-stranded tail (5, 16)."[4]

The "3' end of mature hTR (45) has an ACA trinucleotide 3 nt upstream of its 3' end. In addition, the 3' region of hTR contains a single H box consensus sequence (5'-AGAGGA-3')."[4]

"Comparison with the murine telomerase RNA (mTR) (7) suggests that the snoRNA-like features of hTR are evolutionarily conserved. The mTR 3' end (nt 169 to 397 as numbered in reference 25) has ~76% sequence identity with the corresponding region of hTR (nt 211 to 451) and includes consensus H (5'-ACAGGA-3') and ACA box sequences."[4]

An H box has a consensus sequence of 3'-ACACCA-5'.[5]

H-box consensus sequences

The earlier H-box consensus sequence is CCTACC(N)7CT.[3]

H box in Solanaceae has the following consensus sequence 3'-CC(A/T)ACCNNNNNNN(A/C)T-5'.[6]

H boxes in promoters of A1BG

For the Basic programs (starting with SuccessablesHACA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand in the negative direction (from ZSCAN22 to A1BG) is SuccessablesHACA--.bas, looking for 3'-ACACCA-5', 4, 3'-ACACCA-5', 788, 3'-ACACCA-5', 2659, 3'-ACACCA-5', 3187, 3'-ACACCA-5', 3811,
  2. negative strand in the positive direction (from ZNF497 to A1BG) is SuccessablesHACA-+.bas, looking for 3'-ACACCA-5', 1, 3'-ACACCA-5', 386,
  3. positive strand in the negative direction is SuccessablesHACA+-.bas, looking for 3'-ACACCA-5', 2, 3'-ACACCA-5', 883, 3'-ACACCA-5', 2419,
  4. positive strand in the positive direction is SuccessablesHACA++.bas, looking for 3'-ACACCA-5', 2, 3'-ACACCA-5', 204, 3'-ACACCA-5', 528,
  5. complement, negative strand, negative direction is SuccessablesHACAc--.bas, looking for 3'-TGTGGT-5', 2, 3'-TGTGGT-5', 883, 3'-TGTGGT-5', 2419,
  6. complement, negative strand, positive direction is SuccessablesHACAc-+.bas, looking for 3'-TGTGGT-5', 2, 3'-TGTGGT-5', 204, 3'-TGTGGT-5', 528,
  7. complement, positive strand, negative direction is SuccessablesHACAc+-.bas, looking for 3'-TGTGGT-5', 4, 3'-TGTGGT-5', 788, 3'-TGTGGT-5', 2659, 3'-TGTGGT-5', 3187, 3'-TGTGGT-5', 3811,
  8. complement, positive strand, positive direction is SuccessablesHACAc++.bas, looking for 3'-TGTGGT-5', 1, 3'-TGTGGT-5', 386,
  9. inverse complement, negative strand, negative direction is SuccessablesHACAci--.bas, looking for 3'-TGGTGT-5', 1, 3'-TGGTGT-5', 3764,
  10. inverse complement, negative strand, positive direction is SuccessablesHACAci-+.bas, looking for 3'-TGGTGT-5', 2, 3'-TGGTGT-5', 511, 3'-TGGTGT-5', 530,
  11. inverse complement, positive strand, negative direction is SuccessablesHACAci+-.bas, looking for 3'-TGGTGT-5', 3, 3'-TGGTGT-5', 608, 3'-TGGTGT-5', 793, 3'-TGGTGT-5', 1477,
  12. inverse complement, positive strand, positive direction is SuccessablesHACAci++.bas, looking for 3'-TGGTGT-5', 1, 3'-TGGTGT-5', 420,
  13. inverse, negative strand, negative direction, is SuccessablesHACAi--.bas, looking for 3'-ACCACA-5', 3, 3'-ACCACA-5', 608, 3'-ACCACA-5', 793, 3'-ACCACA-5', 1477,
  14. inverse, negative strand, positive direction, is SuccessablesHACAi-+.bas, looking for 3'-ACCACA-5', 1, 3'-ACCACA-5', 420,
  15. inverse, positive strand, negative direction, is SuccessablesHACAi+-.bas, looking for 3'-ACCACA-5', 1, 3'-ACCACA-5', 3764,
  16. inverse, positive strand, positive direction, is SuccessablesHACAi++.bas, looking for 3'-ACCACA-5', 2, 3'-ACCACA-5', 511, 3'-ACCACA-5', 530.

H-box samplings

Copying a responsive elements consensus sequence AAAAAAAA and putting the sequence in "⌘F" finds none between ZNF497 and A1BG or none between ZSCAN22 and A1BG as can be found by the computer programs.

For the Basic programs testing consensus sequence AAAAAAAA (starting with SuccessablesAAA.bas) written to compare nucleotide sequences with the sequences on either the template strand (-), or coding strand (+), of the DNA, in the negative direction (-), or the positive direction (+), the programs are, are looking for, and found:

  1. negative strand, negative direction, looking for AAAAAAAA, 0.
  2. positive strand, negative direction, looking for AAAAAAAA, 0.
  3. positive strand, positive direction, looking for AAAAAAAA, 0.
  4. negative strand, positive direction, looking for AAAAAAAA, 0.
  5. complement, negative strand, negative direction, looking for TTTTTTTT, 0.
  6. complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  7. complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  8. complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  9. inverse complement, negative strand, negative direction, looking for TTTTTTTT, 0.
  10. inverse complement, positive strand, negative direction, looking for TTTTTTTT, 0.
  11. inverse complement, positive strand, positive direction, looking for TTTTTTTT, 0.
  12. inverse complement, negative strand, positive direction, looking for TTTTTTTT, 0.
  13. inverse negative strand, negative direction, looking for AAAAAAAA, 0.
  14. inverse positive strand, negative direction, looking for AAAAAAAA, 0.
  15. inverse positive strand, positive direction, looking for AAAAAAAA, 0.
  16. inverse negative strand, positive direction, looking for AAAAAAAA, 0.

AAA UTRs

AAA core promoters

AAA proximal promoters

AAA distal promoters

Acknowledgements

The content on this page was first contributed by: Henry A. Hoff.

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 Paul J Rushton and Imre E Somssich (August 1998). "Transcriptional control of plant genes responsive to pathogens" (PDF). Current Opinion in Plant Biology. 1 (4): 311–5. doi:10.1016/1369-5266(88)80052-9. Retrieved 5 November 2018.
  2. Jun Zhong, Antoine H.F.M. Peters, Kathy Kafer, Robert E. Braun (1 June 2001). "A Highly Conserved Sequence Essential for Translational Repression of the Protamine 1 Messenger RNA in Murine Spermatids". Biology of Reproduction. 64 (6): 1784–1789. doi:10.1095/biolreprod64.6.1784. Retrieved 5 November 2018.
  3. 3.0 3.1 Gary J. Loake, Ouriel Faktor, Christopher J. Lamb, and Richard A. Dixon (October 1992). "Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaricacid" (PDF). Proceedings of the National Academy of Sciences USA. 89 (19): 9230–9234. doi:10.1073/pnas.89.19.9230. Retrieved 16 March 2021.
  4. 4.0 4.1 4.2 James R. Mitchell, Jeffrey Cheng, ang Kathleen Collins (January 1999). "A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3' End" (PDF). Molecular and Cellular Biology. 19 (1): 567–576. Retrieved 5 November 2018.
  5. Timofey S. Rozhdestvensky, Thean Hock Tang, Inna V. Tchirkova, Jürgen Brosius, Jean‐Pierre Bachellerie and Alexander Hüttenhofer (2003). "Binding of L7Ae protein to the K‐turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea". Nucleic Acids Research. 31 (3): 869–77. doi:10.1093/nar/gkg175. Retrieved 2014-06-08.
  6. M.-A. Grandbastien, C. Audeon, E. Bonnivard, J.M. Casacuberta, B. Chalhoub, A.-P.P. Costa, Q.H. Le, D. Melayah, M. Petit, C. Poncet, S.M. Tam, M.-A. Van Sluys, C. Mhiri (July 2005). "Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae" (PDF). Cytogenetic and Genomic Research. 110 (1–4): 229–41. doi:10.1159/000084957. Retrieved 5 November 2018.

External links