Diabetes mellitus type 2 medical therapy: Difference between revisions

Jump to navigation Jump to search
No edit summary
(Undo revision 1649840 by Anahita (talk))
Tag: Undo
Line 5: Line 5:


==Overview==
==Overview==
The main goals of [[treatment]] are to eliminate [[hyperglycemic]] [[Symptom|symptoms]], control the long term [[Complication (medicine)|complications]] and improve the patient's quality of life. [[Diabetes mellitus type 2]] is initially treated by life style modification and [[weight loss]], especially in [[Obesity|obese]] patients. [[Metformin]] is the first line pharmacologic [[therapy]] that is usually started once the [[diagnosis]] is confirmed unless [[Contraindication|contraindications]] exist. If glycemic goals are not achieved, a second agent must be added to [[metformin]].  A wide range of options are available to add as combination therapy based on the patient's condition and [[Comorbidity|comorbidities]].
The main goals of [[treatment]] are to eliminate [[hyperglycemic]] symptoms, control the long term complications and improve the patient's quality of life.
 
Diabetes mellitus type 2  is initially treated by life style modification and [[weight loss]], especially in obese patients. [[Metformin]] is the first line pharmacologic therapy that is usually started once the diagnosis is confirmed unless [[Contraindication|contraindications]] exist. If glycemic goals are not achieved, a second agent must be added to [[metformin]].  A wide range of options are available to add as combination therapy based on the patient's condition and [[Comorbidity|comorbidities]].  


==Pharmacologic therapy==
==Pharmacologic therapy==
Line 11: Line 13:
{{main|Diabetes Care in the Hospital Setting}}
{{main|Diabetes Care in the Hospital Setting}}
===Outpatients===
===Outpatients===
Medical therapy starts with [[metformin]] [[monotherapy]] unless there is a contraindication for it. In the following conditions, treatment starts with dual therapy:<ref name="pmid24145991">{{cite journal |vauthors=Qaseem A, Hopkins RH, Sweet DE, Starkey M, Shekelle P |title=Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: A clinical practice guideline from the American College of Physicians |journal=Ann. Intern. Med. |volume=159 |issue=12 |pages=835–47 |year=2013 |pmid=24145991 |doi=10.7326/0003-4819-159-12-201312170-00726 |url=}}</ref><ref name="pmid27979887">{{cite journal |vauthors= |title=Standards of Medical Care in Diabetes-2017: Summary of Revisions |journal=Diabetes Care |volume=40 |issue=Suppl 1 |pages=S4–S5 |year=2017 |pmid=27979887 |doi=10.2337/dc17-S003 |url=}}</ref><ref name="pmid12145243">{{cite journal |vauthors=Colagiuri S, Cull CA, Holman RR |title=Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61 |journal=Diabetes Care |volume=25 |issue=8 |pages=1410–7 |year=2002 |pmid=12145243 |doi= |url=}}</ref><ref name="pmid1441492">{{cite journal |vauthors=Davidson MB |title=Successful treatment of markedly symptomatic patients with type II diabetes mellitus using high doses of sulfonylurea agents |journal=West. J. Med. |volume=157 |issue=2 |pages=199–200 |year=1992 |pmid=1441492 |pmc=1011263 |doi= |url=}}</ref><ref name="pmid27088241">{{cite journal |vauthors=Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S |title=Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis |journal=Ann. Intern. Med. |volume=164 |issue=11 |pages=740–51 |year=2016 |pmid=27088241 |doi=10.7326/M15-2650 |url=}}</ref><ref name="pmid27434443">{{cite journal |vauthors=Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, Maggo J, Gray V, De Berardis G, Ruospo M, Natale P, Saglimbene V, Badve SV, Cho Y, Nadeau-Fredette AC, Burke M, Faruque L, Lloyd A, Ahmad N, Liu Y, Tiv S, Wiebe N, Strippoli GF |title=Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis |journal=JAMA |volume=316 |issue=3 |pages=313–24 |year=2016 |pmid=27434443 |doi=10.1001/jama.2016.9400 |url=}}</ref>
*If [[HbA1C]] is greater than 9, start with dual oral blood glucose lowering agent.
*If [[HbA1C]] is greater than 10 or blood glucose is more than 300 mg/dl or patient is markedly symptomatic, consider combination therapy with [[insulin]].


* Medical therapy starts with [[metformin]] [[monotherapy]] unless there is a [[contraindication]] for it. In the following conditions, treatment starts with dual [[therapy]]:
The most effective class of drugs for reducing death are probably [[SGLT2|sodium glucose transporter 2]] (SGLT2) inhibitors or [[GLP-1]] receptor agonists.<ref>GitHub Contributors. Hypertonic Saline for Bronchiolitis: a living systematic review. GitHub. Available at http://openmetaanalysis.github.io/Diabetes-mellitus-type-2-mortality-prevention-with-pharmacotherapy/. Accessed June 11, 2018.</ref>
**If [[HbA1C]] is greater than 9, start with dual oral [[Blood sugar|blood glucose]] lowering agent.
**If [[HbA1C]] is greater than 10 or [[Blood sugar|blood glucose]] is more than 300 mg/dl or patient is markedly [[symptomatic]], consider [[combination therapy]] with [[insulin]].
 
* The most effective class of drugs for reducing death are probably [[SGLT2|sodium glucose transporter 2]] ([[SGLT2]]) inhibitors or [[GLP-1]] receptor [[Agonist|agonists]].


===Metformin===
===Metformin===


* [[Metformin]] is effective, safe and inexpensive. It may reduce risk of [[cardiovascular]] events and death. Patients should be advised to stop the [[medication]] in cases of [[nausea]], [[vomiting]] or [[dehydration]].
* [[Metformin]] is effective, safe and inexpensive. It may reduce risk of cardiovascular events and death. Patients should be advised to stop the medication in cases of [[nausea]], [[vomiting]] or [[dehydration]].  


*[[Metformin]] is capable of decreasing the [[body weight]] but it's effect on [[Muscle|muscle mass]] is unclear.
* Metformin is capable of decreasing the body weight but it's effect on muscle mass is unclear.<ref name="pmid31372016">{{cite journal| author=Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D| title=Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. | journal=Diabetes Metab Syndr Obes | year= 2019 | volume= 12 | issue=  | pages= 1057-1072 | pmid=31372016 | doi=10.2147/DMSO.S186600 | pmc=6630094 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31372016  }}</ref>


* A systemic [[review]], observing 34,000 patients in total, concluded that [[Metformin]] is as safe as other [[Anti-diabetic drug|anti-diabetic]] treatments in [[Diabetes mellitus|diabetic]] patients with [[Congestive heart failure|heart failure.]]
* A systemic review observing 34,000 patients in total concluded that [[Metformin]] is as safe as other [[Anti-diabetic drug|anti-diabetic]] treatments in diabetic patients with [[Congestive heart failure|heart failure.]]<ref name="EurichWeir2013">{{cite journal|last1=Eurich|first1=Dean T.|last2=Weir|first2=Daniala L.|last3=Majumdar|first3=Sumit R.|last4=Tsuyuki|first4=Ross T.|last5=Johnson|first5=Jeffrey A.|last6=Tjosvold|first6=Lisa|last7=Vanderloo|first7=Saskia E.|last8=McAlister|first8=Finlay A.|title=Comparative Safety and Effectiveness of Metformin in Patients With Diabetes Mellitus and Heart Failure|journal=Circulation: Heart Failure|volume=6|issue=3|year=2013|pages=395–402|issn=1941-3289|doi=10.1161/CIRCHEARTFAILURE.112.000162}}</ref>


* Some studies demonstrated lower risk of [[Mortality rate|mortality]] in [[Diabetes mellitus|diabetic]] patients with concurrent [[Chronic obstructive pulmonary disease|COPD]] or [[Asthma]] who were taking [[Metformin]] compared to non-users.
* Some studies demonstrated lower risk of [[Mortality rate|mortality]] in [[Diabetes mellitus|diabetic]] patients with concurrent [[Chronic obstructive pulmonary disease|COPD]] or [[Asthma]] who were taking [[Metformin]] compared to non-users.<ref name="pmid30761687">{{cite journal| author=Mendy A, Gopal R, Alcorn JF, Forno E| title=Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin. | journal=Respirology | year= 2019 | volume= 24 | issue= 7 | pages= 646-651 | pmid=30761687 | doi=10.1111/resp.13486 | pmc=6579707 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30761687  }}</ref>
*[[Metformin]] use in [[Diabetes mellitus|diabetic]] patients with [[sepsis]], [[tuberculosis]] and [[Chronic obstructive pulmonary disease]] [[Chronic obstructive pulmonary disease|(COPD]]) were associated with lower [[mortality rate]].
* Metformin use in diabetic patients with [[sepsis]], [[tuberculosis]] and Chronic obstructive pulmonary disease [[Chronic obstructive pulmonary disease|(COPD]]) were associated with lower [[mortality rate]].<ref name="LiangDing2019">{{cite journal|last1=Liang|first1=Huoyan|last2=Ding|first2=Xianfei|last3=Li|first3=Lifeng|last4=Wang|first4=Tian|last5=Kan|first5=Quancheng|last6=Wang|first6=Lexin|last7=Sun|first7=Tongwen|title=Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies|journal=Critical Care|volume=23|issue=1|year=2019|issn=1364-8535|doi=10.1186/s13054-019-2346-4}}</ref><ref name="SinghKhunti2020">{{cite journal|last1=Singh|first1=Awadhesh Kumar|last2=Khunti|first2=Kamlesh|title=Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: A narrative review|journal=Diabetes Research and Clinical Practice|volume=165|year=2020|pages=108266|issn=01688227|doi=10.1016/j.diabres.2020.108266}}</ref>
*One of the possible effects of [[Metformin]] is [[Gut flora|gut microbiota]] alteration, which results in Tauroursodeoxycholic acid (TUDCA) and Glycoursodeoxycholic Acid (GUDCA) elevation. Since both TUDCA and GUDCA act as intestinal [[farnesoid X receptor]] ([[Farnesoid X receptor|FXR]]) [[Receptor antagonist|antagonists]], they can be effective in [[hyperglycemia]] [[treatment]].
*One of the possible effects of [[Metformin]] is [[Gut flora|gut microbiota]] alteration, which results in Tauroursodeoxycholic acid (TUDCA) and Glycoursodeoxycholic Acid (GUDCA) elevation. Since both TUDCA and GUDCA act as intestinal [[farnesoid X receptor]] ([[Farnesoid X receptor|FXR]]) [[Receptor antagonist|antagonists]], they can be effective in [[hyperglycemia]] treatment.<ref name="WuZhou2020">{{cite journal|last1=Wu|first1=Yingjie|last2=Zhou|first2=An|last3=Tang|first3=Li|last4=Lei|first4=Yuanyuan|last5=Tang|first5=Bo|last6=Zhang|first6=Linjing|title=Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes|journal=Journal of Diabetes Research|volume=2020|year=2020|pages=1–11|issn=2314-6745|doi=10.1155/2020/6138438}}</ref>


==== Contraindications ====
==== Contraindications ====


* As of June 2020, The US [[Food and Drug Administration]] ([[Food and Drug Administration|FDA]]) recalls [[extended-release metformin]] which is made by few pharma companies due to detection of high levels of N-[[N-Nitrosodimethylamine|nitrosodimethylamine]] ([[N-Nitrosodimethylamine|NDMA]]).
* As of June 2020, The US Food and Drug Administration ([[Food and Drug Administration|FDA]]) recalls [[extended-release metformin]] which is made by few pharma companies due to detection of high levels of N-nitrosodimethylamine ([[N-Nitrosodimethylamine|NDMA]]).


*[[N-Nitrosodimethylamine|N-nitrosodimethylamine]] ([[N-Nitrosodimethylamine|NDMA]]) is a [[Carcinogen|carcinogenic]] agent when exposed in higher levels, leads to [[cancer]].
* N-nitrosodimethylamine ([[N-Nitrosodimethylamine|NDMA]]) is a [[Carcinogen|carcinogenic]] agent when exposed in higher levels leads to cancer.
* The following are the pharma companies that the FDA recalls the [[Metformin extended release|extended-release metformin:]]
* The following are the pharma companies that the FDA recalls the [[Metformin extended release|extended-release metformin:]]
** Lupin
** Lupin
Line 44: Line 45:


{| class="wikitable"
{| class="wikitable"
|+[[Randomized controlled trial]] comparing initial doses for metformin.
|+,[[Randomized controlled trial]] comparing initial doses for metformin<ref name="pmid9428832">{{cite journal| author=Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL| title=Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. | journal=Am J Med | year= 1997 | volume= 103 | issue= 6 | pages= 491-7 | pmid=9428832 | doi=10.1016/s0002-9343(97)00254-4 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9428832  }} </ref>.


! style="text-align: center;" | Total duration was 14 weeks with at least 8 weeks on final dose.
! style="text-align: center;" | Total duration was 14 weeks with at least 8 weeks on final dose.
Line 66: Line 67:
| style="text-align: center;" | 29%
| style="text-align: center;" | 29%
|-
|-
|[[Diarrhea]]
| Diarrhea
| style="text-align: center;" | 5%
| style="text-align: center;" | 5%
| style="text-align: center;" | 8%
| style="text-align: center;" | 8%
Line 74: Line 75:
| style="text-align: center;" | 14%
| style="text-align: center;" | 14%
|-
|-
|[[Glycosylated hemoglobin|HbA1c]] change
| HbA1c change
| style="text-align: center;" |  + 1.2
| style="text-align: center;" |  + 1.2
| style="text-align: center;" |  + 0.3
| style="text-align: center;" |  + 0.3
Line 87: Line 88:
===Insulin===
===Insulin===


* The lack of inexpensive, generic [[insulin]] may lead to underuse of [[insulin]] and occurs for unusual reasons.
* The lack of inexpensive, generic insulin may lead to underuse of insulin<ref name="pmid30508012">{{cite journal| author=Herkert D, Vijayakumar P, Luo J, Schwartz JI, Rabin TL, DeFilippo E et al.| title=Cost-Related Insulin Underuse Among Patients With Diabetes. | journal=JAMA Intern Med | year= 2018 | volume=  | issue=  | pages=  | pmid=30508012 | doi=10.1001/jamainternmed.2018.5008 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30508012  }} </ref> and occurs for unusual reasons<ref name="pmid25785977">{{cite journal| author=Greene JA, Riggs KR| title=Why is there no generic insulin? Historical origins of a modern problem. | journal=N Engl J Med | year= 2015 | volume= 372 | issue= 12 | pages= 1171-5 | pmid=25785977 | doi=10.1056/NEJMms1411398 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25785977  }} </ref>.
* The [[insulin]] [[Analog (chemistry)|analogues]] may not provide a meaningful advantage.
* The insulin analogues may not provide a meaningful advantage<ref name="pmid30694321">{{cite journal| author=Luo J, Khan NF, Manetti T, Rose J, Kaloghlian A, Gadhe B et al.| title=Implementation of a Health Plan Program for Switching From Analogue to Human Insulin and Glycemic Control Among Medicare Beneficiaries With Type 2 Diabetes. | journal=JAMA | year= 2019 | volume= 321 | issue= 4 | pages= 374-384 | pmid=30694321 | doi=10.1001/jama.2018.21364 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30694321  }} </ref><ref name="pmid29936529">{{cite journal| author=Lipska KJ, Parker MM, Moffet HH, Huang ES, Karter AJ| title=Association of Initiation of Basal Insulin Analogs vs Neutral Protamine Hagedorn Insulin With Hypoglycemia-Related Emergency Department Visits or Hospital Admissions and With Glycemic Control in Patients With Type 2 Diabetes. | journal=JAMA | year= 2018 | volume= 320 | issue= 1 | pages= 53-62 | pmid=29936529 | doi=10.1001/jama.2018.7993 | pmc=6134432 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29936529  }} </ref><ref name="pmid17443605">{{cite journal| author=Horvath K, Jeitler K, Berghold A, Ebrahim SH, Gratzer TW, Plank J et al.| title=Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus. | journal=Cochrane Database Syst Rev | year= 2007 | volume=  | issue= 2 | pages= CD005613 | pmid=17443605 | doi=10.1002/14651858.CD005613.pub3 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17443605  }}  [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=&cmd=prlinks&id=17764137 Review in: ACP J Club. 2007 Sep-Oct;147(2):46] </ref>.
* Although [[Insulin]] increases the [[body weight]], some data suggest that it is capable of increasing the [[muscle]] mass.
* Although Insulin increases the body weight, some data suggest that it is capable of increasing the muscle mass.<ref name="pmid313720162">{{cite journal| author=Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D| title=Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. | journal=Diabetes Metab Syndr Obes | year= 2019 | volume= 12 | issue=  | pages= 1057-1072 | pmid=31372016 | doi=10.2147/DMSO.S186600 | pmc=6630094 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31372016  }}</ref>
* A [[meta-analysis]] of [[randomized controlled trial]]s by the [[Cochrane Collaboration]] found "only a minor clinical benefit of treatment with long-acting [[insulin]] [[Analog (chemistry)|analogues]] for patients with [[diabetes mellitus type 2]]" compared to human [[insulin]]<ref name="pmid17443605">{{cite journal |author=Horvath K ''et al.'' |title=Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus |journal=Cochrane database of systematic reviews (Online) |volume=  |pages=CD005613 |year=2007 |pmid=17443605}}</ref> More recent [[randomized controlled trial]]s have found no differences with [[Insulin Glargine|glargine]] and have found that although long acting [[Insulin|insulins]] were less effective, they were associated with less [[hypoglycemia]].
* A [[meta-analysis]] of [[randomized controlled trial]]s by the [[Cochrane Collaboration]] found "only a minor clinical benefit of treatment with long-acting insulin analogues for patients with diabetes mellitus type 2" compared to human insulin<ref name="pmid17443605">{{cite journal |author=Horvath K ''et al.'' |title=Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus |journal=Cochrane database of systematic reviews (Online) |volume=  |pages=CD005613 |year=2007 |pmid=17443605}}</ref> More recent [[randomized controlled trial]]s have found no differences with glargine<ref name="pmid18936501">{{cite journal |author=Esposito K ''et al.'' |title=Addition of neutral protamine lispro insulin or insulin glargine to oral type 2 diabetes regimens for patients with suboptimal glycemic control: a randomized trial |journal=Ann Intern Med |volume=149 |pages=531–9|year=2008  |pmid=18936501 |doi= |url= |issn=}}</ref> and have found that although long acting insulins were less effective, they were associated with less hypoglycemia.<ref name="pmid17890232">{{cite journal |author=Holman RR ''et al.'' |title=Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes |journal=N Engl J Med |volume=357 |pages=1716–30 |year=2007 |pmid=17890232 |doi=10.1056/NEJMoa075392|url=http://content.nejm.org/cgi/pmidlookup?view=short&pmid=17890232&promo=ONFLNS19 |issn=}}</ref>
* Premixed combinations of [[insulin]], human or [[Analog (chemistry)|analogue]], have similar reductions in [[HbA1c]]. A [[Cohort study|cohort]] study likewise found similar rates of [[hypoglycemia]]<ref name="pmid29936529">{{cite journal| author=Lipska KJ, Parker MM, Moffet HH, Huang ES, Karter AJ| title=Association of Initiation of Basal Insulin Analogs vs Neutral Protamine Hagedorn Insulin With Hypoglycemia-Related Emergency Department Visits or Hospital Admissions and With Glycemic Control in Patients With Type 2 Diabetes. | journal=JAMA | year= 2018 | volume= 320 | issue= 1 | pages= 53-62 | pmid=29936529 | doi=10.1001/jama.2018.7993 | pmc=6134432 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29936529  }} </ref>.
* Premixed combinations of insulin, human or analogue, have similar reductions in [[HbA1c]]<ref name="pmid18794553">{{cite journal| author=Qayyum R, Bolen S, Maruthur N, Feldman L, Wilson LM, Marinopoulos SS et al.| title=Systematic review: comparative effectiveness and safety of premixed insulin analogues in type 2 diabetes. | journal=Ann Intern Med | year= 2008 | volume= 149 | issue= 8 | pages= 549-59 | pmid=18794553 | doi= | pmc=4762020 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=18794553  }} </ref>. A [[Cohort study|cohort]] study likewise found similar rates of hypoglycemia<ref name="pmid29936529">{{cite journal| author=Lipska KJ, Parker MM, Moffet HH, Huang ES, Karter AJ| title=Association of Initiation of Basal Insulin Analogs vs Neutral Protamine Hagedorn Insulin With Hypoglycemia-Related Emergency Department Visits or Hospital Admissions and With Glycemic Control in Patients With Type 2 Diabetes. | journal=JAMA | year= 2018 | volume= 320 | issue= 1 | pages= 53-62 | pmid=29936529 | doi=10.1001/jama.2018.7993 | pmc=6134432 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29936529  }} </ref>.


====Bedtime insulin====
====Bedtime insulin====
 
Initially, adding bedtime insulin to patients failing oral medications is more effective ''and'' with less weight gain than using multiple dose insulin.<ref name="pmid1406860">{{cite journal |author=Yki-Järvinen H, Kauppila M, Kujansuu E, ''et al'' |title=Comparison of insulin regimens in patients with non-insulin-dependent diabetes mellitus |journal=N. Engl. J. Med. |volume=327 |issue=20 |pages=1426-33 |year=1992 |pmid=1406860|doi=|url=http://content.nejm.org/cgi/content/abstract/327/20/1426}}</ref> Nightly insulin combines better with [[metformin]] that with [[sulfonylurea]]s.<ref name="pmid10068412">{{cite journal |author=Yki-Järvinen H, Ryysy L, Nikkilä K, Tulokas T, Vanamo R, Heikkilä M |title=Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial |journal=Ann. Intern. Med. |volume=130 |issue=5|pages=389–96 |year=1999 |pmid=10068412 |doi=|url=http://www.annals.org/cgi/content/full/130/5/389}}</ref> The initial dose of nightly insulin (measured in IU/d) should be equal to the fasting blood glucose level (measured in mmol/L)<ref name="pmid1406860" />. If the fasting glucose is reported in mg/dl, multiple by 0.05551 (or divided by 18) to convert to mmol/L.<ref name="pmid9761809">{{cite journal |author=Kratz A, Lewandrowski KB |title=Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values |journal=N. Engl. J. Med. |volume=339|issue=15 |pages=1063–72 |year=1998 |pmid=9761809 |doi=}}</ref>
* Initially, adding bedtime [[insulin]] to patients failed oral [[Medication|medications]] is more effective ''and'' with less [[weight gain]] than using multiple dose [[insulin]]. Nightly  
* [[Insulin]] combines better with [[metformin]] that with [[sulfonylurea]]s.  
* The initial dose of nightly [[insulin]] (measured in IU/d) should be equal to the fasting [[Blood sugar|blood glucose]] level (measured in mmol/L)<ref name="pmid1406860" />. If the fasting [[glucose]] is reported in mg/dl, multiple by 0.05551 (or divided by 18) to convert to mmol/L.


===Combination therapy===
===Combination therapy===
Any agent can be added as second drug based on patient condition but the American Association of Clinical Endocrinologists recommends either [[incretin]] based therapy or [[SGLT2|sodium glucose transporter 2]] (SGLT2) inhibition agents.


* Any agent can be added as second drug based on patient condition. Although, the American Association of Clinical Endocrinologists recommends either [[incretin]] based [[therapy]] or [[SGLT2|sodium glucose transporter 2]] ([[SGLT2]]) inhibition agents.
The following table summarize the available FDA approved glucose lowering agents that may help to individualize treatment for each patient.
 
{| style="border: 0px; font-size: 90%; margin: 3px;" align=center
* The following table summarize the available [[Food and Drug Administration|FDA]] approved [[glucose]] lowering agents that may help to individualize [[treatment]] for each patient :
!align="center" style="background:#DCDCDC;"|Class
 
!align="center" style="background:#DCDCDC;"|Drug
{| style="border: 0px; font-size: 90%; margin: 3px;" align="center"
!align="center" style="background:#DCDCDC;"|Mechanism of action
! align="center" style="background:#DCDCDC;" |Class
!align="center" style="background:#DCDCDC;"|Primary physiologic action
! align="center" style="background:#DCDCDC;" |Drug
!align="center" style="background:#DCDCDC;"|Advantages
! align="center" style="background:#DCDCDC;" |Mechanism of action
!align="center" style="background:#DCDCDC;"|Disadvantages
! align="center" style="background:#DCDCDC;" |Primary physiologic action
!align="center" style="background:#DCDCDC;"|Cost
! align="center" style="background:#DCDCDC;" |Advantages
! align="center" style="background:#DCDCDC;" |Disadvantages
! align="center" style="background:#DCDCDC;" |Cost
|-
|-
| align="center" style="background:#DCDCDC;" |[[Biguanides]]
|align="center" style="background:#DCDCDC;"|[[Biguanides]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Metformin]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Metformin]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[AMP-activated protein kinase|AMP-kinase]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[AMP-activated protein kinase|AMP-kinase]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |↓ Hepatic glucose
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |↓ Hepatic glucose
production
production
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Extensive experience
* Extensive experience


Line 127: Line 123:


* Relatively higher [[A1C]] efficacy
* Relatively higher [[A1C]] efficacy
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Gastrointestinal tract|Gastrointestinal]] side effects ([[diarrhea]], [[abdominal cramping]], [[nausea]])
* Gastrointestinal side effects ([[diarrhea]], [[abdominal cramping]], [[nausea]])


*[[Vitamin B12 deficiency]]
* [[Vitamin B12 deficiency]]


*[[Contraindication|Contraindications]]: [[eGFR]] ≤30 mL/min/1.73 m2, [[acidosis]], [[hypoxia]], [[dehydration]].
* Contraindications: [[eGFR]] ≤30 mL/min/1.73 m2, [[acidosis]], [[hypoxia]], [[dehydration]].


*[[Lactic acidosis]] risk (rare)
* [[Lactic acidosis]] risk (rare)
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low
|-
|-
| align="center" style="background:#DCDCDC;" |[[Sulfonylureas]]
|align="center" style="background:#DCDCDC;"|[[Sulfonylureas]]
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |2nd generation
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |2nd generation
* [[Glyburide]]


*[[Glyburide]]
* [[Glipizide]]


*[[Glipizide]]
* [[Glimepiride]]
 
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Closes [[Potassium|K]]-[[ATP]] channels on [[beta cell]] [[Plasma membrane|plasma membranes]]
*[[Glimepiride]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |↑ [[Insulin]] secretion
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Closes [[Potassium|K]]-[[ATP]] channels on [[beta cell]] [[Plasma membrane|plasma membranes]]
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |↑ [[Insulin]] secretion
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Extensive experience
* Extensive experience


* ↓ [[Microvascular disease|Microvascular]] risk
* ↓ [[Microvascular disease|Microvascular]] risk  


* Relatively higher [[A1C]] efficacy
* Relatively higher [[A1C]] efficacy
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Hypoglycemia]]
* [[Hypoglycemia]]


* ↑ Weight
* ↑ Weight
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low
|-
|-
| align="center" style="background:#DCDCDC;" |[[Meglitinide|Meglitinides]]
|align="center" style="background:#DCDCDC;"|[[Meglitinide|Meglitinides]]


| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Repaglinide]]
* [[Repaglinide]]


*[[Nateglinide]]
* [[Nateglinide]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Closes [[Potassium|K]]-[[ATP]] channels on [[beta cell]] [[Plasma membrane|plasma membranes]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Closes [[Potassium|K]]-[[ATP]] channels on [[beta cell]] [[Plasma membrane|plasma membranes]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |↑ [[Insulin]] secretion
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |↑ [[Insulin]] secretion
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↓ [[Postprandial]] [[glucose]] excursions
* ↓ [[Postprandial]] glucose excursions


* Dosing flexibility
* Dosing flexibility
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Hypoglycemia]]
* [[Hypoglycemia]]


* ↑ Weight
* ↑ Weight


* Frequent dosing schedule
* Frequent dosing schedule
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Moderate
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Moderate
|-
|-
| align="center" style="background:#DCDCDC;" |[[Thiazolidinedione]]
|align="center" style="background:#DCDCDC;"|[[Thiazolidinedione]]
[[Thiazolidinedione|(TZDs)]]
(TZDs)
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Pioglitazone]]<sup>‡</sup>
* [[Pioglitazone]]<sup>‡</sup>


*[[Rosiglitazone]]<sup>§</sup>
* [[Rosiglitazone]]<sup>§</sup>
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates the nuclear [[transcription factor]] [[PPARG|PPAR-gama]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates the nuclear transcription factor [[PPARG|PPAR-gama]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |↑ [[Insulin resistance|Insulin sensitivity]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |↑ Insulin sensitivity
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare [[hypoglycemia]]


* Relatively higher [[Glycosylated hemoglobin|A1C]] efficacy
* Relatively higher A1C efficacy


* Durability
* Durability


* ↓ [[Triglyceride|Triglycerides]] ([[pioglitazone]])
* ↓ [[Triglyceride|Triglycerides]] (pioglitazone)


* ↓ [[Cardiovascular disease|CVD]] events (PROactive, [[pioglitazone]])
* ↓ CVD events (PROactive, pioglitazone)


* ↓ Risk of [[stroke]] and [[MI]] in patients without [[Diabetes mellitus|diabetes]] and with [[insulin resistance]] and history of recent [[stroke]] or [[TIA]]
* ↓ Risk of [[stroke]] and [[MI]] in patients without diabetes and with [[insulin resistance]] and history of recent [[stroke]] or [[TIA]]
*[[Pioglitazone]] use is associated with higher chance of [[pneumonia]]
*[[Pioglitazone]] use is associated with higher chance of [[pneumonia]]<ref name="SinghKhunti20202">{{cite journal|last1=Singh|first1=Awadhesh Kumar|last2=Khunti|first2=Kamlesh|title=Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: A narrative review|journal=Diabetes Research and Clinical Practice|volume=165|year=2020|pages=108266|issn=01688227|doi=10.1016/j.diabres.2020.108266}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↑ Weight
* ↑ Weight


*[[Edema]]/[[heart failure]]
* [[Edema]]/[[heart failure]]


* Bone [[Bone fracture|fractures]]
* Bone fractures


* ↑ [[LDL-C]] ([[rosiglitazone]])
* ↑ [[LDL-C]] ([[rosiglitazone]])
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low
|-
|-
| align="center" style="background:#DCDCDC;" |α-Glucosidase
|align="center" style="background:#DCDCDC;"|α-Glucosidase
inhibitors
inhibitors
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Acarbose]]
* [[Acarbose]]
*[[Miglitol]]
* [[Miglitol]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Inhibits intestinal
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Inhibits intestinal


α-glucosidase
α-glucosidase
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Slows intestinal [[carbohydrate]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Slows intestinal carbohydrate


digestion/absorption
digestion/absorption
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare hypoglycemia


* ↓ Postprandial [[glucose]] excursions
* ↓ Postprandial glucose excursions


* ↓ [[Cardiovascular disease|CVD]] events in [[prediabetes]]
* ↓ CVD events in prediabetes  


* Nonsystemic
* Nonsystemic
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Generally modest [[Glycosylated hemoglobin|A1C]] efficacy
* Generally modest A1C efficacy


*[[Gastrointestinal tract|Gastrointestinal]] [[Adverse effect (medicine)|side effects]] ([[flatulence]], [[diarrhea]])
* Gastrointestinal side effects ([[flatulence]], [[diarrhea]])


* Frequent dosing schedule
* Frequent dosing schedule
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low to
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Low to


moderate
moderate
|-
|-
| align="center" style="background:#DCDCDC;" |[[Dipeptidyl peptidase-4 inhibitor|DPP-4]]
|align="center" style="background:#DCDCDC;"|[[Dipeptidyl peptidase-4 inhibitor|DPP-4]]


[[Dipeptidyl peptidase-4 inhibitor|inhibitors]]
[[Dipeptidyl peptidase-4 inhibitor|inhibitors]]
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Sitagliptin]]
* [[Sitagliptin]]


*[[Saxagliptin]]
* [[Saxagliptin]]


*[[Linagliptin]]
* [[Linagliptin]]


*[[Alogliptin]]
* [[Alogliptin]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Inhibits [[Dipeptidyl peptidase-4 inhibitor|DPP-4]] activity, increasing postprandial [[incretin]] ([[Glucagon-like peptide-1|GLP-1]], GIP) concentrations
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Inhibits DPP-4 activity, increasing postprandial incretin (GLP-1, GIP) concentrations
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↑ [[Insulin]] secretion ([[glucose]] dependent)
* ↑ [[Insulin]] secretion (glucose dependent)


* ↓ [[Glucagon]] secretion ([[glucose]] dependent)
* ↓ [[Glucagon]] secretion (glucose dependent)
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare [[hypoglycemia]]


* Well tolerated
* Well tolerated
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Angioedema]]/[[urticaria]] and other immune-mediated dermatological effects
* [[Angioedema]]/[[urticaria]] and other immune-mediated dermatological effects


*[[Acute pancreatitis]]
* [[Acute pancreatitis]]


* ↑ [[Heart failure]] hospitalizations ([[saxagliptin]], [[alogliptin]])
* ↑ [[Heart failure]] hospitalizations ([[saxagliptin]], [[alogliptin]])
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| align="center" style="background:#DCDCDC;" |[[Bile acid sequestrant|Bile acid sequestrants]]
|align="center" style="background:#DCDCDC;"|Bile acid sequestrants
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Colesevelam]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Colesevelam]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Binds [[Bile acid|bile acids]] in intestinal tract,
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Binds bile acids in intestinal tract,


increasing hepatic [[bile acid]] production
increasing hepatic bile acid production
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↓ Hepatic [[glucose]] production
* ↓ Hepatic glucose production


* ↑ [[Incretin]] levels
* ↑ [[Incretin]] levels
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare [[hypoglycemia]]


* ↓ [[LDL-C]]
* ↓ [[LDL-C]]
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Modest [[A1C]] efficacy
* Modest [[A1C]] efficacy


*[[Constipation]]
* [[Constipation]]


* ↑ [[Triglyceride|Triglycerides]]
* ↑ [[Triglyceride|Triglycerides]]


* May ↓ absorption of other [[Medication|medications]]
* May ↓ absorption of other medications
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| align="center" style="background:#DCDCDC;" |[[Dopamine agonists|Dopamine-2]]
|align="center" style="background:#DCDCDC;"|[[Dopamine agonists|Dopamine-2]]


[[Dopamine agonists|agonists]]
[[Dopamine agonists|agonists]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Bromocriptine]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Bromocriptine]]


(quick release)<sup>§</sup>
(quick release)<sup>§</sup>
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[dopaminergic]] receptors
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates dopaminergic receptors
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Modulates [[hypothalamic]] regulation of metabolism
* Modulates [[hypothalamic]] regulation of metabolism


* ↑ [[Insulin resistance|Insulin sensitivity]]
* ↑ Insulin sensitivity
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare [[hypoglycemia]]


* ↓ [[Cardiovascular disease|CVD]] events
* ↓ [[Cardiovascular disease|CVD]] events
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Modest [[A1C]] efficacy
* Modest [[A1C]] efficacy


*[[Dizziness]]/[[syncope]]
* [[Dizziness]]/[[syncope]]


*[[Nausea]]
* [[Nausea]]


*[[Fatigue]]
* [[Fatigue]]


*[[Rhinitis]]
* [[Rhinitis]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| align="center" style="background:#DCDCDC;" |[[SGLT2]]
|align="center" style="background:#DCDCDC;"|[[SGLT2]]


inhibitors
inhibitors
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Canagliflozin]]
* [[Canagliflozin]]


*[[Dapagliflozin]]<sup>‡</sup>
* [[Dapagliflozin]]<sup>‡</sup>


*[[Empagliflozin]]
* [[Empagliflozin]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Inhibits [[SGLT2]] in the proximal [[nephron]]
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Inhibits [[SGLT2]] in the proximal [[nephron]]
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Blocks [[glucose]] [[reabsorption]] by the kidney,increasing [[glucosuria]]
* Blocks glucose reabsorption by the kidney,increasing [[glucosuria]]
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare [[hypoglycemia]]


* ↓ Weight
* ↓ Weight


* ↓ [[Blood pressure]]
* ↓ Blood pressure


*↓ The chance of [[kidney]] disease progression, including the [[macroalbuminuria]]. They are also capable of lowering the risk of worsening estimated [[glomerular filtration rate]], [[end-stage kidney disease]], or death due to [[renal failure]].
*↓ The chance of [[kidney]] disease progression, including the [[macroalbuminuria]]. They are also capable of lowering the risk of worsening estimated [[glomerular filtration rate]], [[end-stage kidney disease]], or death due to [[renal failure]].<ref name="ZelnikerWiviott2019">{{cite journal|last1=Zelniker|first1=Thomas A.|last2=Wiviott|first2=Stephen D.|last3=Raz|first3=Itamar|last4=Im|first4=KyungAh|last5=Goodrich|first5=Erica L.|last6=Furtado|first6=Remo H.M.|last7=Bonaca|first7=Marc P.|last8=Mosenzon|first8=Ofri|last9=Kato|first9=Eri T.|last10=Cahn|first10=Avivit|last11=Bhatt|first11=Deepak L.|last12=Leiter|first12=Lawrence A.|last13=McGuire|first13=Darren K.|last14=Wilding|first14=John P.H.|last15=Sabatine|first15=Marc S.|title=Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus|journal=Circulation|volume=139|issue=17|year=2019|pages=2022–2031|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.118.038868}}</ref>


*[[Empagliflozin]] is associated with lower [[Cardiovascular disease|CVD]] event rate and mortality in patients with [[Cardiovascular disease|CVD]]. It is also related to reduction of [[left ventricle]] mass after 6 months [[treatment]].
* Empagliflozin is associated with lower [[Cardiovascular disease|CVD]] event rate and mortality in patients with [[Cardiovascular disease|CVD]].<ref name="pmid28606340">{{cite journal| author=Paneni F, Lüscher TF| title=Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. | journal=Am J Cardiol | year= 2017 | volume= 120 | issue= 1S | pages= S17-S27 | pmid=28606340 | doi=10.1016/j.amjcard.2017.05.015 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28606340  }} </ref> It is also related to reduction of [[left ventricle]] mass after 6 months treatment.<ref name="VermaMazer2019">{{cite journal|last1=Verma|first1=Subodh|last2=Mazer|first2=C. David|last3=Yan|first3=Andrew T.|last4=Mason|first4=Tamique|last5=Garg|first5=Vinay|last6=Teoh|first6=Hwee|last7=Zuo|first7=Fei|last8=Quan|first8=Adrian|last9=Farkouh|first9=Michael E.|last10=Fitchett|first10=David H.|last11=Goodman|first11=Shaun G.|last12=Goldenberg|first12=Ronald M.|last13=Al-Omran|first13=Mohammed|last14=Gilbert|first14=Richard E.|last15=Bhatt|first15=Deepak L.|last16=Leiter|first16=Lawrence A.|last17=Jüni|first17=Peter|last18=Zinman|first18=Bernard|last19=Connelly|first19=Kim A.|title=Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease|journal=Circulation|volume=140|issue=21|year=2019|pages=1693–1702|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.119.042375}}</ref>


*[[Dapagliflozin]] has minor effect on [[diastolic]] cardiac function of [[Diabetes mellitus|diabetic]] patients. Nevertheless it is able to lower the risk of major adverse cardiovascular events in a diabetic patients with previous [[MI]].  
* Dapagliflozin has minor effect on [[diastolic]] cardiac function of diabetic patients. Nevertheless it is able to lower the risk of major adverse cardiovascular events in a diabetic patients with previous [[MI]]. <ref name="FurtadoBonaca2019">{{cite journal|last1=Furtado|first1=Remo H.M.|last2=Bonaca|first2=Marc P.|last3=Raz|first3=Itamar|last4=Zelniker|first4=Thomas A.|last5=Mosenzon|first5=Ofri|last6=Cahn|first6=Avivit|last7=Kuder|first7=Julia|last8=Murphy|first8=Sabina A.|last9=Bhatt|first9=Deepak L.|last10=Leiter|first10=Lawrence A.|last11=McGuire|first11=Darren K.|last12=Wilding|first12=John P.H.|last13=Ruff|first13=Christian T.|last14=Nicolau|first14=Jose C.|last15=Gause-Nilsson|first15=Ingrid A.M.|last16=Fredriksson|first16=Martin|last17=Langkilde|first17=Anna Maria|last18=Sabatine|first18=Marc S.|last19=Wiviott|first19=Stephen D.|title=Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction|journal=Circulation|volume=139|issue=22|year=2019|pages=2516–2527|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.119.039996}}</ref><ref name="EickhoffOlsen2020">{{cite journal|last1=Eickhoff|first1=Mie K.|last2=Olsen|first2=Flemming J.|last3=Frimodt-Møller|first3=Marie|last4=Diaz|first4=Lars J.|last5=Faber|first5=Jens|last6=Jensen|first6=Magnus T.|last7=Rossing|first7=Peter|last8=Persson|first8=Frederik|title=Effect of dapagliflozin on cardiac function in people with type 2 diabetes and albuminuria – A double blind randomized placebo-controlled crossover trial|journal=Journal of Diabetes and its Complications|volume=34|issue=7|year=2020|pages=107590|issn=10568727|doi=10.1016/j.jdiacomp.2020.107590}}</ref>
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Genitourinary]] infections<sup>†</sup>
* [[Genitourinary]] infections<sup>†</sup>


*[[Polyuria]]
* [[Polyuria]]


*[[Volume depletion]], [[hypotension]], [[dizziness]]
* [[Volume depletion]], [[hypotension]], [[dizziness]]


* ↑ [[LDL-C]]
* ↑ [[LDL-C]]
Line 352: Line 347:
* ↑ [[Creatinine]] (transient)
* ↑ [[Creatinine]] (transient)


*[[DKA]], [[urinary tract infections]] leading to urosepsis, [[pyelonephritis]]
* [[DKA]], [[urinary tract infections]] leading to urosepsis, [[pyelonephritis]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| align="center" style="background:#DCDCDC;" |[[GLP-1]] receptor [[Agonist|agonists]]
|align="center" style="background:#DCDCDC;"|[[GLP-1]] receptor agonists
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Exenatide]]
* [[Exenatide]]


* Exenatide extended release
* Exenatide extended release


*[[Liraglutide]]
* [[Liraglutide]]


*[[Albiglutide]]
* [[Albiglutide]]


*[[Lixisenatide]]
* [[Lixisenatide]]


*[[Dulaglutide]]
* [[Dulaglutide]]
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[Glucagon-like peptide-1|GLP-1]] receptors
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates GLP-1 receptors
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↑ [[Insulin]] secretion ([[glucose]] dependent)
* ↑ [[Insulin]] secretion (glucose dependent)


* ↓ [[Glucagon]] secretion ([[glucose]] dependent)
* ↓ [[Glucagon]] secretion (glucose dependent)


* Slows gastric emptying
* Slows gastric emptying


* ↑ [[Satiety]]
* ↑ Satiety
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rare [[hypoglycemia]]
* Rare [[hypoglycemia]]


Line 384: Line 379:
* ↓ [[Postprandial]] glucose excursions
* ↓ [[Postprandial]] glucose excursions


* ↓ Some cardiovascular [[Risk factor|risk factors]]
* ↓ Some cardiovascular risk factors


* ↓ The chance of [[kidney|kidney disease]] progression, including the [[macroalbuminuria]]<ref name="ZelnikerWiviott2019">{{cite journal|last1=Zelniker|first1=Thomas A.|last2=Wiviott|first2=Stephen D.|last3=Raz|first3=Itamar|last4=Im|first4=KyungAh|last5=Goodrich|first5=Erica L.|last6=Furtado|first6=Remo H.M.|last7=Bonaca|first7=Marc P.|last8=Mosenzon|first8=Ofri|last9=Kato|first9=Eri T.|last10=Cahn|first10=Avivit|last11=Bhatt|first11=Deepak L.|last12=Leiter|first12=Lawrence A.|last13=McGuire|first13=Darren K.|last14=Wilding|first14=John P.H.|last15=Sabatine|first15=Marc S.|title=Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus|journal=Circulation|volume=139|issue=17|year=2019|pages=2022–2031|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.118.038868}}</ref>
* ↓ The chance of [[kidney]] disease progression, including the [[macroalbuminuria]]<ref name="ZelnikerWiviott2019">{{cite journal|last1=Zelniker|first1=Thomas A.|last2=Wiviott|first2=Stephen D.|last3=Raz|first3=Itamar|last4=Im|first4=KyungAh|last5=Goodrich|first5=Erica L.|last6=Furtado|first6=Remo H.M.|last7=Bonaca|first7=Marc P.|last8=Mosenzon|first8=Ofri|last9=Kato|first9=Eri T.|last10=Cahn|first10=Avivit|last11=Bhatt|first11=Deepak L.|last12=Leiter|first12=Lawrence A.|last13=McGuire|first13=Darren K.|last14=Wilding|first14=John P.H.|last15=Sabatine|first15=Marc S.|title=Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus|journal=Circulation|volume=139|issue=17|year=2019|pages=2022–2031|issn=0009-7322|doi=10.1161/CIRCULATIONAHA.118.038868}}</ref>


*[[Liraglutide]] associated with lower [[Cardiovascular disease|CVD]] event rate and [[Mortality rate|mortality]] in patients with [[Cardiovascular disease|CVD]]<ref name="pmid28606340">{{cite journal| author=Paneni F, Lüscher TF| title=Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. | journal=Am J Cardiol | year= 2017 | volume= 120 | issue= 1S | pages= S17-S27 | pmid=28606340 | doi=10.1016/j.amjcard.2017.05.015 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28606340  }} </ref>
* Liraglutide associated with lower [[Cardiovascular disease|CVD]] event rate and mortality in patients with CVD<ref name="pmid28606340">{{cite journal| author=Paneni F, Lüscher TF| title=Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes. | journal=Am J Cardiol | year= 2017 | volume= 120 | issue= 1S | pages= S17-S27 | pmid=28606340 | doi=10.1016/j.amjcard.2017.05.015 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=28606340  }} </ref>
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Gastrointestinal [[Adverse effect (medicine)|side effects]] ([[nausea]]/[[vomiting]]/[[diarrhea]])
* Gastrointestinal side effects ([[nausea]]/[[vomiting]]/[[diarrhea]])


* ↑ [[Tachycardia|Heart rate]]
* ↑ [[Tachycardia|Heart rate]]


*[[Acute pancreatitis]]
* [[Acute pancreatitis]]


* C-cell [[hyperplasia]]/[[Medullary thyroid cancer|medullary thyroid tumors]] in animals
* C-cell hyperplasia/[[Medullary thyroid cancer|medullary thyroid tumors]] in animals


* Injectable
* Injectable


* Training requirements
* Training requirements
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| align="center" style="background:#DCDCDC;" |[[Amylin]] mimetics
|align="center" style="background:#DCDCDC;"|[[Amylin]] mimetics
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Pramlintide]]<sup>§</sup>
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |[[Pramlintide]]<sup>§</sup>
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[amylin]] receptors
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[amylin]] receptors
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↓ [[Glucagon]] secretion
* ↓ [[Glucagon]] secretion


* Slows gastric emptying
* Slows gastric emptying


*[[Satiety|↑ Satiety]]
* ↑ Satiety
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Postprandial glucose excursions
* Postprandial glucose excursions


* ↓ Weight
* ↓ Weight
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Modest [[Glycosylated hemoglobin|A1C]] efficacy
* Modest A1C efficacy


*[[Gastrointestinal tract|Gastrointestinal]] [[Adverse effect (medicine)|side effects]] ([[Nausea and vomiting|nausea/vomiting]])
* Gastrointestinal side effects ([[Nausea and vomiting|nausea/vomiting]])


*[[Hypoglycemia]] unless [[insulin]] dose is simultaneously reduced
* [[Hypoglycemia]] unless insulin dose is simultaneously reduced


* Injectable
* Injectable
Line 428: Line 423:


* Training requirements
* Training requirements
| style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| rowspan="5" align="center" style="background:#DCDCDC;" |[[Insulin|Insulins]]
| rowspan="5" align="center" style="background:#DCDCDC;"|[[Insulin|Insulins]]
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Rapid-acting [[Analog (chemistry)|analogs]]
* Rapid-acting analogs


**[[Insulin Lispro|Lispro]]
** [[Insulin Lispro|Lispro]]


**[[Insulin aspart|Aspart]]
** [[Insulin aspart|Aspart]]


**[[Insulin Glulisine|Glulisine]]
** [[Insulin Glulisine|Glulisine]]


** Inhaled [[insulin]]
** Inhaled insulin
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates [[insulin]] receptors
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="center" |Activates insulin receptors
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="left" |
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* ↑ [[Glucose]] disposal
* ↑ Glucose disposal


* ↓ Hepatic [[glucose]] production
* ↓ Hepatic glucose production


* Suppresses [[ketogenesis]]
* Suppresses [[ketogenesis]]
Line 453: Line 448:
* Theoretically unlimited efficacy
* Theoretically unlimited efficacy


* ↓ Microvascular risk
* ↓ Microvascular risk  
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="left" |
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="left" |
*[[Hypoglycemia]]
* [[Hypoglycemia]]


*[[Weight gain]]
* [[Weight gain]]


* Training requirements
* Training requirements
Line 463: Line 458:
* Patient and provider reluctance
* Patient and provider reluctance


* Injectable (except inhaled [[insulin]])
* Injectable (except inhaled insulin)


*[[Pulmonary toxicity]] (inhaled [[insulin]])
* Pulmonary toxicity (inhaled insulin)
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
| rowspan="5" style="padding: 5px 5px; background: #F5F5F5;" align="center" |High
|-
|-
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Short-acting
* Short-acting


**[[Regular insulin|Human Regular]]
** [[Regular insulin|Human Regular]]
|-
|-
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Intermediate-acting
* Intermediate-acting


**[[NPH insulin|Human NPH]]
** [[NPH insulin|Human NPH]]
|-
|-
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Basal [[insulin]] [[Analog (chemistry)|analogs]]
* Basal insulin analogs
**[[Insulin Glargine|Glargine]]
 
** [[Insulin Glargine|Glargine]]


**[[Insulin Detemir|Detemir]]
** [[Insulin Detemir|Detemir]]


**[[Insulin degludec|Degludec]]
** [[Insulin degludec|Degludec]]
|-
|-
| style="padding: 5px 5px; background: #F5F5F5;" align="left" |
|style="padding: 5px 5px; background: #F5F5F5;" align="left" |
* Premixed [[insulin]] products
* Premixed insulin products


** NPH/Regular 70/30
** NPH/Regular 70/30
Line 500: Line 496:
<sup>‡</sup> Initial concerns regarding [[bladder cancer]] risk are decreasing after subsequent study.
<sup>‡</sup> Initial concerns regarding [[bladder cancer]] risk are decreasing after subsequent study.


<sup>§</sup> Not licensed in Europe for [[Diabetes mellitus type 2|type 2 diabetes]].
<sup>§</sup> Not licensed in Europe for type 2 diabetes.


<sup>†</sup> One study demonstrates factors like previous genital infection history, concurrent [[Estrogen|estrogen therapy]] and younger age as [[Risk factor|risk factors]] that augment the chance of this [[Adverse effect (medicine)|side effect]]. This study also reports [[Chronic renal failure|chronic kidney disease]] and baseline [[Dipeptidyl peptidase-4 inhibitor|DPP4 inhibitor]] therapy as factors that lower the risk of genital infection.  
<sup>†</sup> One study demonstrates factors like previous genital infection history, concurrent [[Estrogen|estrogen therapy]] and younger age as [[Risk factor|risk factors]] that augment the chance of this [[Adverse effect (medicine)|side effect]]. This study also reports [[Chronic renal failure|chronic kidney disease]] and baseline [[Dipeptidyl peptidase-4 inhibitor|DPP4 inhibitor]] therapy as factors that lower the risk of genital infection development.<ref name="NakhlehZloczower2020">{{cite journal|last1=Nakhleh|first1=Afif|last2=Zloczower|first2=Moshe|last3=Gabay|first3=Linoy|last4=Shehadeh|first4=Naim|title=Effects of sodium glucose co-transporter 2 inhibitors on genital infections in female patients with type 2 diabetes mellitus– Real world data analysis|journal=Journal of Diabetes and its Complications|volume=34|issue=7|year=2020|pages=107587|issn=10568727|doi=10.1016/j.jdiacomp.2020.107587}}</ref>


==References==
==References==
Line 508: Line 504:


[[Category:Endocrinology]]
[[Category:Endocrinology]]
<references />

Revision as of 12:17, 11 August 2020

Diabetes mellitus main page

Diabetes mellitus type 2 Microchapters

Home

Patient information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Diabetes Mellitus Type 2 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical therapy

Life Style Modification
Pharmacotherapy
Glycemic Control

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Seyedmahdi Pahlavani, M.D. [2]

Overview

The main goals of treatment are to eliminate hyperglycemic symptoms, control the long term complications and improve the patient's quality of life.

Diabetes mellitus type 2 is initially treated by life style modification and weight loss, especially in obese patients. Metformin is the first line pharmacologic therapy that is usually started once the diagnosis is confirmed unless contraindications exist. If glycemic goals are not achieved, a second agent must be added to metformin. A wide range of options are available to add as combination therapy based on the patient's condition and comorbidities.

Pharmacologic therapy

Inpatients

Outpatients

Medical therapy starts with metformin monotherapy unless there is a contraindication for it. In the following conditions, treatment starts with dual therapy:[1][2][3][4][5][6]

  • If HbA1C is greater than 9, start with dual oral blood glucose lowering agent.
  • If HbA1C is greater than 10 or blood glucose is more than 300 mg/dl or patient is markedly symptomatic, consider combination therapy with insulin.

The most effective class of drugs for reducing death are probably sodium glucose transporter 2 (SGLT2) inhibitors or GLP-1 receptor agonists.[7]

Metformin

  • Metformin is effective, safe and inexpensive. It may reduce risk of cardiovascular events and death. Patients should be advised to stop the medication in cases of nausea, vomiting or dehydration.
  • Metformin is capable of decreasing the body weight but it's effect on muscle mass is unclear.[8]

Contraindications

  • As of June 2020, The US Food and Drug Administration (FDA) recalls extended-release metformin which is made by few pharma companies due to detection of high levels of N-nitrosodimethylamine (NDMA).
,Randomized controlled trial comparing initial doses for metformin[14].
Total duration was 14 weeks with at least 8 weeks on final dose. Placebo 500 mg once daily 1000 mg

(500 mg twice daily)

1500 mg

(500 mg thrice daily)

2000 mg

(1000 mg twice daily)

2500 mg

(1000 am, 500 lunch, 1000 at supper daily

Any GI ADR 13% 16% 29% 24% 23% 29%
Diarrhea 5% 8% 21% 12% 19% 14%
HbA1c change + 1.2 + 0.3 + 0.1 - 0.5 - 0.8 - 0.04
Source: Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL (1997). "Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial". Am J Med. 103 (6): 491–7. doi:10.1016/s0002-9343(97)00254-4. PMID 9428832.

Insulin

  • The lack of inexpensive, generic insulin may lead to underuse of insulin[15] and occurs for unusual reasons[16].
  • The insulin analogues may not provide a meaningful advantage[17][18][19].
  • Although Insulin increases the body weight, some data suggest that it is capable of increasing the muscle mass.[20]
  • A meta-analysis of randomized controlled trials by the Cochrane Collaboration found "only a minor clinical benefit of treatment with long-acting insulin analogues for patients with diabetes mellitus type 2" compared to human insulin[19] More recent randomized controlled trials have found no differences with glargine[21] and have found that although long acting insulins were less effective, they were associated with less hypoglycemia.[22]
  • Premixed combinations of insulin, human or analogue, have similar reductions in HbA1c[23]. A cohort study likewise found similar rates of hypoglycemia[18].

Bedtime insulin

Initially, adding bedtime insulin to patients failing oral medications is more effective and with less weight gain than using multiple dose insulin.[24] Nightly insulin combines better with metformin that with sulfonylureas.[25] The initial dose of nightly insulin (measured in IU/d) should be equal to the fasting blood glucose level (measured in mmol/L)[24]. If the fasting glucose is reported in mg/dl, multiple by 0.05551 (or divided by 18) to convert to mmol/L.[26]

Combination therapy

Any agent can be added as second drug based on patient condition but the American Association of Clinical Endocrinologists recommends either incretin based therapy or sodium glucose transporter 2 (SGLT2) inhibition agents.

The following table summarize the available FDA approved glucose lowering agents that may help to individualize treatment for each patient.

Class Drug Mechanism of action Primary physiologic action Advantages Disadvantages Cost
Biguanides Metformin Activates AMP-kinase ↓ Hepatic glucose

production

  • Extensive experience
  • Relatively higher A1C efficacy
Low
Sulfonylureas 2nd generation Closes K-ATP channels on beta cell plasma membranes Insulin secretion
  • Extensive experience
  • Relatively higher A1C efficacy
  • ↑ Weight
Low
Meglitinides Closes K-ATP channels on beta cell plasma membranes Insulin secretion
  • Dosing flexibility
  • ↑ Weight
  • Frequent dosing schedule
Moderate
Thiazolidinedione

(TZDs)

Activates the nuclear transcription factor PPAR-gama ↑ Insulin sensitivity
  • Relatively higher A1C efficacy
  • Durability
  • ↓ CVD events (PROactive, pioglitazone)
  • ↑ Weight
  • Bone fractures
Low
α-Glucosidase

inhibitors

Inhibits intestinal

α-glucosidase

Slows intestinal carbohydrate

digestion/absorption

  • Rare hypoglycemia
  • ↓ Postprandial glucose excursions
  • ↓ CVD events in prediabetes
  • Nonsystemic
  • Generally modest A1C efficacy
  • Frequent dosing schedule
Low to

moderate

DPP-4

inhibitors

Inhibits DPP-4 activity, increasing postprandial incretin (GLP-1, GIP) concentrations
  • Insulin secretion (glucose dependent)
  • Glucagon secretion (glucose dependent)
  • Well tolerated
High
Bile acid sequestrants Colesevelam Binds bile acids in intestinal tract,

increasing hepatic bile acid production

  • ↓ Hepatic glucose production
  • Modest A1C efficacy
  • May ↓ absorption of other medications
High
Dopamine-2

agonists

Bromocriptine

(quick release)§

Activates dopaminergic receptors
  • ↑ Insulin sensitivity
  • Modest A1C efficacy
High
SGLT2

inhibitors

Inhibits SGLT2 in the proximal nephron
  • Blocks glucose reabsorption by the kidney,increasing glucosuria
  • ↓ Weight
  • ↓ Blood pressure
  • Empagliflozin is associated with lower CVD event rate and mortality in patients with CVD.[29] It is also related to reduction of left ventricle mass after 6 months treatment.[30]
  • Dapagliflozin has minor effect on diastolic cardiac function of diabetic patients. Nevertheless it is able to lower the risk of major adverse cardiovascular events in a diabetic patients with previous MI. [31][32]
High
GLP-1 receptor agonists
  • Exenatide extended release
Activates GLP-1 receptors
  • Insulin secretion (glucose dependent)
  • Glucagon secretion (glucose dependent)
  • Slows gastric emptying
  • ↑ Satiety
  • ↓ Weight
  • ↓ Some cardiovascular risk factors
  • Liraglutide associated with lower CVD event rate and mortality in patients with CVD[29]
  • Injectable
  • Training requirements
High
Amylin mimetics Pramlintide§ Activates amylin receptors
  • Slows gastric emptying
  • ↑ Satiety
  • Postprandial glucose excursions
  • ↓ Weight
  • Modest A1C efficacy
  • Injectable
  • Frequent dosing schedule
  • Training requirements
High
Insulins
  • Rapid-acting analogs
    • Inhaled insulin
Activates insulin receptors
  • ↑ Glucose disposal
  • ↓ Hepatic glucose production
  • Nearly universal response
  • Theoretically unlimited efficacy
  • ↓ Microvascular risk
  • Training requirements
  • Patient and provider reluctance
  • Injectable (except inhaled insulin)
  • Pulmonary toxicity (inhaled insulin)
High
  • Short-acting
  • Intermediate-acting
  • Basal insulin analogs
  • Premixed insulin products
    • NPH/Regular 70/30
    • 70/30 aspart mix
    • 75/25 lispro mix
    • 50/50 lispro mix

Initial concerns regarding bladder cancer risk are decreasing after subsequent study.

§ Not licensed in Europe for type 2 diabetes.

One study demonstrates factors like previous genital infection history, concurrent estrogen therapy and younger age as risk factors that augment the chance of this side effect. This study also reports chronic kidney disease and baseline DPP4 inhibitor therapy as factors that lower the risk of genital infection development.[33]

References

  1. Qaseem A, Hopkins RH, Sweet DE, Starkey M, Shekelle P (2013). "Screening, monitoring, and treatment of stage 1 to 3 chronic kidney disease: A clinical practice guideline from the American College of Physicians". Ann. Intern. Med. 159 (12): 835–47. doi:10.7326/0003-4819-159-12-201312170-00726. PMID 24145991.
  2. "Standards of Medical Care in Diabetes-2017: Summary of Revisions". Diabetes Care. 40 (Suppl 1): S4–S5. 2017. doi:10.2337/dc17-S003. PMID 27979887.
  3. Colagiuri S, Cull CA, Holman RR (2002). "Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61". Diabetes Care. 25 (8): 1410–7. PMID 12145243.
  4. Davidson MB (1992). "Successful treatment of markedly symptomatic patients with type II diabetes mellitus using high doses of sulfonylurea agents". West. J. Med. 157 (2): 199–200. PMC 1011263. PMID 1441492.
  5. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S (2016). "Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes: A Systematic Review and Meta-analysis". Ann. Intern. Med. 164 (11): 740–51. doi:10.7326/M15-2650. PMID 27088241.
  6. Palmer SC, Mavridis D, Nicolucci A, Johnson DW, Tonelli M, Craig JC, Maggo J, Gray V, De Berardis G, Ruospo M, Natale P, Saglimbene V, Badve SV, Cho Y, Nadeau-Fredette AC, Burke M, Faruque L, Lloyd A, Ahmad N, Liu Y, Tiv S, Wiebe N, Strippoli GF (2016). "Comparison of Clinical Outcomes and Adverse Events Associated With Glucose-Lowering Drugs in Patients With Type 2 Diabetes: A Meta-analysis". JAMA. 316 (3): 313–24. doi:10.1001/jama.2016.9400. PMID 27434443.
  7. GitHub Contributors. Hypertonic Saline for Bronchiolitis: a living systematic review. GitHub. Available at http://openmetaanalysis.github.io/Diabetes-mellitus-type-2-mortality-prevention-with-pharmacotherapy/. Accessed June 11, 2018.
  8. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D (2019). "Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship". Diabetes Metab Syndr Obes. 12: 1057–1072. doi:10.2147/DMSO.S186600. PMC 6630094 Check |pmc= value (help). PMID 31372016.
  9. Eurich, Dean T.; Weir, Daniala L.; Majumdar, Sumit R.; Tsuyuki, Ross T.; Johnson, Jeffrey A.; Tjosvold, Lisa; Vanderloo, Saskia E.; McAlister, Finlay A. (2013). "Comparative Safety and Effectiveness of Metformin in Patients With Diabetes Mellitus and Heart Failure". Circulation: Heart Failure. 6 (3): 395–402. doi:10.1161/CIRCHEARTFAILURE.112.000162. ISSN 1941-3289.
  10. Mendy A, Gopal R, Alcorn JF, Forno E (2019). "Reduced mortality from lower respiratory tract disease in adult diabetic patients treated with metformin". Respirology. 24 (7): 646–651. doi:10.1111/resp.13486. PMC 6579707 Check |pmc= value (help). PMID 30761687.
  11. Liang, Huoyan; Ding, Xianfei; Li, Lifeng; Wang, Tian; Kan, Quancheng; Wang, Lexin; Sun, Tongwen (2019). "Association of preadmission metformin use and mortality in patients with sepsis and diabetes mellitus: a systematic review and meta-analysis of cohort studies". Critical Care. 23 (1). doi:10.1186/s13054-019-2346-4. ISSN 1364-8535.
  12. Singh, Awadhesh Kumar; Khunti, Kamlesh (2020). "Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: A narrative review". Diabetes Research and Clinical Practice. 165: 108266. doi:10.1016/j.diabres.2020.108266. ISSN 0168-8227.
  13. Wu, Yingjie; Zhou, An; Tang, Li; Lei, Yuanyuan; Tang, Bo; Zhang, Linjing (2020). "Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes". Journal of Diabetes Research. 2020: 1–11. doi:10.1155/2020/6138438. ISSN 2314-6745.
  14. Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL (1997). "Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial". Am J Med. 103 (6): 491–7. doi:10.1016/s0002-9343(97)00254-4. PMID 9428832.
  15. Herkert D, Vijayakumar P, Luo J, Schwartz JI, Rabin TL, DeFilippo E; et al. (2018). "Cost-Related Insulin Underuse Among Patients With Diabetes". JAMA Intern Med. doi:10.1001/jamainternmed.2018.5008. PMID 30508012.
  16. Greene JA, Riggs KR (2015). "Why is there no generic insulin? Historical origins of a modern problem". N Engl J Med. 372 (12): 1171–5. doi:10.1056/NEJMms1411398. PMID 25785977.
  17. Luo J, Khan NF, Manetti T, Rose J, Kaloghlian A, Gadhe B; et al. (2019). "Implementation of a Health Plan Program for Switching From Analogue to Human Insulin and Glycemic Control Among Medicare Beneficiaries With Type 2 Diabetes". JAMA. 321 (4): 374–384. doi:10.1001/jama.2018.21364. PMID 30694321.
  18. 18.0 18.1 Lipska KJ, Parker MM, Moffet HH, Huang ES, Karter AJ (2018). "Association of Initiation of Basal Insulin Analogs vs Neutral Protamine Hagedorn Insulin With Hypoglycemia-Related Emergency Department Visits or Hospital Admissions and With Glycemic Control in Patients With Type 2 Diabetes". JAMA. 320 (1): 53–62. doi:10.1001/jama.2018.7993. PMC 6134432. PMID 29936529.
  19. 19.0 19.1 Horvath K, Jeitler K, Berghold A, Ebrahim SH, Gratzer TW, Plank J; et al. (2007). "Long-acting insulin analogues versus NPH insulin (human isophane insulin) for type 2 diabetes mellitus". Cochrane Database Syst Rev (2): CD005613. doi:10.1002/14651858.CD005613.pub3. PMID 17443605. Review in: ACP J Club. 2007 Sep-Oct;147(2):46
  20. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D (2019). "Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship". Diabetes Metab Syndr Obes. 12: 1057–1072. doi:10.2147/DMSO.S186600. PMC 6630094 Check |pmc= value (help). PMID 31372016.
  21. Esposito K; et al. (2008). "Addition of neutral protamine lispro insulin or insulin glargine to oral type 2 diabetes regimens for patients with suboptimal glycemic control: a randomized trial". Ann Intern Med. 149: 531–9. PMID 18936501.
  22. Holman RR; et al. (2007). "Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes". N Engl J Med. 357: 1716–30. doi:10.1056/NEJMoa075392. PMID 17890232.
  23. Qayyum R, Bolen S, Maruthur N, Feldman L, Wilson LM, Marinopoulos SS; et al. (2008). "Systematic review: comparative effectiveness and safety of premixed insulin analogues in type 2 diabetes". Ann Intern Med. 149 (8): 549–59. PMC 4762020. PMID 18794553.
  24. 24.0 24.1 Yki-Järvinen H, Kauppila M, Kujansuu E; et al. (1992). "Comparison of insulin regimens in patients with non-insulin-dependent diabetes mellitus". N. Engl. J. Med. 327 (20): 1426–33. PMID 1406860.
  25. Yki-Järvinen H, Ryysy L, Nikkilä K, Tulokas T, Vanamo R, Heikkilä M (1999). "Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus. A randomized, controlled trial". Ann. Intern. Med. 130 (5): 389–96. PMID 10068412.
  26. Kratz A, Lewandrowski KB (1998). "Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Normal reference laboratory values". N. Engl. J. Med. 339 (15): 1063–72. PMID 9761809.
  27. Singh, Awadhesh Kumar; Khunti, Kamlesh (2020). "Assessment of risk, severity, mortality, glycemic control and antidiabetic agents in patients with diabetes and COVID-19: A narrative review". Diabetes Research and Clinical Practice. 165: 108266. doi:10.1016/j.diabres.2020.108266. ISSN 0168-8227.
  28. 28.0 28.1 Zelniker, Thomas A.; Wiviott, Stephen D.; Raz, Itamar; Im, KyungAh; Goodrich, Erica L.; Furtado, Remo H.M.; Bonaca, Marc P.; Mosenzon, Ofri; Kato, Eri T.; Cahn, Avivit; Bhatt, Deepak L.; Leiter, Lawrence A.; McGuire, Darren K.; Wilding, John P.H.; Sabatine, Marc S. (2019). "Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus". Circulation. 139 (17): 2022–2031. doi:10.1161/CIRCULATIONAHA.118.038868. ISSN 0009-7322.
  29. 29.0 29.1 Paneni F, Lüscher TF (2017). "Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes". Am J Cardiol. 120 (1S): S17–S27. doi:10.1016/j.amjcard.2017.05.015. PMID 28606340.
  30. Verma, Subodh; Mazer, C. David; Yan, Andrew T.; Mason, Tamique; Garg, Vinay; Teoh, Hwee; Zuo, Fei; Quan, Adrian; Farkouh, Michael E.; Fitchett, David H.; Goodman, Shaun G.; Goldenberg, Ronald M.; Al-Omran, Mohammed; Gilbert, Richard E.; Bhatt, Deepak L.; Leiter, Lawrence A.; Jüni, Peter; Zinman, Bernard; Connelly, Kim A. (2019). "Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease". Circulation. 140 (21): 1693–1702. doi:10.1161/CIRCULATIONAHA.119.042375. ISSN 0009-7322.
  31. Furtado, Remo H.M.; Bonaca, Marc P.; Raz, Itamar; Zelniker, Thomas A.; Mosenzon, Ofri; Cahn, Avivit; Kuder, Julia; Murphy, Sabina A.; Bhatt, Deepak L.; Leiter, Lawrence A.; McGuire, Darren K.; Wilding, John P.H.; Ruff, Christian T.; Nicolau, Jose C.; Gause-Nilsson, Ingrid A.M.; Fredriksson, Martin; Langkilde, Anna Maria; Sabatine, Marc S.; Wiviott, Stephen D. (2019). "Dapagliflozin and Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus and Previous Myocardial Infarction". Circulation. 139 (22): 2516–2527. doi:10.1161/CIRCULATIONAHA.119.039996. ISSN 0009-7322.
  32. Eickhoff, Mie K.; Olsen, Flemming J.; Frimodt-Møller, Marie; Diaz, Lars J.; Faber, Jens; Jensen, Magnus T.; Rossing, Peter; Persson, Frederik (2020). "Effect of dapagliflozin on cardiac function in people with type 2 diabetes and albuminuria – A double blind randomized placebo-controlled crossover trial". Journal of Diabetes and its Complications. 34 (7): 107590. doi:10.1016/j.jdiacomp.2020.107590. ISSN 1056-8727.
  33. Nakhleh, Afif; Zloczower, Moshe; Gabay, Linoy; Shehadeh, Naim (2020). "Effects of sodium glucose co-transporter 2 inhibitors on genital infections in female patients with type 2 diabetes mellitus– Real world data analysis". Journal of Diabetes and its Complications. 34 (7): 107587. doi:10.1016/j.jdiacomp.2020.107587. ISSN 1056-8727.