EKG interpretation basics

Jump to: navigation, search
300px-ECG principle slow.gif

WikiDoc Resources for

EKG interpretation basics

Articles

Most recent articles on EKG interpretation basics

Most cited articles on EKG interpretation basics

Review articles on EKG interpretation basics

Articles on EKG interpretation basics in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on EKG interpretation basics

Images of EKG interpretation basics

Photos of EKG interpretation basics

Podcasts & MP3s on EKG interpretation basics

Videos on EKG interpretation basics

Evidence Based Medicine

Cochrane Collaboration on EKG interpretation basics

Bandolier on EKG interpretation basics

TRIP on EKG interpretation basics

Clinical Trials

Ongoing Trials on EKG interpretation basics at Clinical Trials.gov

Trial results on EKG interpretation basics

Clinical Trials on EKG interpretation basics at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on EKG interpretation basics

NICE Guidance on EKG interpretation basics

NHS PRODIGY Guidance

FDA on EKG interpretation basics

CDC on EKG interpretation basics

Books

Books on EKG interpretation basics

News

EKG interpretation basics in the news

Be alerted to news on EKG interpretation basics

News trends on EKG interpretation basics

Commentary

Blogs on EKG interpretation basics

Definitions

Definitions of EKG interpretation basics

Patient Resources / Community

Patient resources on EKG interpretation basics

Discussion groups on EKG interpretation basics

Patient Handouts on EKG interpretation basics

Directions to Hospitals Treating EKG interpretation basics

Risk calculators and risk factors for EKG interpretation basics

Healthcare Provider Resources

Symptoms of EKG interpretation basics

Causes & Risk Factors for EKG interpretation basics

Diagnostic studies for EKG interpretation basics

Treatment of EKG interpretation basics

Continuing Medical Education (CME)

CME Programs on EKG interpretation basics

International

EKG interpretation basics en Espanol

EKG interpretation basics en Francais

Business

EKG interpretation basics in the Marketplace

Patents on EKG interpretation basics

Experimental / Informatics

List of terms related to EKG interpretation basics

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]


See also Electrocardiogram

How do I begin to read an ECG?

Where do you start when interpreting an ECG?

  • on the top left are the patient's information, name, sex and date of birth
  • at the right of that are below each other the Frequency, the conduction times (PQ,QRS,QT/QTc), and the heart axis (P-top axis, QRS axis and T-top axis)
  • further to the right is the interpretation of the ECG written (this often misses in a 'fresh' ECG, but later the interpretation of the cardiologist or computer will be added)
  • down left is the 'paper speed' (25 mm/s on the horizontal axis), the sensitivity (10mm/mV) and the filter's frequency (40Hz, filters noise from eg. lights)
  • finally there is a calibration on the ECG, on the beginning of every lead is a vertical block that shows with what amplitude a 1 mV signal is drawn. So the height and depth of these signals are a measurement for the voltage. If this is not the set at 10 mm, there is something wrong with the machine setting.
  • further we have the ECG leads themselves of course, these will be discussed below.

Note that the lay-out is different for every machine, but most machines will show the information above somewhere.

What does the ECG register?

The ECG is a registration of the heart's electric activity.

Just like skeletal muscles, the heart is electrically stimulated to contract. This stimulation is also called activation or excitation. Cardiac muscles are electrically charged at rest. The inside of the cell is negatively charged relative to the outside (resting potential). If the cardiac muscle cells are electrically stimulated they depolarize (the resting potential changes from negative to positive) and contract.

As the impulse spreads through the heart, the electric field changes continually in size and direction. The ECG is a graphical visualization of these electric signals in the heart.

Normal sinus rhythm

The ECG represents the sum of the action potentials of millions of cardiomyocytes

The individual action potentials of the individual cardiomyocytes are averaged. The final result which is shown on the ECG is actually the average of trillions of microscopic electronic signals.

The electric discharge of the heart

The sinoatrial node (SA node) contains pacemaker cells which determine the heart frequency. First the atria depolarize and contract, after that the ventricles The electrical signal between the atria and the ventricles goes from the sinus node, via the atria to the AV-node (atrioventricular transition) to the His bundle and subsequently to the right and left bundle branch, which end in a dense network of Purkinje fibers.

Conduction system en.png


The different ECG waves

The P wave is the result of the atrial depolarization. This depolarization starts in the SA (sino-atrial) node. The signal produces by pacemakercells in the SA node is conducted by the conduction system to the right and left atria. Normal atrial repolarisation is not visible on the ECG (but can be visible during atrial infarction and pericarditis).

The QRS complex is the average of the depolarization waves of the inner (endocardial) and outer (epicardial) cardiomyocytes. As the endocardial cardiomyocytes depolarize slightly earlier than the outer layers, a typical QRS pattern occurs (figure).

The T wave represents the repolarisation of the ventricles. There is no cardiac muscle activity during the T wave.

One heart beat consists of an atrial depolarization --> atrial contraction --> p-wave, ventricular depolarization --> ventricular contraction --> ORS-complex and the resting phase (including the repolarization during the T-wave) between two heart beats.

Have a look at this excellent [animation of the heart cycle]

The origin of the U wave is unknown. This wave possibly results from "after depolarizations" of the ventricles.

The letters "Q", "R" and "S" are used to describe the QRS complex:

  • Q: the first negative deflection after the p-wave. If the first deflection is not negative, the Q is absent.
  • R: the positive deflection
  • S: the negative deflection after the R-wave
  • small print letters (q, r, s) are used to describe deflections of small amplitude. For example: qRS = small q, tall R, deep S.
  • R`: is used to describe a second R-wave (as in a right bundle branch block)

The ECG electrodes

Electric activity going through the heart, can be measured by external (skin)electrodes. The electrocardiogram (ECG) registers these activities from these electrodes which have been attached on diffrent places on the body. In total, twelve leads are calculated using ten electrodes.

The ten electrodes are:

  • the extremity electrodes:
    • LA - left arm
    • RA - right arm
    • N - neutral, on the right leg (= electrisch aarde of nulpunt ten opzichte waarvan de electrische spanning wordt gemeten)
    • F - foot, on the left leg

It makes no difference whether the electrodes are attached proximal or distal on the extremities. However, it is best to be uniform in this. (eg. do not attach an electrode on the left shoulder and one on the right wrist).

The limb leads


  • the chest electrodes:
    • V1 - placed in the 4th intercostal space, right of the sternum
    • V2 - placed in the 4th intercostal space, left of the sternum
    • V3 - placed between V2 and V4
    • V4 - placed 5th intercostal space in the nippleline. Official recommendations are to place V4 under the breast in women.Kligfield
    • V5 - placed between V4 and V6
    • V6 - placed in the midaxillary line on the same height as V4 (horizontal line from V4, so not necessarily in the 5th intercostal space)

Using these 10 electrodes, 12 leads can be derived. There are 6 extremity leads and 6 precordial leads.

The Extremity Leads

The extremity leads are:

  • I from the right to the left arm
  • II from the right arm to the left leg
  • III from the left arm to the left leg

An easy rule to remember: lead I + lead III = lead II This is done with the use of the height or depth, independent of the wave (QRS, P of T). Example: if in lead I, the QrS complex is 3 mm in height and in lead III 9mm, the height of the QRS-complex in lead II is 12mm.

Other extremity leads are:

  • AVL points to the left arm
  • AVR points to the right arm
  • AVF points to the feet

The capital A stands for "augmented" and V for "voltage".

(aVR + aVL + aVF = 0)

ECGafleidingen.jpg

The Chest Leads

The precordial, or chest leads, (V1,V2,V3,V4,V5 and V6) 'observe' the depolarization wave in the frontal plane

The chest leads


Example: V1 is close to the right ventricle and the right atrium. Signals in these areas of the heart have the largest signal in this lead. V6 is the closest to the lateral wall of the left ventricle.

Special Leads

In case of an inferior wall infarct, extra leads may be used:

  1. In a right side ECG, V1 and V2 remain on the same place.V3 to V6 are placed on the same place but mirrored on the chest. So V4 is in the middle of the right clavicle. On the ECG it should be marked that it is a Right sided ECG. V4R (V4 but right sided) is a sensitive lead to diagnose right ventricular infarction.
  2. Leads V7-V8-V9 can be used to diagnose a posteriorinfarct. It is means that after V6, leads are placed towards the back. See the chapterIschemia for other ways of diagnosing posterior infarction.
Leads V7,V8 and V9 can be helpful in the diagnosis of posterior myocardial infarction


References

  1. Dubois Du Bois-Reymond, E. Untersuchungen über thierische Elektricität. Reimer, Berlin: 1848.
  2. Hoffa Hoffa M, Ludwig C. 1850. Einige neue versuche uber herzbewegung. Zeitschrift Rationelle Medizin, 9: 107-144
  3. Waller Waller AD. A demonstration on man of electromotive changes accompanying the heart's beat. J Physiol (London) 1887;8:229-234
  4. Einthoven Einthoven W. Le telecardiogramme. Arch Int de Physiol 1906;4:132-164
  5. Einthoven2 Einthoven W. Über die Form des menschlichen Electrocardiogramms. Pfügers Archiv maart 1895, pagina 101-123
  6. Marey Marey EJ. Des variations electriques des muscles et du couer en particulier etudies au moyen de l'electrometre de M Lippman. Compres Rendus Hebdomadaires des Seances de l'Acadamie des sciences 1876;82:975-977
  7. Marquez PMID 12177632
  8. Hurst PMID 9799216
  9. Naming of the Waves in the ECG, With a Brief Account of Their Genesis
  10. Kligfield PMID 17322457

Additional resources



Navigation WikiDoc | WikiPatient | Up To Date Pages | Recently Edited Pages | Recently Added Pictures

Table of Contents In Alphabetical Order | By Individual Diseases | Signs and Symptoms | Physical Examination | Lab Tests | Drugs

Editor Tools Become an Editor | Editors Help Menu | Create a Page | Edit a Page | Upload a Picture or File | Printable version | Permanent link | Maintain Pages | What Pages Link Here
There is no pharmaceutical or device industry support for this site and we need your viewer supported Donations | Editorial Board | Governance | Licensing | Disclaimers | Avoid Plagiarism | Policies
Linked-in.jpg