KCNC3: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{SIB}} + & -{{EH}} + & -{{EJ}} + & -{{Editor Help}} + & -{{Editor Join}} +))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
{{protein
{{Infobox_gene}}
|name=potassium voltage-gated channel, Shaw-related subfamily, member 3
|caption=
|image=
|width=
|HGNCid=6235
|Symbol=KCNC3
|AltSymbols=SCA13
|EntrezGene=3748
|OMIM=176264
|RefSeq=NM_004977
|UniProt=
|PDB=
|ECnumber=
|Chromosome=19
|Arm=q
|Band=13.33
|LocusSupplementaryData=
}}
{{SI}}


'''Potassium voltage-gated channel, Shaw-related subfamily, member 3''' also known as '''KCNC3''' or '''K<sub>v</sub>3.3''' is a protein that in humans is encoded by the ''KCNC3''.<ref name="pmid1740329">{{cite journal | vauthors = Ghanshani S, Pak M, McPherson JD, Strong M, Dethlefs B, Wasmuth JJ, Salkoff L, Gutman GA, Chandy KG | title = Genomic organization, nucleotide sequence, and cellular distribution of a Shaw-related potassium channel gene, Kv3.3, and mapping of Kv3.3 and Kv3.4 to human chromosomes 19 and 1 | journal = Genomics | volume = 12 | issue = 2 | pages = 190–6 | date = February 1992 | pmid = 1740329 | doi = 10.1016/0888-7543(92)90365-Y | url =  }}</ref>


'''KCNC3''' is a [[gene]] encoding the [[voltage-gated potassium channel]] protein K<sub>v</sub>3.3. KCNC3 is associated with [[spinocerebellar ataxia]] type 13.
== Function ==


==See also==
The Shaker gene family of Drosophila encodes components of [[voltage-gated potassium channel]]s and comprises four subfamilies. Based on sequence similarity, this gene is similar to one of these subfamilies, namely the Shaw subfamily. The protein encoded by this gene belongs to the delayed rectifier class of channel proteins and is an integral membrane protein that mediates the voltage-dependent potassium ion permeability of excitable membranes.<ref name="entrez">{{cite web | title = Entrez Gene: potassium voltage-gated channel| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=3748| accessdate = }}</ref><ref name="pmid8111118">{{cite journal | vauthors = Haas M, Ward DC, Lee J, Roses AD, Clarke V, D'Eustachio P, Lau D, Vega-Saenz de Miera E, Rudy B | title = Localization of Shaw-related K+ channel genes on mouse and human chromosomes | journal = Mamm. Genome | volume = 4 | issue = 12 | pages = 711–5 | date = December 1993 | pmid = 8111118 | doi = 10.1007/BF00357794 | url =  }}</ref><ref name="pmid16382104">{{cite journal | vauthors = Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stühmer W, Wang X | title = International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels | journal = Pharmacol. Rev. | volume = 57 | issue = 4 | pages = 473–508 | date = December 2005 | pmid = 16382104 | doi = 10.1124/pr.57.4.10 | url =  | last11 = Wang | last10 = Stühmer | first11 = X | display-authors = 8 | first10 = W }}</ref>
 
== Clinical significance ==
 
KCNC3 is associated with [[spinocerebellar ataxia]] type 13.<ref name="pmid18592334">{{cite journal | vauthors = Waters MF, Pulst SM | title = Sca13 | journal = Cerebellum | volume = 7 | issue = 2 | pages = 165–9 | year = 2008 | pmid = 18592334 | doi = 10.1007/s12311-008-0039-7 | url =  }}</ref>
 
== See also ==
* [[Voltage-gated potassium channel]]
* [[Voltage-gated potassium channel]]
== References ==
{{reflist|35em}}


==External links==
==External links==
*{{cite web | url = http://www.iuphar-db.org/IC/ObjectDisplayForward?objectId=87&familyId=16 | title = Voltage-Gated Potassium Channels: K<sub>v<sub>3.3 | accessdate = | author = | authorlink = | coauthors = | date = | format = | work = IUPHAR Database of Receptors and Ion Channels | publisher = International Union of Basic and Clinical Pharmacology | pages = | language = | archiveurl = | archivedate = | quote = }}
* [https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=gene&part=sca13  GeneReviews/NCBI/NIH/UW entry on Spinocerebellar Ataxia Type 13]


{{Ion channels}}
==Further reading==
{{refbegin | 2}}
*{{cite journal | vauthors = Wang D, Youngson C, Wong V, Yeger H, Dinauer MC, Vega-Saenz Miera E, Rudy B, Cutz E | title = NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 93 | issue = 23 | pages = 13182–7 | year = 1996 | pmid = 8917565 | pmc = 24067 | doi = 10.1073/pnas.93.23.13182 }}
*{{cite journal | vauthors = Rae JL, Shepard AR | title = Kv3.3 potassium channels in lens epithelium and corneal endothelium | journal = Exp. Eye Res. | volume = 70 | issue = 3 | pages = 339–48 | year = 2000 | pmid = 10712820 | doi = 10.1006/exer.1999.0796 }}
*{{cite journal | vauthors = Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, Mock AF, Evidente VG, Fee DB, Müller U, Dürr A, Brice A, Papazian DM, Pulst SM | title = Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes | journal = Nat. Genet. | volume = 38 | issue = 4 | pages = 447–51 | year = 2006 | pmid = 16501573 | doi = 10.1038/ng1758 }}
*{{cite journal | vauthors = Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F | title = Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families | journal = Arch. Neurol. | volume = 61 | issue = 5 | pages = 727–33 | year = 2004 | pmid = 15148151 | doi = 10.1001/archneur.61.5.727 }}
*{{cite journal | vauthors = Herman-Bert A, Stevanin G, Netter JC, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Dürr A, Brice A | title = Mapping of Spinocerebellar Ataxia 13 to Chromosome 19q13.3-q13.4 in a Family with Autosomal Dominant Cerebellar Ataxia and Mental Retardation | journal = Am. J. Hum. Genet. | volume = 67 | issue = 1 | pages = 229–35 | year = 2000 | pmid = 10820125 | pmc = 1287081 | doi = 10.1086/302958 }}
{{refend}}


{{NLM content}}
{{Ion channels|g3}}


[[Category:Ion channels]]
[[Category:Ion channels]]


{{WH}}
 
{{membrane-protein-stub}}

Latest revision as of 06:13, 2 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Potassium voltage-gated channel, Shaw-related subfamily, member 3 also known as KCNC3 or Kv3.3 is a protein that in humans is encoded by the KCNC3.[1]

Function

The Shaker gene family of Drosophila encodes components of voltage-gated potassium channels and comprises four subfamilies. Based on sequence similarity, this gene is similar to one of these subfamilies, namely the Shaw subfamily. The protein encoded by this gene belongs to the delayed rectifier class of channel proteins and is an integral membrane protein that mediates the voltage-dependent potassium ion permeability of excitable membranes.[2][3][4]

Clinical significance

KCNC3 is associated with spinocerebellar ataxia type 13.[5]

See also

References

  1. Ghanshani S, Pak M, McPherson JD, Strong M, Dethlefs B, Wasmuth JJ, Salkoff L, Gutman GA, Chandy KG (February 1992). "Genomic organization, nucleotide sequence, and cellular distribution of a Shaw-related potassium channel gene, Kv3.3, and mapping of Kv3.3 and Kv3.4 to human chromosomes 19 and 1". Genomics. 12 (2): 190–6. doi:10.1016/0888-7543(92)90365-Y. PMID 1740329.
  2. "Entrez Gene: potassium voltage-gated channel".
  3. Haas M, Ward DC, Lee J, Roses AD, Clarke V, D'Eustachio P, Lau D, Vega-Saenz de Miera E, Rudy B (December 1993). "Localization of Shaw-related K+ channel genes on mouse and human chromosomes". Mamm. Genome. 4 (12): 711–5. doi:10.1007/BF00357794. PMID 8111118.
  4. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, Robertson GA, Rudy B, et al. (December 2005). "International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels". Pharmacol. Rev. 57 (4): 473–508. doi:10.1124/pr.57.4.10. PMID 16382104.
  5. Waters MF, Pulst SM (2008). "Sca13". Cerebellum. 7 (2): 165–9. doi:10.1007/s12311-008-0039-7. PMID 18592334.

External links

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.