Nifedipine

Jump to: navigation, search
Nifedipine
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Alonso Alvarado, M.D. [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Overview

Nifedipine is a calcium channel blocker, dihydropirydine calcium channel blocker that is FDA approved for the treatment of hypertension, vasospastic angina, stable angina. Common adverse reactions include hypotension, palpitations, peripheral edema, flushing, nausea, dizziness, headache, feeling nervous, cough, dyspnea.

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

Hypertension
  • Dosing Information
  • Dosage should be adjusted according to each patient’s needs. It is recommended that nifedipine extended-release tablets be administered orally once daily on an empty stomach. In general, titration should proceed over a 7 to 14 day period starting with 30 mg once daily. Upward titration should be based on therapeutic efficacy and safety. The usual maintenance dose is 30 mg to 60 mg once daily. Titration to doses above 90 mg daily is not recommended. If discontinuation of nifedipine is necessary, sound clinical practice suggests that the dosage should be decreased gradually with close physician supervision. Co-administration of nifedipine with grapefruit juice is to be avoided. Care should be taken when dispensing nifedipine to assure that the extended-release dosage form has been prescribed.
Vasospastic Angina
  • Dosing Information
  • Nifedipine is indicated for the management of vasospastic angina confirmed by any of the following criteria: 1) classical pattern of angina at rest accompanied by ST segment elevation, 2) angina or coronary artery spasm provoked by ergonovine, or 3) angiographically demonstrated coronary artery spasm. In those patients who have had angiography, the presence of significant fixed obstructive disease is not incompatible with the diagnosis of vasospastic angina, provided that the above criteria are satisfied. Nifedipine may also be used where the clinical presentation suggests a possible vasospastic component but where vasospasm has not been confirmed, e.g., where pain has a variable threshold on exertion or when angina is refractory to nitrates and/or adequate doses of beta-blockers.
Stable Angina
  • Dosing information
  • Nifedipine is indicated for the management of chronic stable angina (effort-associated angina) without evidence of vasospasm in patients who remain symptomatic despite adequate doses of beta-blockers and/or organic nitrates or who cannot tolerate those agents. In chronic stable angina (effort-associated angina) nifedipine has been effective in controlled trials of up to eight weeks duration in reducing angina frequency and increasing exercise tolerance, but confirmation of sustained effectiveness and evaluation of long-term safety in these patients are incomplete. Controlled studies in small numbers of patients suggest concomitant use of nifedipine and beta-blocking agents may be beneficial in patients with chronic stable angina, but available information is not sufficient to predict with confidence the effects of concurrent treatment, especially in patients with compromised left ventricular function or cardiac conduction abnormalities. When introducing such concomitant therapy, care must be taken to monitor blood pressure closely since severe hypotension can occur from the combined effects of the drugs.

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

Hypertension in Pregnancy
  • Developed by: American College of Obstetritians and Gynecologists (ACOG)
  • Class of Recommendation: Strong recommendation
  • Strength of Evidence: Moderate
  • Dosing Information/Recommendation
  • 10 to 20 mg PO q30m if necessary, continue treatment with 10-20 mg q2-6h.[1]

Non–Guideline-Supported Use

Autonomic Dysreflexia
  • Dosing Information
  • 10 mg PO/SL.[2]
Complication of Procedure Prophylaxis: Procedure on Heart Cardiovascular Complications
  • Dosing Information
  • IV infusion 10 mcg/kg/hour to a total of 24 hours, starting concomitantly with the extracorporeal circulation.[3]
Chilblains
  • Dosing Information
  • 60-80 mg/day.


Diffuse Spasm of the Esophagus
  • Dosing Information
  • 10 to 30 mg PO/SL q8h.[4]


Disorder of the Anus/Disorder of the Rectum
  • Dosing Information
  • Increased anal sphincter pressure: 20 mg.[5]
  • Acute anal fissures: 0.2% gel q12h.[6]
  • External thrombosed hemorroids: Nifedipine 0.3% + lidocaine 1.5% q12h.[7]
External Cephalic Version with Tocolysis
  • Dosing Information
  • 10 mg PO q30m to total of 3 doses.[8]
High Altitude Pulmonary Edema
  • Dosing Information
  • 20 mg at bedtime 2 and 3 days prior to the ascent, followed by 20 mg q8h through the ascent.[9]
Hypertension After Transplant
  • Dosing Information
  • Renal transplant: 10-40 mg PO q12h.[10][11]
  • Liver transplant: 10 mg/day.[12]
  • Bone marrow transplant: 10 mg PO q8h.[13]
Hypertrophic Cardiomyopathy
  • Dosing Information
Pulmonary Hypertension
  • Dosing Information
Raynaud's Phenomenon
  • Dosing Information
  • 10-20 mg PO q8h.[19]
Renovascular Hypertension
  • Dosing Information
  • 10 mg SL (administer immediately), followed by 30-40 mg/day (maintenance therapy).[20]
Ureteric Stone
  • Dosing Information

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

There is limited information regarding Nifedipine FDA-Labeled Indications and Dosage (Pediatric) in the drug label.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

There is limited information regarding Off-Label Guideline-Supported Use of Nifedipine in pediatric patients.

Non–Guideline-Supported Use

Diffuse Spasm of the Esophagus
  • Dosing Information
  • 10 mg PO q8h 10 to 15 minutes before meals.[22]
Renovascular Hypertension
  • Dosing Information

Contraindications

Warnings

Excessive Hypotension

Although, in most patients, the hypotensive effect of nifedipine is modest and well tolerated, occasional patients have had excessive and poorly tolerated hypotension. These responses have usually occurred during initial titration or at the time of subsequent upward dosage adjustment. Although patients have rarely experienced excessive hypotension on nifedipine alone, this may be more common in patients on concomitant beta blocker therapy. Although not approved for this purpose, nifedipine capsules have been used (orally and sublingually) for acute reduction of blood pressure. Several well-documented reports describe cases of profound hypotension, myocardial infarction, and death when immediate-release nifedipine was used in this way. Nifedipine capsules should not be used for the acute reduction of blood pressure.

Severe hypotension and/or increased fluid volume requirements have been reported in patients receiving nifedipine together with a beta-blocking agent who underwent coronary artery bypass surgery using high dose fentanyl anesthesia. The interaction with high dose fentanyl appears to be due to the combination of nifedipine and a beta blocker, but the possibility that it may occur with nifedipine alone, with low doses of fentanyl, in other surgical procedures, or with other narcotic analgesics cannot be ruled out. In nifedipine treated patients where surgery using high dose fentanyl anesthesia is contemplated, the physician should be aware of these potential problems and, if the patient's condition permits, sufficient time (at least 36 hours) should be allowed for nifedipine to be washed out of the body prior to surgery.

Increased Angina and/or Myocardial Infarction

Rarely, patients, particularly those who have severe obstructive coronary artery disease, have developed well documented increased frequency, duration, and/or severity of angina or acute myocardial infarction on starting nifedipine or at the time of dosage increase. The mechanism of this effect is not established.

Several well-controlled, randomized trials studied the use of immediate-release nifedipine in patients who had just sustained myocardial infarctions. In none of these trials did immediate-release nifedipine appear to provide any benefit. In some of the trials, patients who received immediate-release nifedipine had significantly worse outcomes than patients who received placebo. Nifedipine capsules should not be administered within the first week or two after myocardial infarction, and they should also be avoided in the setting of acute coronary syndrome (when infarction may be imminent).

Use in Essential Hypertension

Nifedipine and other immediate-release nifedipine capsules have also been used for the long-term control of essential hypertension, although nifedipine capsules have not been approved for this purpose and no properly controlled studies have been conducted to define an appropriate dose or dose interval for such treatment. Nifedipine capsules should not be used for the control of essential hypertension.

Beta Blocker Withdrawal

Patients recently withdrawn from beta-blockers may develop a withdrawal syndrome with increased angina, probably related to increased sensitivity to catecholamines. Initiation of nifedipine treatment will not prevent this occurrence and might be expected to exacerbate it by provoking reflex catecholamine release. There have been occasional reports of increased angina in a setting of beta blocker withdrawal and nifedipine initiation. It is important to taper beta blockers if possible, rather than stopping them abruptly before beginning nifedipine.

Congestive Heart Failure

Rarely, patients, usually those receiving a beta blocker, have developed heart failure after beginning nifedipine. Patients with tight aortic stenosis may be at greater risk for such an event, as the unloading effect of nifedipine would be expected to be of less benefit to these patients, owing to their fixed impedance to flow across the aortic valve.

Precausions

Hypotension

Because nifedipine decreases peripheral vascular resistance, careful monitoring of blood pressure during the initial administration and titration of nifedipine is suggested. Close observation is especially recommended for patients already taking medications that are known to lower blood pressure.

Peripheral Edema

Mild to moderate peripheral edema occurs in a dose dependent manner with an incidence ranging from approximately 10% to about 30% at the highest dose studied (180 mg). It is a localized phenomenon thought to be associated with vasodilation of dependent arterioles and small blood vessels and not due to left ventricular dysfunction or generalized fluid retention. With patients whose angina or hypertension is complicated by congestive heart failure, care should be taken to differentiate this peripheral edema from the effects of increasing left ventricular dysfunction.

Other

As with any other non-deformable material, caution should be used when administering nifedipine extended-release in patients with preexisting severe gastrointestinal narrowing (pathologic or iatrogenic). There have been rare reports of obstructive symptoms in patients with known strictures in association with the ingestion of nifedipine extended-release.


Laboratory Tests

Rare, usually transient, but occasionally significant elevations of enzymes such as alkaline phosphatase, CPK, LDH, SGOT and SGPT have been noted. The relationship to nifedipine therapy is uncertain in most cases, but probable in some. These laboratory abnormalities have rarely been associated with clinical symptoms; however, cholestasis with or without jaundicehas been reported. A small (5.4%) increase in mean alkaline phosphatase was noted in patients treated with nifedipine extended-release. This was an isolated finding not associated with clinical symptoms and it rarely resulted in values which fell outside the normal range. Rare instances of allergic hepatitis have been reported. In controlled studies, nifedipine extended-release did not adversely affect serum uric acid, glucose, or cholesterol. Serum potassium was unchanged in patients receiving nifedipine extended-release in the absence of concomitant diuretic therapy, and slightly decreased in patients receiving concomitant diuretics.

Nifedipine, like other calcium channel blockers, decreases platelet aggregation in vitro. Limited clinical studies have demonstrated a moderate but statistically significant decrease in platelet aggregation and an increase in bleeding time in some nifedipine patients. This is thought to be a function of inhibition of calcium transport across the platelet membrane. No clinical significance for these findings has been demonstrated.

Positive direct Coombs test with/without hemolytic anemia has been reported but a causal relationship between nifedipine administration and positivity of this laboratory test, including hemolysis, could not be determined.

Although nifedipine has been used safely in patients with renal dysfunction and has been reported to exert a beneficial effect, in certain cases, rare, reversible elevations in BUN and serum creatinine have been reported in patients with pre-existing chronic renal insufficiency. The relationship to nifedipine therapy is uncertain in most cases but probable in some.

Adverse Reactions

Clinical Trials Experience

Over 1000 patients from both controlled and open trials with nifedipine extended-release tablets in hypertension and angina were included in the evaluation of adverse experiences. All side effects reported during nifedipine extended-release tablet therapy were tabulated independent of their causal relation to medication. The most common side effect reported with nifedipine extended-release was edema which was dose related and ranged in frequency from approximately 10% to about 30% at the highest dose studied (180 mg). Other common adverse experiences reported in placebo-controlled trials include:

This image is provided by the National Library of Medicine.

Where the frequency of adverse events with nifedipine extended-release tablets and placebo is similar, causal relationship cannot be established. The following adverse events were reported with an incidence of 3% or less in daily doses up to 90 mg:

Other adverse events reported with an incidence of less than 1.0% were:

The following adverse events have been reported rarely in patients given nifedipine in coat core or other formulations: Allergenic hepatitis, alopecia, anaphylactic reaction, anemia, arthritis with ANA (+), depression, erythromelalgia, exfoliative dermatitis, fever, gingival hyperplasia, gynecomastia, hyperglycemia, jaundice, leukopenia, mood changes, muscle cramps, nervousness, paranoid syndrome, purpura, shakiness, sleep disturbances, Stevens-Johnson syndrome, syncope, taste perversion, thrombocytopenia, toxic epidermal necrolysis, transient blindness at the peak of plasma level, tremor and urticaria.

Postmarketing Experience

There is limited information regarding Nifedipine Postmarketing Experience in the drug label.

Drug Interactions

Beta-adrenergic blocking agents

Nifedipine is mainly eliminated by metabolism and is a substrate of CYP3A. Inhibitors and inducers of CYP3A4 can impact the exposure to nifedipine and consequently its desirable and undesirable effects. In vitro and in vivo data indicate that nifedipine can inhibit the metabolism of drugs that are substrates of CYP3A, thereby increasing the exposure to other drugs. Nifedipine is a vasodilator, and co-administration of other drugs affecting blood pressure may result in pharmacodynamic interactions.

Cardiovascular Drugs
Antiarrhythmics
  • Quinidine: Quinidine is a substrate of CYP3A and has been shown to inhibit CYP3A in vitro. Co-administration of multiple doses of quinidine sulfate, 200 mg t.i.d., and nifedipine, 20 mg t.i.d., increased Cmax and AUC of nifedipine in healthy volunteers by factors of 2.30 and 1.37, respectively. The heart rate in the initial interval after drug administration was increased by up to 17.9 beats/minute. The exposure to quinidine was not importantly changed in the presence of nifedipine. Monitoring of heart rate and adjustment of the nifedipine dose, if necessary, are recommended when quinidine is added to a treatment with nifedipine.
  • Flecainide: There has been too little experience with the co-administration of flecainide with nifedipine to recommend concomitant use.
Calcium Channel Blockers
  • Diltiazem: Pre-treatment of healthy volunteers with 30 mg or 90 mg t.i.d. diltiazem p.o. increased the AUC of nifedipine after a single dose of 20 mg nifedipine by factors of 2.2 and 3.1, respectively. The corresponding Cmax values of nifedipine increased by factors of 2.0 and 1.7, respectively. Caution should be exercised when co-administering diltiazem and nifedipine and a reduction of the dose of nifedipine should be considered.
  • Verapamil: Verapamil, a CYP3A inhibitor, can inhibit the metabolism of nifedipine and increase the exposure to nifedipine during concomitant therapy. Blood pressure should be monitored and reduction of the dose of nifedipine considered.
ACE Inhibitors
  • Benazepril: In healthy volunteers receiving single dose of 20 mg nifedipine ER and benazepril 20 mg, the plasma concentrations of benazeprilat and nifedipine in the presence and absence of each other were not statistically significantly different. A hypotensive effect was only seen after co-administration of the two drugs. The tachycardic effect of nifedipine was attenuated in the presence of benazepril.
Angiotensin-II Blockers
  • Irbesartan: In vitro studies show significant inhibition of the formation of oxidized irbesartan metabolites by nifedipine. However, in clinical studies, concomitant nifedipine had no effect on irbesartan pharmacokinetics.
  • Candesartan: No significant drug interaction has been reported in studies with candesartan cilexitil given together with nifedipine. Because candesartan is not significantly metabolized by the cytochrome P450 system and at therapeutic concentrations has no effect on cytochrome P450 enzymes, interactions with drugs that inhibit or are metabolized by those enzymes would not be expected.
Beta-blockers
Central Alpha1-Blockers
  • Doxazosin: Healthy volunteers participating in a multiple dose doxazosin-nifedipine interaction study received 2 mg doxazosin q.d. alone or combined with 20 mg nifedipine ER b.i.d. Co-administration of nifedipine resulted in a decrease in AUC and Cmax of doxazosin to 83% and 86% of the values in the absence of nifedipine, respectively. In the presence of doxazosin, AUC and Cmax of nifedipine were increased by factors of 1.13 and 1.23, respectively. Compared to nifedipine monotherapy, blood pressure was lower in the presence of doxazosin. Blood pressure should be monitored when doxazosin is co-administered with nifedipine, and dose reduction of nifedipine considered.
Digitalis
  • Digoxin: Since there have been isolated reports of patients with elevated digoxin levels, and there is a possible interaction between digoxin and nifedipine, it is recommended that digoxin levels be monitored when initiating, adjusting and discontinuing nifedipine extended-release tablets to avoid possible over- or under-digitalization.
Antithrombotics
  • Coumarins: There have been rare reports of increased prothrombin time in patients taking coumarin anticoagulants to whom nifedipine was administered. However, the relationship to nifedipine therapy is uncertain.
Platelet Aggregation Inhibitors
  • Clopidogrel: No clinically significant pharmacodynamic interactions were observed when clopidrogrel was co-administered with nifedipine.
  • Tirofiban: Co-administration of nifedipine did not alter the exposure to tirofiban importantly.
Non-Cardiovascular Drugs
Antifungal Drugs

Ketoconazole, itraconazole and fluconazole are CYP3A inhibitors and can inhibit the metabolism of nifedipine and increase the exposure to nifedipine during concomitant therapy. Blood pressure should be monitored and a dose reduction of nifedipine considered.

Antisecretory Drugs
  • Omeprazole: In healthy volunteers receiving a single dose of 10 mg nifedipine, AUC and Cmax of nifedipine after pretreatment with omeprazole 20 mg q.d. for 8 days were 1.26 and 0.87 times those after pre-treatment with placebo. Pretreatment with or co-administration of omeprazole did not impact the effect of nifedipine on blood pressure or heart rate. The impact of omeprazole on nifedipine is not likely to be of clinical relevance.
  • Pantoprazole: In healthy volunteers the exposure to neither drug was changed significantly in the presence of the other drug.
  • Ranitidine: Five studies in healthy volunteers investigated the impact of multiple ranitidine doses on the single or multiple dose pharmacokinetics of nifedipine. Two studies investigated the impact of coadministered ranitidine on blood pressure in hypertensive subjects on nifedipine. Co-administration of ranitidine did not have relevant effects on the exposure to nifedipine that affected the blood pressure or heart rate in normotensive or hypertensive subjects.
  • Cimetidine: Five studies in healthy volunteers investigated the impact of multiple cimetidine doses on the single or multiple dose pharmacokinetics of nifedipine. Two studies investigated the impact of coadministered cimetidine on blood pressure in hypertensive subjects on nifedipine. In normotensive subjects receiving single doses of 10 mg or multiple doses of up to 20 mg nifedipine t.i.d. alone or together with cimetidine up to 1000 mg/day, the AUC values of nifedipine in the presence of cimetidine were between 1.52 and 2.01 times those in the absence of cimetidine. The Cmax values of nifedipine in the presence of cimetidine were increased by factors ranging between 1.60 and 2.02. The increase in exposure to nifedipine by cimetidine was accompanied by relevant changes in blood pressure or heart rate in normotensive subjects. Hypertensive subjects receiving 10 mg q.d. nifedipine alone or in combination with cimetidine 1000 mg q.d. also experienced relevant changes in blood pressure when cimetidine was added to nifedipine. The interaction between cimetidine and nifedipine is of clinical relevance and blood pressure should be monitored and a reduction of the dose of nifedipine considered.
Antibacterial Drugs

Quinupristin/Dalfopristin: In vitro drug interaction studies have demonstrated that quinupristin/dalfopristin significantly inhibits the CYP3A metabolism of nifedipine. Concomitant administration of quinupristin/dalfopristin and nifedipine (repeated oral dose) in healthy volunteers increased AUC and Cmax for nifedipine by factors of 1.44 and 1.18, respectively, compared to nifedipine monotherapy. Upon co-administration of quinupristin/dalfopristin with nifedipine, blood pressure should be monitored and a reduction of the dose of nifedipine considered. Erythromycin: Erythromycin, a CYP3A inhibitor, can inhibit the metabolism of nifedipine and increase the exposure to nifedipine during concomitant therapy. Blood pressure should be monitored and reduction of the dose of nifedipine considered.

Antitubercular Drugs
  • Rifampin: Pretreatment of healthy volunteers with 600 mg/day rifampin p.o. decreased the exposure to oral nifedipine (20 μg/kg) to 13%. The exposure to intravenous nifedipine by the same rifampin treatment was decreased to 70%. Dose adjustment of nifedipine may be necessary if nifedipine is co-administered with rifampin.
  • Rifapentine: Rifapentine, as an inducer of CYP3A4, can decrease the exposure to nifedipine. A dose adjustment of nifedipine when co-administered with rifapentine should be considered.
Antiviral Drugs

Amprenavir, atanazavir, delavirine, fosamprinavir, indinavir, nelfinavir and ritonavir, as CYP3A inhibitors, can inhibit the metabolism of nifedipine and increase the exposure to nifedipine. Caution is warranted and clinical monitoring of patients recommended.

CNS Drugs
  • Nefazodone, a CYP3A inhibitor, can inhibit the metabolism of nifedipine and increase the exposure to nifedipine during concomitant therapy. Blood pressure should be monitored and a reduction of the dose of nifedipine considered.
  • Valproic acid may increase the exposure to nifedipine during concomitant therapy. Blood pressure should be monitored and a dose reduction of nifedipine considered.
  • Phenytoin: Nifedipine is metabolized by CYP3A4. Co-administration of nifedipine 10 mg capsule and 60 mg nifedipine coat-core tablet with phenytoin, an inducer of CYP3A4, lowered the AUC and Cmax of nifedipine by approximately 70%. When using nifedipine with phenytoin, the clinical response to nifedipine should be monitored and its dose adjusted if necessary.
  • Phenobarbitone and carbamazepine as inducers of CYP3A can decrease the exposure to nifedipine. Dose adjustment of nifedipine may be necessary if phenobarbitone, carbamazepine or phenytoin is coadministered.
Antiemetic Drugs
Immunosuppressive Drugs
  • Tacrolimus: Nifedipine has been shown to inhibit the metabolism of tacrolimus in vitro. Transplant patients on tacrolimus and nifedipine required from 26% to 38% smaller doses than patients not receiving nifedipine. Nifedipine can increase the exposure to tacrolimus. When nifedipine is co-administered with tacrolimus the blood concentrations of tacrolimus should be monitored and a reduction of the dose of tacrolimus considered.
  • Sirolimus: A single 60 mg dose of nifedipine and a single 10 mg dose of sirolimus oral solution were administered to 24 healthy volunteers. Clinically significant pharmacokinetic drug interactions were not observed.
Glucose Lowering Drugs
  • Pioglitazone: Co-administration of pioglitazone for 7 days with 30 mg nifedipine ER administered orally q.d. for 4 days to male and female volunteers resulted in least square mean (90% CI) values for unchanged nifedipine of 0.83 (0.73-0.95) for Cmax and 0.88 (0.80-0.96) for AUC relative to nifedipine monotherapy. In view of the high variability of nifedipine pharmacokinetics, the clinical significance of this finding is unknown.
  • Rosiglitazone: Co-administration of rosiglitazone (4 mg b.i.d.) was shown to have no clinically relevant effect on the pharmacokinetics of nifedipine.
  • Metformin: A single dose metformin-nifedipine interaction study in normal healthy volunteers demonstrated that co-administration of nifedipine increased plasma metformin Cmax and AUC by 20% and 9%, respectively, and increased the amount of metformin excreted in urine. Tmax and half-life were unaffected. Nifedipine appears to enhance the absorption of metformin.
  • Miglitol: No effect of miglitol was observed on the pharmacokinetics and pharmacodynamics of nifedipine.
  • Repaglinide: Co-administration of 10 mg nifedipine with a single dose of 2 mg repaglinide (after 4 days nifedipine 10 mg t.i.d. and repaglinide 2 mg t.i.d.) resulted in unchanged AUC and Cmax values for both drugs.
  • Acarbose: Nifedipine tends to produce hyperglycemia and may lead to loss of glucose control. If nifedipine is co-administered with acarbose, blood glucose levels should be monitored carefully and a dose adjustment of nifedipine considered.
Drugs Interfering with Food Absorption
  • Orlistat: In 17 normal-weight subjects receiving orlistat 120 mg t.i.d. for 6 days, orlistat did not alter the bioavailability of 60 mg nifedipine (extended-release tablets).
Dietary Supplements
  • Grapefruit Juice: In healthy volunteers, a single dose co-administration of 250 mL double strength grapefruit juice with 10 mg nifedipine increased AUC and Cmax by factors of 1.35 and 1.13, respectively. Ingestion of repeated doses of grapefruit juice (5 x 200 mL in 12 hours) after administration of 20 mg nifedipine ER increased AUC and Cmax of nifedipine by a factor of 2.0. Grapefruit juice should be avoided by patients on nifedipine. The intake of grapefruit juice should be stopped at least 3 days prior to initiating patients on nifedipine.
  • Herbals
  • St. John’s Wort: Is an inducer of CYP3A4 and may decrease the exposure to nifedipine. Dose adjustment of nifedipine may be necessary if St. John’s Wort is co-administered.

CYP2D6 Probe Drug

  • Debrisoquine: In healthy volunteers, pretreatment with nifedipine 20 mg t.i.d. for 5 days did not change the metabolic ratio of hydroxydebrisoquine to debrisoquine measured in urine after a single dose of 10 mg debrisoquine. Thus, it is improbable that nifedipine inhibits in vivo the metabolism of other drugs that are substrates of CYP2D6.

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA): C In rodents, rabbits and monkeys, nifedipine has been shown to have a variety of embryotoxic, placentotoxic and fetotoxic effects, including stunted fetuses (rats, mice and rabbits), digital anomalies (rats and rabbits), rib deformities (mice), cleft palate (mice), small placentas and underdeveloped chorionic villi (monkeys), embryonic and fetal deaths (rats, mice and rabbits), prolonged pregnancy (rats; not evaluated in other species), and decreased neonatal survival (rats; not evaluated in other species). On a mg/kg or mg/m2 basis, some of the doses associated with these various effects are higher than the maximum recommended human dose and some are lower, but all are within an order of magnitude of it.

The digital anomalies seen in nifedipine-exposed rabbit pups are strikingly similar to those seen in pups exposed to phenytoin, and these are in turn similar to the phalangeal deformities that are the most common malformation seen in human children with in utero exposure to phenytoin.

There are no adequate and well-controlled studies in pregnant women. Nifedipine should generally be avoided during pregnancy and used only if the potential benefit justifies the potential risk to the fetus.
Pregnancy Category (AUS): There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Nifedipine in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Nifedipine during labor and delivery.

Nursing Mothers

Nifedipine is excreted in human milk. Therefore, a decision should be made to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Pediatric Use

There is no FDA guidance on the use of Nifedipine in pediatric settings.

Geriatic Use

Although small pharmacokinetic studies have identified an increased half-life and increased Cmax and AUC, clinical studies of nifedipine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

Gender

There is no FDA guidance on the use of Nifedipine with respect to specific gender populations.

Race

There is no FDA guidance on the use of Nifedipine with respect to specific racial populations.

Renal Impairment

No studies have been performed with nifedipine extended release tablets in patients with renal failure; however, significant alterations in the pharmacokinetics of nifedipine immediate release capsules have not been reported in patients undergoing hemodialysis or chronic ambulatory peritoneal dialysis. Since the absorption of nifedipine could be modified by renal disease, caution should be exercised in treating such patients.

Hepatic Impairment

Because hepatic biotransformation is the predominant route for the disposition of nifedipine, its pharmacokinetics may be altered in patients with chronic liver disease. Nifedipine extended-release tablets have not been studied in patients with hepatic disease; however, in patients with hepatic impairment (liver cirrhosis) nifedipine has a longer elimination half-life and higher bioavailability than in healthy volunteers.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Nifedipine in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Nifedipine in patients who are immunocompromised.

Administration and Monitoring

Administration

Oral

Monitoring

Hypotension

Because nifedipine decreases peripheral vascular resistance, careful monitoring of blood pressure during the initial administration and titration of nifedipine is suggested. Close observation is especially recommended for patients already taking medications that are known to lower blood pressure.

IV Compatibility

There is limited information regarding the compatibility of Nifedipine and IV administrations.

Overdosage

Experience with nifedipine overdosage is limited. Symptoms associated with severe nifedipine overdosage include:

Generally, overdosage with nifedipine leading to pronounced hypotension calls for active cardiovascular support including monitoring of cardiovascular and respiratory function, elevation of extremities, judicious use of calcium infusion, pressor agents and fluids. Clearance of nifedipine would be expected to be prolonged in patients with impaired liver function. Since nifedipine is highly protein bound, dialysis is not likely to be of any benefit; however, plasmapheresis may be beneficial.

There has been one reported case of massive overdosage with tablets of another extended-release formulation of nifedipine. The main effects of ingestion of approximately 4800 mg of nifedipine in a young man attempting suicide as a result of cocaine-induced depression was initial dizziness, palpitations, flushing, and nervousness. Within several hours of ingestion, nausea, vomiting, and generalized edema developed. No significant hypotension was apparent at presentation, 18 hours post ingestion. Blood chemistry abnormalities consisted of a mild, transient elevation of serum creatinine, and modest elevations of LDH and CPK, but normal SGOT. Vital signs remained stable, no electrocardiographic abnormalities were noted and renal function returned to normal within 24 to 48 hours with routine supportive measures alone. No prolonged sequelae were observed.

The effect of a single 900 mg ingestion of nifedipine capsules in a depressed anginal patient on tricyclic antidepressants was loss of consciousness within 30 minutes of ingestion, and profound hypotension, which responded to calcium infusion, pressor agents, and fluid replacement. A variety of ECG abnormalities were seen in this patient with a history of bundle branch block, including sinus bradycardia and varying degrees of AV block. These dictated the prophylactic placement of a temporary ventricular pacemaker, but otherwise resolved spontaneously. Significant hyperglycemia was seen initially in this patient, but plasma glucose levels rapidly normalized without further treatment. A young hypertensive patient with advanced renal failure ingested 280 mg of nifedipine capsules at one time, with resulting marked hypotension responding to calcium infusion and fluids. No AV conduction abnormalities, arrhythmias, or pronounced changes in heart rate were noted, nor was there any further deterioration in renal function.

Pharmacology

Nife1.jpg
Nifedipine
Systematic (IUPAC) name
3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate
Identifiers
CAS number 21829-25-4
ATC code C08CA05
PubChem 4485
DrugBank DB01115
Chemical data
Formula C17H18N2O6 
Mol. mass 346.335 g/mol
SMILES eMolecules & PubChem
Physical data
Melt. point 173 °C (343 °F)
Pharmacokinetic data
Bioavailability 45-56%
Protein binding 92-98%
Metabolism Gastrointestinal, Hepatic
Half life 2 hours
Excretion Renal: >50%, Biliary: 5-15%
Therapeutic considerations
Pregnancy cat.

C: (USA)

Legal status
Routes Oral

Mechanism of Action

The mechanism by which nifedipine reduces arterial blood pressure involves peripheral arterial vasodilatation and, consequently, a reduction in peripheral vascular resistance. The increased peripheral vascular resistance that is an underlying cause of hypertension results from an increase in active tension in the vascular smooth muscle. Studies have demonstrated that the increase in active tension reflects an increase in cytosolic free calcium.

Nifedipine is a peripheral arterial vasodilator which acts directly on vascular smooth muscle. The binding of nifedipine to voltage-dependent and possibly receptor-operated channels in vascular smooth muscle results in an inhibition of calcium influx through these channels. Stores of intracellular calcium in vascular smooth muscle are limited and thus dependent upon the influx of extracellular calcium for contraction to occur. The reduction in calcium influx by nifedipine causes arterial vasodilation and decreased peripheral vascular resistance which results in reduced arterial blood pressure.

Structure

Nifedipine is an extended release tablet dosage form of the calcium channel blocker nifedipine. Nifedipine is 3,5-pyridinedicarboxylic acid, 1,4-dihydro-2,6-dimethyl-4-(2- nitrophenyl)-dimethyl ester, C17H18N2O6, and has the structural formula:

This image is provided by the National Library of Medicine.

Nifedipine is a yellow crystalline substance, practically insoluble in water but soluble in ethanol. It has a molecular weight of 346.3.

Nifedipine tablets contain either 30 mg or 60 mg of nifedipine for once-a-day oral administration.

Each tablet also contains the following inactive ingredients: colloidal silicon dioxide, hypromellose, lactose monohydrate (60 mg), magnesium stearate, and microcrystalline cellulose (30 mg). The inert ingredients in the film coating are: hypromellose, iron oxide, polyethylene glycol, and titanium dioxide. The ingredients of the printing ink are: ammonium hydroxide, iron oxide black, isopropyl alcohol, n-butyl alcohol, propylene glycol and shellac.

Pharmacodynamics

Nifedipine is a calcium ion influx inhibitor (slow-channel blocker or calcium ion antagonist) which inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac muscle. The contractile processes of vascular smooth muscle and cardiac muscle are dependent upon the movement of extracellular calcium ions into these cells through specific ion channels. Nifedipine selectively inhibits calcium ion influx across the cell membrane of vascular smooth muscle and cardiac muscle without altering serum calcium concentrations.

Pharmacokinetics

Nifedipine is completely absorbed after oral administration. The bioavailability of nifedipine as extended release relative to immediate release nifedipine is in the range of 84%-89%. After ingestion of nifedipine tablets under fasting conditions, plasma concentrations peak at about 2.5-5 hours with a second small peak or shoulder evident at approximately 6-12 hours post dose. The elimination half-life of nifedipine administered as nifedipine is approximately 7 hours in contrast to the known 2 hour elimination half-life of nifedipine administered as an immediate release capsule.

When nifedipine is administered as multiples of 30 mg tablets over a dose range of 30 mg to 90 mg, the area under the curve (AUC) is dose proportional: however, the peak plasma concentration for the 90 mg dose given as 3 x 30 mg is 29% greater than predicted from the 30 mg and 60 mg doses.

Two 30 mg nifedipine tablets may be interchanged with a 60 mg nifedipine CR tablet. Three 30 mg nifedipine tablets, however, result in substantially higher Cmax values than those after a single 90 mg nifedipine tablet. Three 30 mg tablets should, therefore, not be considered interchangeable with a 90 mg tablet.

Once daily dosing of nifedipine extended-release tablets under fasting conditions results in decreased fluctuations in the plasma concentration of nifedipine when compared to t.i.d. dosing with immediate-release nifedipine capsules. The mean peak plasma concentration of nifedipine following a 90 mg nifedipine extended-release tablets, administered under fasting conditions, is approximately 115 ng/mL. When nifedipine extended-release tablets is given immediately after a high fat meal in healthy volunteers, there is an average increase of 60% in the peak plasma nifedipine concentration, a prolongation in the time to peak concentration, but no significant change in the AUC. Plasma concentrations of nifedipine when nifedipine extended-release tablets is taken after a fatty meal result in slightly lower peaks compared to the same daily dose of the immediate release formulation administered in three divided doses. This may be, in part, because nifedipine extended-release tablets are less bioavailable than the immediate release formulation.

Nifedipine is extensively metabolized to highly water soluble, inactive metabolites accounting for 60% to 80% of the dose excreted in the urine. Only traces (less than 0.1% of the dose) of the unchanged form can be detected in the urine. The remainder is excreted in the feces in metabolized form, most likely as a result of biliary excretion.

No studies have been performed with nifedipine extended release tablets in patients with renal failure; however, significant alterations in the pharmacokinetics of nifedipine immediate release capsules have not been reported in patients undergoing hemodialysis or chronic ambulatory peritoneal dialysis. Since the absorption of nifedipine from nifedipine could be modified by renal disease, caution should be exercised in treating such patients.

Because hepatic biotransformation is the predominant route for the disposition of nifedipine, its pharmacokinetics may be altered in patients with chronic liver disease. Nifedipine extended-release tablets have not been studied in patients with hepatic disease; however, in patients with hepatic impairment (liver cirrhosis) nifedipine has a longer elimination half-life and higher bioavailability than in healthy volunteers. The degree of protein binding of nifedipine is high (92%- 98%). Protein binding may be greatly reduced in patients with renal or hepatic impairment.

After administration of nifedipine extended-release tablets to healthy elderly men and women (age > 60 years), the mean Cmax is 36% higher and the average plasma concentration is 70% greater than in younger patients.

In healthy subjects, the elimination half-life of a different sustained release nifedipine formulation was longer in elderly subjects (6.7 h) compared to young subjects (3.8 h) following oral administration. A decreased clearance was also observed in the elderly (348 mL/min) compared to young subjects (519 mL/min) following intravenous administration. Co-administration of nifedipine with grapefruit juice results in up to a 2-fold increase in AUC and Cmax, due to inhibition of CYP3A4 related first-pass metabolism.

Nonclinical Toxicology

Nifedipine was administered orally to rats for two years and was not shown to be carcinogenic. When given to rats prior to mating, nifedipine caused reduced fertility at a dose approximately 30 times the maximum recommended human dose. There is a literature report of reversible reduction in the ability of human sperm obtained from a limited number of infertile men taking recommended doses of nifedipine to bind to and fertilize an ovum in vitro. In vivo mutagenicity studies were negative.

Clinical Studies

Nifedipine extended-release tablets produced dose-related decreases in systolic blood pressure and diastolic blood pressure as demonstrated in two double-blind, randomized, placebo-controlled trials in which over 350 patients were treated with nifedipine extended-release tablets 30, 60 or 90 mg once daily for 6 weeks. In the first study, nifedipine extended-release tablets was given as monotherapy and in the second study, nifedipine extended-release tablets was added to a beta-blocker in patients not controlled on a beta-blocker alone. The mean trough (24 hours post-dose) blood pressure results from these studies are shown below:

This image is provided by the National Library of Medicine.

The trough/peak ratios estimated from 24 hour blood pressure monitoring ranged from 41%-78% for diastolic and 46%-91% for systolic blood pressure.

Hemodynamics

Like other slow-channel blockers, nifedipine exerts a negative inotropic effect on isolated myocardial tissue. This is rarely, if ever, seen in intact animals or man, probably because of reflex responses to its vasodilating effects. In man, nifedipine decreases peripheral vascular resistance which leads to a fall in systolic and diastolic pressures, usually minimal in normotensive volunteers (less than 5 to 10 mm Hg systolic), but sometimes larger. With nifedipine extended-release tablets, these decreases in blood pressure are not accompanied by any significant change in heart rate. Hemodynamic studies of the immediate release nifedipine formulation in patients with normal ventricular function have generally found a small increase in cardiac index without major effects on ejection fraction, left ventricular end-diastolic pressure (LVEDP) or volume (LVEDV). In patients with impaired ventricular function, most acute studies have shown some increase in ejection fraction and reduction in left ventricular filling pressure.

Electrophysiologic Effects

Although, like other members of its class, nifedipine causes a slight depression of sinoatrial node function and atrioventricular conduction in isolated myocardial preparations, such effects have not been seen in studies in intact animals or in man. In formal electro-physiologic studies, predominantly in patients with normal conduction systems, nifedipine administered as the immediate release capsule has had no tendency to prolong atrioventricular conduction or sinus node recovery time, or to slow sinus rate.

How Supplied

Extended Release Tablets
  • Afeditab® CR, 30 mg, is available as round, brownish-red, film-coated, unscored tablets, imprinted with ELN 30, and are supplied in bottles of 100 and 500.
  • Afeditab® CR, 60 mg, is available as round, brownish-red, film-coated, unscored tablets, imprinted with ELN 60, and are supplied in bottles of 100 and 500.

Storage

Extended Release Tablets
  • The tablets should be protected from light and moisture and stored below 30°C (86°F). Dispense in tight, light resistant containers as defined in USP/NF.

Images

Drug Images

Package and Label Display Panel

Nife4.jpg
Nife5.jpg
NifedipineER1.png
This image of the FDA label is provided by the National Library of Medicine.
NifedipineER2.png
This image of the FDA label is provided by the National Library of Medicine.

Patient Counseling Information

(Patient Counseling Information)

Precautions with Alcohol

Alcohol-Nifedipine interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

  • Adalat CC
  • Procardia
  • Procardia XL
  • Afeditab CR
  • Nifediac CC
  • Nifedical XL

Look-Alike Drug Names

  • Nifedipine - Nicardipine
  • Nifedipine - Nimodipine
  • Procardia XL - Protain XL

Drug Shortage Status

Drug Shortage

Price

References

The contents of this FDA label are provided by the National Library of Medicine.

  1. LastName, FirstName (2013). Hypertension in pregnancy. Washington, DC: American College of Obstetricians and Gynecologists. ISBN 978-1-934984-28-4.
  2. Braddom RL, Rocco JF (1991). "Autonomic dysreflexia. A survey of current treatment". Am J Phys Med Rehabil. 70 (5): 234–41. PMID 1910647.
  3. Seitelberger R, Zwölfer W, Huber S, Schwarzacher S, Binder TM, Peschl F; et al. (1991). "Nifedipine reduces the incidence of myocardial infarction and transient ischemia in patients undergoing coronary bypass grafting". Circulation. 83 (2): 460–8. PMID 1899365.
  4. Bassotti G, Annese V (1999). "Review article: pharmacological options in achalasia". Aliment Pharmacol Ther. 13 (11): 1391–6. PMID 10571593.
  5. Chrysos E, Xynos E, Tzovaras G, Zoras OJ, Tsiaoussis J, Vassilakis SJ (1996). "Effect of nifedipine on rectoanal motility". Dis Colon Rectum. 39 (2): 212–6. PMID 8620790.
  6. Antropoli C, Perrotti P, Rubino M, Martino A, De Stefano G, Migliore G; et al. (1999). "Nifedipine for local use in conservative treatment of anal fissures: preliminary results of a multicenter study". Dis Colon Rectum. 42 (8): 1011–5. PMID 10458123.
  7. Perrotti P, Antropoli C, Molino D, De Stefano G, Antropoli M (2001). "Conservative treatment of acute thrombosed external hemorrhoids with topical nifedipine". Dis Colon Rectum. 44 (3): 405–9. PMID 11289288.
  8. Salim R, Zafran N, Nachum Z, Edelstein S, Shalev E (2008). "Employing nifedipine as a tocolytic agent prior to external cephalic version". Acta Obstet Gynecol Scand. 87 (4): 434–7. doi:10.1080/00016340801996598. PMID 18382870.
  9. Bärtsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O (1991). "Prevention of high-altitude pulmonary edema by nifedipine". N Engl J Med. 325 (18): 1284–9. doi:10.1056/NEJM199110313251805. PMID 1922223.
  10. Morales JM, Andres A, Rodriguez Paternina E, Alcazar JM, Montoyo C, Rodicio JL (1992). "Calcium antagonist therapy prevents chronic cyclosporine nephrotoxicity after renal transplantation: a prospective study". Transplant Proc. 24 (1): 89–91. PMID 1347185.
  11. Mehrens T, Thiele S, Suwelack B, Kempkes M, Hohage H (2000). "The beneficial effects of calcium channel blockers on long-term kidney transplant survival are independent of blood-pressure reduction". Clin Transplant. 14 (3): 257–61. PMID 10831086.
  12. Seifeldin R, Marcos-Alvarez A, Lewis WD, Gordon FD, Jenkins RL (1996). "Effect of nifedipine on renal function in liver transplant recipients receiving tacrolimus". Clin Ther. 18 (3): 491–6. PMID 8829025.
  13. Liesveld J, Duerst R, Rapoport A, Constine L, Abboud C, Packman C; et al. (1999). "Continuous infusion cyclosporine and nifedipine to day +100 with short methotrexate and steroids as GVHD prophylaxis in unrelated donor transplants". Bone Marrow Transplant. 24 (5): 511–6. doi:10.1038/sj.bmt.1701947. PMID 10482935.
  14. Chatterjee K (1987). "Calcium antagonist agents in hypertrophic cardiomyopathy". Am J Cardiol. 59 (3): 146B–152B. PMID 3812266.
  15. Miller AB, Conetta DA, Bass TA (1985). "Sublingual nifedipine: acute effects in severe chronic congestive heart failure secondary to idiopathic dilated cardiomyopathy". Am J Cardiol. 55 (11): 1359–62. PMID 3993570.
  16. Fioretti P, Benussi B, Klugmann S, Camerini F (1983). "Acute hemodynamic effects of nifedipine at rest and during stress in severe aortic incompetence". Eur Heart J. 4 (2): 110–6. PMID 6852065.
  17. Singh H, Ebejer MJ, Higgins DA, Henderson AH, Campbell IA (1985). "Acute haemodynamic effects of nifedipine at rest and during maximal exercise in patients with chronic cor pulmonale". Thorax. 40 (12): 910–4. PMC 460225. PMID 4095671.
  18. Simonneau G, Escourrou P, Duroux P, Lockhart A (1981). "Inhibition of hypoxic pulmonary vasoconstriction by nifedipine". N Engl J Med. 304 (26): 1582–5. doi:10.1056/NEJM198106253042606. PMID 7231503.
  19. Belch JJ, Ho M (1996). "Pharmacotherapy of Raynaud's phenomenon". Drugs. 52 (5): 682–95. PMID 9118818.
  20. Eliahou HE, Iaina A, Schneider R, Cohen D, Goldfarb D, Gross M (1982). "Treatment of hypertension in dialysis and essential hypertension patients with nifedipine". Clin Exp Dial Apheresis. 6 (4): 229–36. PMID 7182089.
  21. Baggio B, Gambaro G, Marchini F, Cicerello E, Borsatti A (1986). "Effect of nifedipine on urinary calcium and oxalate excretion in renal stone formers". Nephron. 43 (3): 234–5. PMID 3724934.
  22. Maksimak M, Perlmutter DH, Winter HS (1986). "The use of nifedipine for the treatment of achalasia in children". J Pediatr Gastroenterol Nutr. 5 (6): 883–6. PMID 3794905.
  23. Evans JH, Shaw NJ, Brocklebank JT (1988). "Sublingual nifedipine in acute severe hypertension". Arch Dis Child. 63 (8): 975–7. PMC 1778952. PMID 3270332.

Linked-in.jpg