TAS1R3: Difference between revisions

Jump to navigation Jump to search
m (→‎Location and innervation: clean up + proper journal capitalization, replaced: BMC neuroscience → BMC Neuroscience using AWB)
imported>Ser Amantio di Nicolao
 
Line 1: Line 1:
{{Infobox_gene}}
{{Infobox_gene}}
'''Taste receptor type 1 member 3''' is a [[protein]] that in humans is encoded by the ''TAS1R3'' [[gene]].<ref name="pmid11319557">{{cite journal | vauthors = Montmayeur JP, Liberles SD, Matsunami H, Buck LB | title = A candidate taste receptor gene near a sweet taste locus | journal = Nat Neurosci | volume = 4 | issue = 5 | pages = 492–8 | date = Apr 2001 | pmid = 11319557 | pmc =  | doi = 10.1038/87440 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: TAS1R3 taste receptor, type 1, member 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=83756| accessdate = }}</ref> The ''TAS1R3'' gene encodes the human homolog of mouse Sac [[taste receptor]], a major determinant of differences between sweet-sensitive and -insensitive mouse strains in their responsiveness to sucrose, saccharin, and other sweeteners.<ref name="entrez" /><ref>{{Cite journal|last=Bachmanov|first=Alexander A.|last2=Li|first2=Xia|last3=Reed|first3=Danielle R.|last4=Ohmen|first4=Jeffery D.|last5=Li|first5=Shanru|last6=Chen|first6=Zhenyu|last7=Tordoff|first7=Michael G.|last8=de Jong|first8=Pieter J.|last9=Wu|first9=Chenyan|date=2001|title=Positional cloning of the mouse saccharin preference (Sac) locus|journal=Chemical senses|volume=26|issue=7|pages=925–933|issn=0379-864X|pmc=3644801|pmid=11555487|via=}}</ref>
'''Taste receptor type 1 member 3''' is a [[protein]] that in humans is encoded by the ''TAS1R3'' [[gene]].<ref name="pmid11319557">{{cite journal | vauthors = Montmayeur JP, Liberles SD, Matsunami H, Buck LB | title = A candidate taste receptor gene near a sweet taste locus | journal = Nat Neurosci | volume = 4 | issue = 5 | pages = 492–8 | date = Apr 2001 | pmid = 11319557 | pmc =  | doi = 10.1038/87440 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: TAS1R3 taste receptor, type 1, member 3| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=83756| accessdate = }}</ref> The ''TAS1R3'' gene encodes the human homolog of mouse Sac [[taste receptor]], a major determinant of differences between sweet-sensitive and -insensitive mouse strains in their responsiveness to sucrose, saccharin, and other sweeteners.<ref name="entrez" /><ref>{{Cite journal|last=Bachmanov|first=Alexander A.|last2=Li|first2=Xia|last3=Reed|first3=Danielle R.|last4=Ohmen|first4=Jeffery D.|last5=Li|first5=Shanru|last6=Chen|first6=Zhenyu|last7=Tordoff|first7=Michael G.|last8=de Jong|first8=Pieter J.|last9=Wu|first9=Chenyan|date=2001|title=Positional cloning of the mouse saccharin preference (Sac) locus|journal=Chemical senses|volume=26|issue=7|pages=925–933|issn=0379-864X|pmc=3644801|pmid=11555487|via=|doi=10.1093/chemse/26.7.925}}</ref>


== Structure ==
== Structure ==
Line 10: Line 10:


The [[G protein-coupled receptors]] for sweet and umami taste are formed by dimers of the TAS1R proteins.  
The [[G protein-coupled receptors]] for sweet and umami taste are formed by dimers of the TAS1R proteins.  
The TAS1R1+3 taste receptor is sensitive to the glutamate in MSG as well as the synergistic taste-enhancer molecules [[inosine monophosphate]] (IMP) and [[guanosine monophosphate]] (GMP).  These taste-enhancer molecules are unable to activate the receptor alone, but are rather used to enhance receptor responses many to L-amino acids.<ref name="Nelson2002">{{cite journal | vauthors = Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS | title = An amino-acid taste receptor | journal = Nature | volume = 416 | issue = 6877 | pages = 199–202 | year = 2002 | pmid = 11894099 | doi = 10.1038/nature726 }}</ref> The TAS1R2+3 receptor has been shown to respond to natural sugars [[sucrose]] and [[fructose]], and to artificial sweeteners [[saccharin]], [[acesulfame potassium]], [[dulcin]], [[guanidinoacetic acid]].<ref name="Nelson2001"/>
The TAS1R1+3 taste receptor is sensitive to the glutamate in MSG as well as the synergistic taste-enhancer molecules [[inosine monophosphate]] (IMP) and [[guanosine monophosphate]] (GMP).  These taste-enhancer molecules are unable to activate the receptor alone, but are rather used to enhance receptor responses many to L-amino acids.<ref name="Nelson2002">{{cite journal | vauthors = Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS | title = An amino-acid taste receptor | journal = Nature | volume = 416 | issue = 6877 | pages = 199–202 | year = 2002 | pmid = 11894099 | doi = 10.1038/nature726 | bibcode = 2002Natur.416..199N }}</ref> The TAS1R2+3 receptor has been shown to respond to natural sugars [[sucrose]] and [[fructose]], and to artificial sweeteners [[saccharin]], [[acesulfame potassium]], [[dulcin]], [[guanidinoacetic acid]].<ref name="Nelson2001"/>


== Signal transduction ==
== Signal transduction ==
Line 30: Line 30:
== Further reading ==
== Further reading ==
{{refbegin|35em}}
{{refbegin|35em}}
*{{cite journal | vauthors = Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS | title = The receptors and cells for mammalian taste. | journal = Nature | volume = 444 | issue = 7117 | pages = 288–94 | year = 2007 | pmid = 17108952 | doi = 10.1038/nature05401 }}
*{{cite journal | vauthors = Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS | title = The receptors and cells for mammalian taste. | journal = Nature | volume = 444 | issue = 7117 | pages = 288–94 | year = 2007 | pmid = 17108952 | doi = 10.1038/nature05401 | bibcode = 2006Natur.444..288C }}
*{{cite journal | vauthors = Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF | title = Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. | journal = Nat. Genet. | volume = 28 | issue = 1 | pages = 58–63 | year = 2001 | pmid = 11326277 | doi = 10.1038/88270 }}
*{{cite journal | vauthors = Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF | title = Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. | journal = Nat. Genet. | volume = 28 | issue = 1 | pages = 58–63 | year = 2001 | pmid = 11326277 | doi = 10.1038/88270 }}
*{{cite journal | vauthors = Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS | title = An amino-acid taste receptor. | journal = Nature | volume = 416 | issue = 6877 | pages = 199–202 | year = 2002 | pmid = 11894099 | doi = 10.1038/nature726 }}
*{{cite journal | vauthors = Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS | title = An amino-acid taste receptor. | journal = Nature | volume = 416 | issue = 6877 | pages = 199–202 | year = 2002 | pmid = 11894099 | doi = 10.1038/nature726 | bibcode = 2002Natur.416..199N }}
*{{cite journal | vauthors = Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E | title = Human receptors for sweet and umami taste. | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 99 | issue = 7 | pages = 4692–6 | year = 2002 | pmid = 11917125 | pmc = 123709 | doi = 10.1073/pnas.072090199 }}
*{{cite journal | vauthors = Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E | title = Human receptors for sweet and umami taste. | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 99 | issue = 7 | pages = 4692–6 | year = 2002 | pmid = 11917125 | pmc = 123709 | doi = 10.1073/pnas.072090199 | bibcode = 2002PNAS...99.4692L }}
*{{cite journal | vauthors = Spadaccini R, Trabucco F, Saviano G, Picone D, Crescenzi O, Tancredi T, Temussi PA | title = The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI. | journal = J. Mol. Biol. | volume = 328 | issue = 3 | pages = 683–92 | year = 2003 | pmid = 12706725 | doi = 10.1016/S0022-2836(03)00346-2 }}
*{{cite journal | vauthors = Spadaccini R, Trabucco F, Saviano G, Picone D, Crescenzi O, Tancredi T, Temussi PA | title = The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI. | journal = J. Mol. Biol. | volume = 328 | issue = 3 | pages = 683–92 | year = 2003 | pmid = 12706725 | doi = 10.1016/S0022-2836(03)00346-2 }}
*{{cite journal | vauthors = Ariyasu T, Matsumoto S, Kyono F, Hanaya T, Arai S, Ikeda M, Kurimoto M | title = Taste receptor T1R3 is an essential molecule for the cellular recognition of the disaccharide trehalose. | journal = In Vitro Cell. Dev. Biol. Anim. | volume = 39 | issue = 1-2 | pages = 80–8 | year = 2004 | pmid = 12892531 | doi = 10.1290/1543-706X(2003)039<0080:TRTIAE>2.0.CO;2 }}
*{{cite journal | vauthors = Ariyasu T, Matsumoto S, Kyono F, Hanaya T, Arai S, Ikeda M, Kurimoto M | title = Taste receptor T1R3 is an essential molecule for the cellular recognition of the disaccharide trehalose. | journal = In Vitro Cell. Dev. Biol. Anim. | volume = 39 | issue = 1-2 | pages = 80–8 | year = 2004 | pmid = 12892531 | doi = 10.1290/1543-706X(2003)039<0080:TRTIAE>2.0.CO;2 }}
*{{cite journal | vauthors = Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M | title = The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. | journal = J. Biol. Chem. | volume = 279 | issue = 43 | pages = 45068–75 | year = 2004 | pmid = 15299024 | doi = 10.1074/jbc.M406779200 }}
*{{cite journal | vauthors = Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M | title = The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. | journal = J. Biol. Chem. | volume = 279 | issue = 43 | pages = 45068–75 | year = 2004 | pmid = 15299024 | doi = 10.1074/jbc.M406779200 }}
*{{cite journal | vauthors = Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X | title = Different functional roles of T1R subunits in the heteromeric taste receptors. | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 101 | issue = 39 | pages = 14258–63 | year = 2005 | pmid = 15353592 | pmc = 521102 | doi = 10.1073/pnas.0404384101 }}
*{{cite journal | vauthors = Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X | title = Different functional roles of T1R subunits in the heteromeric taste receptors. | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 101 | issue = 39 | pages = 14258–63 | year = 2005 | pmid = 15353592 | pmc = 521102 | doi = 10.1073/pnas.0404384101 | bibcode = 2004PNAS..10114258X }}
*{{cite journal | author = Taniguchi K | title = Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. | journal = J. Vet. Med. Sci. | volume = 66 | issue = 11 | pages = 1311–4 | year = 2005 | pmid = 15585941 | doi = 10.1292/jvms.66.1311 }}
*{{cite journal | author = Taniguchi K | title = Expression of the sweet receptor protein, T1R3, in the human liver and pancreas. | journal = J. Vet. Med. Sci. | volume = 66 | issue = 11 | pages = 1311–4 | year = 2005 | pmid = 15585941 | doi = 10.1292/jvms.66.1311 }}
*{{cite journal | vauthors = Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M | title = Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. | journal = J. Biol. Chem. | volume = 280 | issue = 15 | pages = 15238–46 | year = 2005 | pmid = 15668251 | doi = 10.1074/jbc.M414287200 }}
*{{cite journal | vauthors = Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M | title = Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. | journal = J. Biol. Chem. | volume = 280 | issue = 15 | pages = 15238–46 | year = 2005 | pmid = 15668251 | doi = 10.1074/jbc.M414287200 }}
*{{cite journal | vauthors = Galindo-Cuspinera V, Winnig M, Bufe B, Meyerhof W, Breslin PA | title = A TAS1R receptor-based explanation of sweet 'water-taste'. | journal = Nature | volume = 441 | issue = 7091 | pages = 354–7 | year = 2006 | pmid = 16633339 | doi = 10.1038/nature04765 }}
*{{cite journal | vauthors = Galindo-Cuspinera V, Winnig M, Bufe B, Meyerhof W, Breslin PA | title = A TAS1R receptor-based explanation of sweet 'water-taste'. | journal = Nature | volume = 441 | issue = 7091 | pages = 354–7 | year = 2006 | pmid = 16633339 | doi = 10.1038/nature04765 | bibcode = 2006Natur.441..354G }}
*{{cite journal | vauthors = Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W | title = Members of RTP and REEP gene families influence functional bitter taste receptor expression. | journal = J. Biol. Chem. | volume = 281 | issue = 29 | pages = 20650–9 | year = 2006 | pmid = 16720576 | doi = 10.1074/jbc.M513637200 }}
*{{cite journal | vauthors = Behrens M, Bartelt J, Reichling C, Winnig M, Kuhn C, Meyerhof W | title = Members of RTP and REEP gene families influence functional bitter taste receptor expression. | journal = J. Biol. Chem. | volume = 281 | issue = 29 | pages = 20650–9 | year = 2006 | pmid = 16720576 | doi = 10.1074/jbc.M513637200 }}
*{{cite journal | vauthors = Koizumi A, Nakajima K, Asakura T, Morita Y, Ito K, Shmizu-Ibuka A, Misaka T, Abe K | title = Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. | journal = Biochem. Biophys. Res. Commun. | volume = 358 | issue = 2 | pages = 585–9 | year = 2007 | pmid = 17499612 | doi = 10.1016/j.bbrc.2007.04.171 }}
*{{cite journal | vauthors = Koizumi A, Nakajima K, Asakura T, Morita Y, Ito K, Shmizu-Ibuka A, Misaka T, Abe K | title = Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain. | journal = Biochem. Biophys. Res. Commun. | volume = 358 | issue = 2 | pages = 585–9 | year = 2007 | pmid = 17499612 | doi = 10.1016/j.bbrc.2007.04.171 }}
Line 47: Line 47:


== External links ==
== External links ==
* [http://www.genecards.org/cgi-bin/carddisp.pl?gene=TAS1R3 TAS1R3 Gene]
* [https://www.genecards.org/cgi-bin/carddisp.pl?gene=TAS1R3 TAS1R3 Gene]
* [http://omim.org/entry/605865 TASTE RECEPTOR TYPE 1, MEMBER 3; TAS1R3]
* [http://omim.org/entry/605865 TASTE RECEPTOR TYPE 1, MEMBER 3; TAS1R3]


Line 53: Line 53:
{{NLM content}}
{{NLM content}}


[[Category:G protein coupled receptors]]
[[Category:G protein-coupled receptors]]

Latest revision as of 18:01, 24 September 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Taste receptor type 1 member 3 is a protein that in humans is encoded by the TAS1R3 gene.[1][2] The TAS1R3 gene encodes the human homolog of mouse Sac taste receptor, a major determinant of differences between sweet-sensitive and -insensitive mouse strains in their responsiveness to sucrose, saccharin, and other sweeteners.[2][3]

Structure

The protein encoded by the TAS1R3 gene is a G protein-coupled receptor with seven trans-membrane domains and is a component of the heterodimeric amino acid taste receptor TAS1R1+3 and sweet taste receptor TAS1R2+3. This receptor is formed as a protein dimer with either TAS1R1 or TAS1R2.[4] Experiments have also shown that a homo-dimer of TAS1R3 is also sensitive to natural sugar substances. This has been hypothesized as the mechanism by which sugar substitutes do not have the same taste qualities as natural sugars.[5]

Ligands

The G protein-coupled receptors for sweet and umami taste are formed by dimers of the TAS1R proteins. The TAS1R1+3 taste receptor is sensitive to the glutamate in MSG as well as the synergistic taste-enhancer molecules inosine monophosphate (IMP) and guanosine monophosphate (GMP). These taste-enhancer molecules are unable to activate the receptor alone, but are rather used to enhance receptor responses many to L-amino acids.[6] The TAS1R2+3 receptor has been shown to respond to natural sugars sucrose and fructose, and to artificial sweeteners saccharin, acesulfame potassium, dulcin, guanidinoacetic acid.[4]

Signal transduction

TAS1R2 and TAS1R1 receptors have been shown to bind to G proteins, most often the gustducin Gα subunit, although a gusducin knock-out has shown small residual activity. TAS1R2 and TAS1R1 have also been shown to activate Gαo and Gαi protein subunits.[7] This suggests that TAS1R1 and TAS1R2 are G protein-coupled receptors that inhibit adenylyl cyclases to decrease cyclic guanosine monophosphate (cGMP) levels in taste receptors.[8] The TAS1R3 protein, however, has been shown in vitro to couple with Gα subunits at a much lower rate than the other TAS1R proteins. While the protein structures of the TAS1R proteins are similar, this experiment shows that the G protein-coupling properties of TAS1R3 may be less important in the transduction of taste signals than the TAS1R1 and TAS1R2 proteins.[7]

Location and innervation

TAS1R1+3 expressing cells are found in fungiform papillae at the tip and edges of the tongue and palate taste receptor cells in the roof of the mouth.[4] These cells are shown to synapse upon the chorda tympani nerves to send their signals to the brain.[6] TAS1R2+3 expressing cells are found in circumvallate papillae and foliate papillae near the back of the tongue and palate taste receptor cells in the roof of the mouth.[4] These cells are shown to synapse upon the glossopharyngeal nerves to send their signals to the brain.[9][10] TAS1R and TAS2R (bitter) channels are not expressed together in any taste buds.[4]

See also

References

  1. Montmayeur JP, Liberles SD, Matsunami H, Buck LB (Apr 2001). "A candidate taste receptor gene near a sweet taste locus". Nat Neurosci. 4 (5): 492–8. doi:10.1038/87440. PMID 11319557.
  2. 2.0 2.1 "Entrez Gene: TAS1R3 taste receptor, type 1, member 3".
  3. Bachmanov, Alexander A.; Li, Xia; Reed, Danielle R.; Ohmen, Jeffery D.; Li, Shanru; Chen, Zhenyu; Tordoff, Michael G.; de Jong, Pieter J.; Wu, Chenyan (2001). "Positional cloning of the mouse saccharin preference (Sac) locus". Chemical senses. 26 (7): 925–933. doi:10.1093/chemse/26.7.925. ISSN 0379-864X. PMC 3644801. PMID 11555487.
  4. 4.0 4.1 4.2 4.3 4.4 Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001). "Mammalian sweet taste receptors". Cell. 106 (3): 381–390. doi:10.1016/S0092-8674(01)00451-2. PMID 11509186.
  5. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003). "The receptors for mammalian sweet and umami taste". Cell. 115 (3): 255–266. doi:10.1016/S0092-8674(03)00844-4. PMID 14636554.
  6. 6.0 6.1 Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002). "An amino-acid taste receptor". Nature. 416 (6877): 199–202. Bibcode:2002Natur.416..199N. doi:10.1038/nature726. PMID 11894099.
  7. 7.0 7.1 Sainz E, Cavenagh MM, LopezJimenez ND, Gutierrez JC, Battey JF, Northup JK, Sullivan SL (2007). "The G-protein coupling properties of the human sweet and amino acid taste receptors". Developmental Neurobiology. 67 (7): 948–959. doi:10.1002/dneu.20403. PMID 17506496.
  8. Abaffy T, Trubey KR, Chaudhari N (2003). "Adenylyl cyclase expression and modulation of cAMP in rat taste cells". American Journal of Physiology. Cell Physiology. 284 (6): C1420–C1428. doi:10.1152/ajpcell.00556.2002. PMID 12606315.
  9. Beamis JF, Shapshay SM, Setzer S, Dumon JF (1989). "Teaching models for Nd:YAG laser bronchoscopy". Chest. 95 (6): 1316–1318. doi:10.1378/chest.95.6.1316. PMID 2721271.
  10. Danilova V, Hellekant G (2003). "Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice". BMC Neuroscience. 4: 5–6. doi:10.1186/1471-2202-4-5. PMC 153500. PMID 12617752.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.