Epilepsy medical therapy: Difference between revisions

Jump to navigation Jump to search
Line 42: Line 42:


It has been found that taking [[valproic acid|valproates]] while pregnant can have high chances of reduced IQ towards children.<ref>{{cite web | url = http://www.medscape.com/viewarticle/549073 | title = NEAD: In Utero Exposure To Valproate Linked to Poor Cognitive Outcomes in Kids | last = Cassels | first = Caroline | date = [[December 8]] [[2006]] | publisher = Medscape | accessdate = 2007-05-23}}</ref><ref>{{cite journal |author=Meador KJ, Baker GA, Finnell RH, ''et al'' |title=In utero antiepileptic drug exposure: fetal death and malformations |journal=Neurology |volume=67 |issue=3 |pages=407-12 |year=2006 |pmid=16894099 |doi=10.1212/01.wnl.0000227919.81208.b2}}</ref>
It has been found that taking [[valproic acid|valproates]] while pregnant can have high chances of reduced IQ towards children.<ref>{{cite web | url = http://www.medscape.com/viewarticle/549073 | title = NEAD: In Utero Exposure To Valproate Linked to Poor Cognitive Outcomes in Kids | last = Cassels | first = Caroline | date = [[December 8]] [[2006]] | publisher = Medscape | accessdate = 2007-05-23}}</ref><ref>{{cite journal |author=Meador KJ, Baker GA, Finnell RH, ''et al'' |title=In utero antiepileptic drug exposure: fetal death and malformations |journal=Neurology |volume=67 |issue=3 |pages=407-12 |year=2006 |pmid=16894099 |doi=10.1212/01.wnl.0000227919.81208.b2}}</ref>
===Surgical Treatment===
Surgical treatment can be an option for epilepsy when an underlying brain abnormality, such as a benign [[tumor]] or an area of scar tissue (e.g. [[hippocampal sclerosis]]) can be identified.  The abnormality must be removable by a neurosurgeon. 
Surgery is usually only offered to patients when their epilepsy has not been controlled by adequate attempts with multiple medications.  Before surgery is offered, the medical team conducts many tests to assess whether removal of brain tissue will result in unacceptable problems with [[memory]], [[visual perception|vision]], [[language]] or movement, which are controlled by different parts of the [[brain]].  These tests usually include a [[neuropsychology|neuropsychological evaluation]], which sometimes includes an intracarotid sodium amobarbital test ([[Wada test]]) - although this invasive procedure is being replaced by non-invasive functional MRI in many centres.  Resective surgery, as opposed to palliative, successfully eliminates or significantly reduces seizures in about 50-90% of the patients who undergo it (the exact percentage depends on the particulars of the case and surgeon in question.)  Many patients decide not to undergo surgery owing to fear or the uncertainty of having a brain operation.
The most common form of resective surgical treatment for epilepsy is to remove the front part of either the right or left [[temporal lobe]].  A study of 48 patients who underwent this operation, [[anterior temporal lobectomy]], between 1965 and 1974 determined the long-term success of the procedure. Of the 48 patients, 21 had had no seizures that caused loss of consciousness since the operation. Three others had been free of seizures for at least 19 years. The rest had either never been completely free of seizures or had died between the time of the surgery and commencement of the study.<ref name="Neurology2005-Kelley">{{cite journal | author=Kelley K, Theodore WH | title=Prognosis 30 years after temporal lobectomy | journal=Neurology | year=2005 | pages=1974-6 | volume=64 | issue=11 | id=PMID 15955959}}</ref>
[[Palliative]] surgery for epilepsy is intended to reduce the frequency or severity of seizures. Examples are [[callosotomy]] or [[commissurotomy]] to prevent seizures from generalizing (spreading to involve the entire brain), which results in a loss of consciousness. This procedure can therefore prevent injury due to the person falling to the ground after losing consciousness. It is performed only when the seizures cannot be controlled by other means. Resective surgery can be considered palliative if it is undertaken with the expectation that it will reduce but not eliminate seizures.
[[Hemispherectomy]] is a drastic operation in which most or all of one half of the cerebral cortex is removed. It is reserved for people suffering from the most catastrophic epilepsies, such as those due to [[Rasmussen syndrome]]. If the surgery is performed on very young patients (2-5 years old), the remaining hemisphere may acquire some rudimentary motor control of the ipsilateral body; in older patients, paralysis results on the side of the body opposite to the part of the brain that was removed. Because of these and other side effects it is usually reserved for patients who have exhausted other treatment options.


===Other Treatment===
===Other Treatment===

Revision as of 17:45, 8 April 2013

Epilepsy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Epilepsy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

EEG

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Epilepsy medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Epilepsy medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Epilepsy medical therapy

CDC on Epilepsy medical therapy

Epilepsy medical therapy in the news

Blogs on Epilepsy medical therapy

Directions to Hospitals Treating Epilepsy

Risk calculators and risk factors for Epilepsy medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Vishnu Vardhan Serla M.B.B.S. [2]

Medical Therapy

Epilepsy is usually treated with medication prescribed by a physician; primary caregivers, neurologists, and neurosurgeons all frequently care for people with epilepsy. In some cases the implantation of a stimulator of the vagus nerve, or a special diet can be helpful. Neurosurgical operations for epilepsy can be palliative, reducing the frequency or severity of seizures; or, in some patients, an operation can be curative.

Responding to a Seizure

In most cases, the proper emergency response to a generalized tonic-clonic epileptic seizure is simply to prevent the patient from self-injury by moving him or her away from sharp edges, placing something soft beneath the head, and carefully rolling the person into the recovery position to avoid asphyxiation. In some cases the person may seem to start snoring loudly following a seizure, before coming to. This merely indicates that the person is beginning to breathe properly and does not mean he or she is suffocating. Should the person regurgitate, the material should be allowed to drip out the side of the person's mouth by itself. If a seizure lasts longer than 5 minutes, or if the seizures begin coming in 'waves' one after the other - then Emergency Medical Services should be contacted immediately. Prolonged seizures may develop into status epilepticus, a dangerous condition requiring hospitalization and emergency treatment.

Objects should never be placed in a person's mouth by anybody - including paramedics - during a seizure as this could result in serious injury to either party. Despite common folklore, it is not possible for a person to swallow their own tongue during a seizure. However, it is possible that the person will bite their own tongue, especially if an object is placed in the mouth.

With other types of seizures such as simple partial seizures and complex partial seizures where the person is not convulsing but may be hallucinating, disoriented, distressed, or unconscious, the person should be reassured, gently guided away from danger, and sometimes it may be necessary to protect the person from self-injury, but physical force should be used only as a last resort as this could distress the person even more. In complex partial seizures where the person is unconscious, attempts to rouse the person should not be made as the seizure must take its full course. After a seizure, the person may pass into a deep sleep or otherwise they will be disoriented and often unaware that they have just had a seizure, as amnesia is common with complex partial seizures. The person should remain observed until they have completely recovered, as with a tonic-clonic seizure.

After a seizure, it is typical for a person to be exhausted and confused. Often the person is not immediately aware that they have just had a seizure. During this time one should stay with the person - reassuring and comforting them - until they appear to act as they normally would. Seldom during a seizure the person may have soiled themselves. In some instances the person may also vomit after coming to. People should not eat or drink until they have returned to their normal level of awareness, and they should not be allowed to wander about unsupervised. Many patients will sleep deeply for a few hours after a seizure - this is common for those having just experienced a more violent type of seizure such as a tonic-clonic. In about 50% of people with epilepsy, headaches may occur after a seizure. These headaches share many features with migraines, and respond to the same medications.

It is helpful if those present at the time of a seizure make note of how long and how severe the seizure was. It is also helpful to note any mannerisms displayed during the seizure. For example, the individual may twist the body to the right or left, may blink, might mumble nonsense words, or might pull at clothing. Any observed behaviors, when relayed to a neurologist, may be of help in diagnosing the type of seizure which occurred.

Pharmacologic Treatment

Some medications can be taken daily in order to prevent seizures altogether or reduce the frequency of their occurrence. These are termed "anticonvulsant" or "antiepileptic" drugs (sometimes AEDs). All such drugs have side effects that are idiosyncratic and others that are dosage-dependent. It is not possible to predict who will suffer from side effects or at what dose the side effects will appear.

Some people with epilepsy will experience a complete remission when treated with an anticonvulsant medication. If this does not occur, the dose of medication may be increased, or another medication may be added to the first. The general strategy is to increase the medication dose until either the seizures are controlled, or until dose-limiting side effects appear; at which point the medication dose is reduced to the highest amount that did not produce undesirable side effects.

Serum levels of AEDs can be checked to determine medication compliance and to assess the effects of drug-drug interactions; some physicians do not use serum levels to fine tune medication, but other physicians believe that serum levels provide excellent data for tailoring medications to suit an individual's specific and relatively variable body chemistry. For example, therapeutic doses (the dose at which seizures are controlled and side effects are minimal and tolerable) may vary widely from among patients. The therapeutic ranges provided by pharmaceutical companies are only ranges and by using blood serum levels and seizures diaries, better seizure control can sometimes be reached. In some cases (such as a seizure flurry) serum levels can be useful to know if the level is very high or very low.

If a person's epilepsy cannot be brought under control after adequate trials of two or three (experts vary here) different drugs, that person's epilepsy is generally said to be medically refractory. or Drug-Resistant Epilepsy. Ketogenic diet (a high-fat, low-protein, low-carbohydrate diet) is used in children with drug-resistant epilepsy. A randomized, controlled trial showed that the number of seizures fell by more than 50% in approximately half of children after 1 year on the diet.

Various drugs may prevent seizures or reduce seizure frequency: these include carbamazepine (common brand name Tegretol), clobazam (Frisium), clonazepam (Klonopin), ethosuximide (Zarontin), felbamate (Felbatol), fosphenytoin (Cerebyx), flurazepam (Dalmane), gabapentin (Neurontin), lamotrigine (Lamictal), levetiracetam (Keppra), oxcarbazepine (Trileptal), mephenytoin (Mesantoin), phenobarbital (Luminal), phenytoin (Dilantin), pregabalin (Lyrica), primidone (Mysoline), sodium valproate (Epilim), tiagabine (Gabitril), topiramate (Topamax), valproate semisodium (Depakote, Epival), valproic acid (Depakene, Convulex), vigabatrin (Sabril), and zonisamide (Zonegran).

Other drugs are commonly used to abort an active seizure or interrupt a seizure flurry; these include diazepam (Valium) and lorazepam (Ativan). Drugs used only in the treatment of refractory status epilepticus include paraldehyde (Paral) and pentobarbital (Nembutal).

Bromides were the first of the effective anticonvulsant pure compounds, but are no longer used in humans[1] due to their toxicity and low efficacy.

It has been found that taking valproates while pregnant can have high chances of reduced IQ towards children.[2][3]

Other Treatment

Ketogenic diets may occasionally be effective in controlling some types of epilepsy; although the mechanism behind the effect is not fully understood, shifting of pH towards a metabolic acidosis and alteration of brain metabolism may be involved. Ketogenic diets are high in fat and extremely low in carbohydrates, with intake of fluids often limited. This treatment, originated as early as the 1920s at Johns Hopkins Medical Center, was largely abandoned with the discovery of modern anti-epileptic drugs, but recently has returned to the anti-epileptic treatment arsenal. Ketogenic diets are sometimes prescribed in severe cases where drugs have proven ineffective.

A study conducted by Johns Hopkins reported that 50% of those patients starting the Ketogenic diet reported a decrease in seizures of 50% or more, with 29% of patients reporting a 90% reduction in symptoms; these patients had previously tried an average of six anticonvulsant drugs.

Vagus nerve stimulation (VNS) is a recently developed form of seizure control which uses an implanted electrical device, similar in size, shape and implant location to a heart pacemaker, which connects to the vagus nerve in the neck. Once in place the device can be set to emit electronic pulses, stimulating the vagus nerve at pre-set intervals and milliamp levels. Treatment studies have shown that approximately 50% of those treated in this fashion will show significant seizure reduction.

The Responsive Neurostimulator System (RNS) is currently undergoing clinical study prior to FDA approval. This system relies upon a device implanted just under the scalp. The leads attached to the device are implanted either on the brain surface or in the brain area itself and are located close to the area where the seizures are believed to start. When a seizure begins, an electrical shock is delivered to suppress it. This system is different from the VNS system in that the RNS relies on direct brain stimulation and the RNS is a responsive system. The VNS pulses at predetermined intervals previously set by medical personnel. The RNS system responds to detected signs that a seizure is about to begin and can record events and allow customized response patterns which may provide a greater degree of seizure control.

A seizure response dog is a form of service dog that is trained to summon help or ensure personal safety when a seizure occurs. These are not suitable for everybody and not all dogs can be so trained. Rarely, a dog may develop the ability to sense a seizure before it occurs.[4]

A number of systematic reviews by the Cochrane Collaboration into treatments for epilepsy looked at acupuncture,[5] psychological interventions,[6] vitamins[7] and yoga[8] and found there is no reliable evidence to support the use of these as treatments for epilepsy. Further studies are needed on the subject.

References

  1. Clemmons DVM, PhD, R.M. (1997). "Seizure Disorders in Dogs and Cats". The Neurology Service at the VMTH. University of Florida’s Veterinary Medical Teaching Hospital. Retrieved 2006-03-29.
  2. Cassels, Caroline (December 8 2006). "NEAD: In Utero Exposure To Valproate Linked to Poor Cognitive Outcomes in Kids". Medscape. Retrieved 2007-05-23. Check date values in: |date= (help)
  3. Meador KJ, Baker GA, Finnell RH; et al. (2006). "In utero antiepileptic drug exposure: fetal death and malformations". Neurology. 67 (3): 407–12. doi:10.1212/01.wnl.0000227919.81208.b2. PMID 16894099.
  4. Barriaux, Marianne (2006-10-16). "Dogs trained to warn of an imminent epileptic fit". The Guardian. Retrieved 2006-11-24. Check date values in: |date= (help)
  5. Cheuk D, Wong V (2006). "Acupuncture for epilepsy". Cochrane Database Syst Rev (2): CD005062. PMID 16625622.
  6. Ramaratnam S, Baker GA, Goldstein LH (2005). "Psychological treatments for epilepsy". Cochrane Database Syst Rev (4): CD002029. PMID 16235293.
  7. Ranganathan LN, Ramaratnam S (2005). "Vitamins for epilepsy". Cochrane Database Syst Rev (2): CD004304. PMID 15846704.
  8. Ramaratnam S, Sridharan K (2000). "Yoga for epilepsy". Cochrane Database Syst Rev (3): CD001524. PMID 10908505.

Template:WH Template:WS