Delayed puberty pathophysiology: Difference between revisions

Jump to navigation Jump to search
m (Bot: Removing from Primary care)
 
(8 intermediate revisions by 2 users not shown)
Line 4: Line 4:


==Overview==
==Overview==
It is absolute that delayed puberty is the result of any disturbances in [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis. Delayed puberty has found to be on a [[genetic]] basis, most of the times. It is assumed that the main factor in determining the [[puberty]] timing is [[genetic]] elements. In case of [[Constitutional delay of puberty|constitutional delay of growth and puberty (CDGP)]], researchers suggested 50-75% of the positive family history of delayed [[puberty]]. About 25 various [[genes]], in 3 different group of [[Kallman syndrome|Kallmann syndrome]]-related genes, [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis related genes, and [[obesity|obesity-]]<nowiki/>related [[genes]] play roles in delayed [[puberty]]. On gross pathology, lack of [[testicular]] enlargement in boys or [[breast]] development in girls is the characteristic finding of delayed [[puberty]]. Microscopic evaluation of [[ovaries]] in a patient with delayed [[puberty]] may reveal the presence of normal [[Cuboidal epithelium|cubical epithelium]]; the [[ovary]] has some dense [[fibrous tissue]], about 0.4 mm thick band, in the [[cortex]]. The band is extended under the [[tunica albuginea]], devoid of [[Follicle|follicles]]. Under the fibrous band, there will be numerous small [[Follicle|follicles]]. These [[Follicle|follicles]] consist of primordial (51%), intermediary (42%), and primary (7%) [[Follicle|follicles]].  
Delayed puberty is the result of disturbances in [[HPGD|hypothalamus-pituitary-gonadal]] (HPG) axis. Genetics plays an important role in the development of delayed puberty. In case of [[Constitutional delay of puberty|constitutional delay of growth and puberty (CDGP)]], 50-75% of patients have a positive family history of delayed [[puberty]]. About 25 various [[genes]], in 3 different group of [[Kallman syndrome|Kallmann syndrome]]-related genes, [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis related genes, and [[obesity|obesity-]]<nowiki/>related [[genes]] play roles in delayed [[puberty]]. On gross pathology, lack of [[testicular]] enlargement in boys or [[breast]] development in girls is the characteristic finding of delayed [[puberty]]. Microscopic evaluation of [[ovaries]] in a patient with delayed [[puberty]] may reveal the presence of normal [[Cuboidal epithelium|cuboidal epithelium]]; the [[ovary]] has some dense [[fibrous tissue]], about 0.4 mm thick band, in the [[cortex]]. The band is extended under the [[tunica albuginea]], devoid of [[Follicle|follicles]]. Under the fibrous band, there will be numerous small [[Follicle|follicles]]. These [[Follicle|follicles]] consist of primordial (51%), intermediary (42%), and primary (7%) [[Follicle|follicles]].  


==Pathophysiology==
==Pathophysiology==
===Pathogenesis===
===Pathogenesis===
*It is absolute that delayed puberty is the result of any disturbances in [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis.  
*Delayed puberty is the result of disturbances in [[hypothalamus]]-[[pituitary]]-[[gonadal]] (HPG) axis.  
*The components of HPG axis is already well identified and oriented, but the main signal of starting the [[puberty]] is not cleared completely yet. It is not obvious that why some children start puberty at 11 and some others start at 14.
*The components of HPG axis are already well identified and oriented, but the main signal of starting [[puberty]] is not completely understood. It is not understood why some children start puberty at 11 and some others later.
*Intact HPG axis is the main factor required for the development of maturation in a child. The beginning of the pathway is with [[Gonadotropin releasing hormone|gonadotropin releasing hormone (GnRH)]] production from the [[hypothalamus]]. Then, [[GnRH]] stimulates the gonadotropic cells in the [[anterior pituitary]] gland, producing [[Luteinizing hormone|luteinizing hormone (LH)]] and [[Follicle stimulating hormone|follicle stimulating hormone (FSH)]]. Finally, [[LH]] and [[FSH]] stimulate the [[gonads]] maturation to produce the [[Sex steroids|sex-steroids]], firing the [[puberty]] process.  
*Intact HPG axis is the main factor required for the development of maturation in a child. The beginning of the pathway is with [[Gonadotropin releasing hormone|gonadotropin releasing hormone (GnRH)]] production from the [[hypothalamus]]. Then, [[GnRH]] stimulates the gonadotropic cells in the [[anterior pituitary]] gland, producing [[Luteinizing hormone|luteinizing hormone (LH)]] and [[Follicle stimulating hormone|follicle stimulating hormone (FSH)]]. Finally, [[LH]] and [[FSH]] stimulate the [[gonads]] maturation to produce the [[Sex steroids|sex-steroids]], firing the [[puberty]] process.  
*Every single failure in the mentioned pathway could lead to delayed [[puberty]]. The failure may be congenital or acquired during the life.<ref name="PalmertDunkel2012">{{cite journal|last1=Palmert|first1=Mark R.|last2=Dunkel|first2=Leo|title=Delayed Puberty|journal=New England Journal of Medicine|volume=366|issue=5|year=2012|pages=443–453|issn=0028-4793|doi=10.1056/NEJMcp1109290}}</ref>  
*Every single failure in the mentioned pathway could lead to delayed [[puberty]]. The failure may be congenital or acquired during the life.<ref name="PalmertDunkel2012">{{cite journal|last1=Palmert|first1=Mark R.|last2=Dunkel|first2=Leo|title=Delayed Puberty|journal=New England Journal of Medicine|volume=366|issue=5|year=2012|pages=443–453|issn=0028-4793|doi=10.1056/NEJMcp1109290}}</ref>  
Line 21: Line 21:
| rowspan="2" |Congenital
| rowspan="2" |Congenital
|[[Chromosomal abnormality]]  
|[[Chromosomal abnormality]]  
|Lack or disorder of a specific [[cell line]] or [[enzyme]] that are responsible to produce one of [[Sex steroids|sex-steroids]] in [[gonads]]
|Lack or disorder of a specific [[cell line]] or [[enzyme]] that is responsible for producing one of the [[Sex steroids|sex-steroids]] in [[gonads]]
|-
|-
|[[Gonadal agenesis]]
|[[Gonadal agenesis]]
Line 33: Line 33:
| rowspan="2" |Congenital
| rowspan="2" |Congenital
|[[GnRH]] deficiency
|[[GnRH]] deficiency
|Lack or disorder of a specific [[cell line]] or [[enzyme]] that is responsible to produce [[GnRH]] in [[hypothalamus]]
|Lack or disorder of a specific [[cell line]] or [[enzyme]] that is responsible for producing [[GnRH]] in [[hypothalamus]]
|-
|-
|[[LH]] and [[FSH]] deficiency
|[[LH]] and [[FSH]] deficiency
|Lack or disorder of a specific [[cell line]] or [[enzyme]] that is responsible to produce [[LH]] or [[FSH]] in [[pituitary]] gonadotropic cells
|Lack or disorder of a specific [[cell line]] or [[enzyme]] that is responsible for producing [[LH]] or [[FSH]] in [[pituitary]] gonadotropic cells
|-
|-
|Acquired  
|Acquired  
Line 44: Line 44:


==== Antimullerian hormone and inhibin B ====
==== Antimullerian hormone and inhibin B ====
* [[Antimullerian hormone]] and [[Inhibin|inhibin B]] are two [[glycoproteins]] that are secreted from [[gonads]] and can reflect the activity level of them. Their plasma level changes reflect the [[puberty]] status in children, as follows:<ref name="pmid26353794">{{cite journal |vauthors=Wei C, Crowne EC |title=Recent advances in the understanding and management of delayed puberty |journal=Arch. Dis. Child. |volume=101 |issue=5 |pages=481–8 |year=2016 |pmid=26353794 |doi=10.1136/archdischild-2014-307963 |url=}}</ref>  
* [[Antimullerian hormone]] and [[Inhibin|inhibin B]] are two [[glycoproteins]] that are secreted from [[gonads]] and can reflect their activity level. Their plasma level changes reflect the [[puberty]] status in children, as follows:<ref name="pmid26353794">{{cite journal |vauthors=Wei C, Crowne EC |title=Recent advances in the understanding and management of delayed puberty |journal=Arch. Dis. Child. |volume=101 |issue=5 |pages=481–8 |year=2016 |pmid=26353794 |doi=10.1136/archdischild-2014-307963 |url=}}</ref>  
{| class="wikitable"
{| class="wikitable"
!Sex
!Sex
Line 92: Line 92:


==Genetics==
==Genetics==
Delayed puberty has found to be on a [[genetic]] basis, most of the times. It is assumed that the main factor in determining the [[puberty]] timing is [[genetic]] elements.<ref name="pmid20144687">{{cite journal |vauthors=Gajdos ZK, Henderson KD, Hirschhorn JN, Palmert MR |title=Genetic determinants of pubertal timing in the general population |journal=Mol. Cell. Endocrinol. |volume=324 |issue=1-2 |pages=21–9 |year=2010 |pmid=20144687 |pmc=2891370 |doi=10.1016/j.mce.2010.01.038 |url=}}</ref>  
* Genetics plays an important role in delayed puberty. It is assumed that the main factor in determining [[puberty]] timing is [[genetic]] elements.<ref name="pmid20144687">{{cite journal |vauthors=Gajdos ZK, Henderson KD, Hirschhorn JN, Palmert MR |title=Genetic determinants of pubertal timing in the general population |journal=Mol. Cell. Endocrinol. |volume=324 |issue=1-2 |pages=21–9 |year=2010 |pmid=20144687 |pmc=2891370 |doi=10.1016/j.mce.2010.01.038 |url=}}</ref>


In case of [[Constitutional delay of puberty|constitutional delay of growth and puberty (CDGP)]], researchers suggested 50-75% of positive family history of delayed [[puberty]].<ref name="pmid18160460">{{cite journal |vauthors=Wehkalampi K, Widén E, Laine T, Palotie A, Dunkel L |title=Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care |journal=J. Clin. Endocrinol. Metab. |volume=93 |issue=3 |pages=723–8 |year=2008 |pmid=18160460 |doi=10.1210/jc.2007-1786 |url=}}</ref>  
* In case of [[Constitutional delay of puberty|constitutional delay of growth and puberty (CDGP)]], 50-75% of patients have a positive family history of delayed [[puberty]].<ref name="pmid18160460">{{cite journal |vauthors=Wehkalampi K, Widén E, Laine T, Palotie A, Dunkel L |title=Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care |journal=J. Clin. Endocrinol. Metab. |volume=93 |issue=3 |pages=723–8 |year=2008 |pmid=18160460 |doi=10.1210/jc.2007-1786 |url=}}</ref>


It is thought that [[Constitutional delay of puberty|CDGP]] is inherited in an [[autosomal dominant]] pattern, with or without the effects of complete [[penetrance]]. It is not a sex oriented [[inheritance]] and can be seen in all family members.<ref name="pmid12466356">{{cite journal |vauthors=Sedlmeyer IL, Hirschhorn JN, Palmert MR |title=Pedigree analysis of constitutional delay of growth and maturation: determination of familial aggregation and inheritance patterns |journal=J. Clin. Endocrinol. Metab. |volume=87 |issue=12 |pages=5581–6 |year=2002 |pmid=12466356 |doi=10.1210/jc.2002-020862 |url=}}</ref>
* It is thought that [[Constitutional delay of puberty|CDGP]] is inherited in an [[autosomal dominant]] pattern, with or without the effects of complete [[penetrance]].  
* Delayed puberty is not a sex oriented [[inheritance]] and can be seen in all family members.<ref name="pmid12466356">{{cite journal |vauthors=Sedlmeyer IL, Hirschhorn JN, Palmert MR |title=Pedigree analysis of constitutional delay of growth and maturation: determination of familial aggregation and inheritance patterns |journal=J. Clin. Endocrinol. Metab. |volume=87 |issue=12 |pages=5581–6 |year=2002 |pmid=12466356 |doi=10.1210/jc.2002-020862 |url=}}</ref>


=== The major genes in delayed puberty ===
=== The major genes in delayed puberty ===
Line 302: Line 303:
* Male [[pseudohermaphroditism]]
* Male [[pseudohermaphroditism]]
* [[Denys-Drash syndrome]]
* [[Denys-Drash syndrome]]
* [[hypospadias]]
* [[Hypospadias]]
|-
|-
|'''HESX-1'''
|'''HESX-1'''
Line 309: Line 310:
|''3p14.3''
|''3p14.3''
|
|
* ''[[pituitary]] development''
* ''[[Pituitary]] development''
* ''Midfacial differentiation''
* ''Midfacial differentiation''
* ''[[Mutation]] may lead to [[pituitary]] [[hypoplasia]]''
* ''[[Mutation]] may lead to [[pituitary]] [[hypoplasia]]''
Line 315: Line 316:
* Septooptic dysplasia
* Septooptic dysplasia
* Reduced [[prosencephalon]]
* Reduced [[prosencephalon]]
* [[anophthalmia]]
* [[Anophthalmia]]
* [[microphthalmia]]
* [[Microphthalmia]]
* Defective [[olfactory]] development
* Defective [[olfactory]] development
* [[Rathke pouch]] bifurcations
* [[Rathke pouch]] bifurcations
Line 340: Line 341:
|
|
* ''Developing anterior [[pituitary gland]]''  
* ''Developing anterior [[pituitary gland]]''  
* ''[[gonadotrophs]]''
* ''[[Gonadotrophs]]''
* ''[[thyrotrophs|Tthyrotrophs]]''
* ''[[Thyrotrophs|Tthyrotrophs]]''
* ''[[somatotrophs]]''
* ''[[Somatotrophs]]''
* ''[[Lactotrophs|Lactotrophs]]''
* ''[[Lactotrophs|Lactotrophs]]''
* Low [[LH]] and [[FSH]] delay the [[puberty]]
* Low [[LH]] and [[FSH]] delay the [[puberty]]
|
|
* [[thyroid]] dysfunctions
* [[Thyroid]] dysfunctions
* [[growth retardation]]
* [[Growth retardation]]
* [[libido]]/[[lactation]] problems
* [[Libido]]/[[Lactation]] problems
|-
|-
| rowspan="3" |'''Obesity related'''  
| rowspan="3" |'''Obesity related'''  
Line 359: Line 360:
* ''Modulation of [[body weight]]''
* ''Modulation of [[body weight]]''
* Beginning the [[puberty]]
* Beginning the [[puberty]]
* [[recombinant]] [[leptin]] injection in female mice result in [[puberty]]  
* [[Recombinant]] [[leptin]] injection in female mice result in [[puberty]]  
* Increased about 50% just before [[puberty]] and also during the [[puberty]]
* Increased about 50% just before [[puberty]] and also during the [[puberty]]
| rowspan="2" |
| rowspan="2" |
* [[hematopoiesis]] disorders
* [[Hematopoiesis]] disorders
* [[angiogenesis]] disorders
* [[Angiogenesis]] disorders
* [[wound healing]] disorders
* [[Wound healing]] disorders
* [[immune]] or [[inflammatory response]] disorders
* [[Immune]] or [[inflammatory response]] disorders
|-
|-
|'''LEPR'''
|'''LEPR'''
Line 378: Line 379:
|
|
* ''Regulates [[neuroendocrine]] pathway''
* ''Regulates [[neuroendocrine]] pathway''
* [[proopiomelanocortin]] (POMC) cleavage
* [[Proopiomelanocortin]] (POMC) cleavage
* Processing [[proinsulin]] and [[proglucagon]] in [[pancreas]].
* Processing [[proinsulin]] and [[proglucagon]] in [[pancreas]].
|
|
* Extreme childhood [[obesity]]
* Extreme childhood [[obesity]]
* Abnormal glucose [[homeostasis]]
* Abnormal glucose [[homeostasis]]
* [[hypocortisolism]]
* [[Hypocortisolism]]
* Elevated plasma [[proinsulin]], and also [[POMC]]  
* Elevated plasma [[proinsulin]], and also [[POMC]]  
|}
|}


=== Kisspeptin system (KISS1R and KISS1) ===
=== Kisspeptin system (KISS1R and KISS1) ===
* The GPR54 [[gene]], also called KISS1R, with [[Online Mendelian Inheritance in Man|Online Mendelian Inheritance in Man (OMIM)]] number of 604161 is on chromosome 19p13.3. The KISS1 gene, also called [[Kisspeptin|kisspeptin1]], with [[OMIM]] number of 603286 is on [[chromosome]] 1q32,
* The GPR54 [[gene]], also called KISS1R, with [[Online Mendelian Inheritance in Man|Online Mendelian Inheritance in Man (OMIM)]] number of 604161 is on chromosome 19p13.3. The KISS1 gene, also called [[Kisspeptin|kisspeptin1]], with [[OMIM]] number of 603286 is on [[chromosome]] 1q32.
* The [[GnRH]] secretion has to be pulsatile to stimulate [[gonadotropins]]. In regulation of [[GnRH]] secretion, [[kisspeptin]] and the related [[G-protein coupled receptor]] (KISS1R or GPR54) have key roles. [[Kisspeptin|Kisspeptins]] are encoded by KISS1 gene, [[neuropeptides]] secreted from [[hypothalamus]] nuclei. It is found that patients with idiopathic [[hypogonadotropic hypogonadism]] have KISS1 receptor (GPR54) inactivating [[gene]] [[mutations]].<ref name="pmid12944565">{{cite journal |vauthors=de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E |title=Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue=19 |pages=10972–6 |year=2003 |pmid=12944565 |pmc=196911 |doi=10.1073/pnas.1834399100 |url=}}</ref><ref name="SeminaraMessager2003">{{cite journal|last1=Seminara|first1=Stephanie B.|last2=Messager|first2=Sophie|last3=Chatzidaki|first3=Emmanouella E.|last4=Thresher|first4=Rosemary R.|last5=Acierno|first5=James S.|last6=Shagoury|first6=Jenna K.|last7=Bo-Abbas|first7=Yousef|last8=Kuohung|first8=Wendy|last9=Schwinof|first9=Kristine M.|last10=Hendrick|first10=Alan G.|last11=Zahn|first11=Dirk|last12=Dixon|first12=John|last13=Kaiser|first13=Ursula B.|last14=Slaugenhaupt|first14=Susan A.|last15=Gusella|first15=James F.|last16=O'Rahilly|first16=Stephen|last17=Carlton|first17=Mark B.L.|last18=Crowley|first18=William F.|last19=Aparicio|first19=Samuel A.J.R.|last20=Colledge|first20=William H.|title=TheGPR54Gene as a Regulator of Puberty|journal=New England Journal of Medicine|volume=349|issue=17|year=2003|pages=1614–1627|issn=0028-4793|doi=10.1056/NEJMoa035322}}</ref>
* The [[GnRH]] secretion has to be pulsatile to stimulate [[gonadotropins]]. In regulation of [[GnRH]] secretion, [[kisspeptin]] and the related [[G-protein coupled receptor]] (KISS1R or GPR54) have key roles. [[Kisspeptin|Kisspeptins]] are encoded by KISS1 gene, [[neuropeptides]] secreted from [[hypothalamus]] nuclei. It is found that patients with idiopathic [[hypogonadotropic hypogonadism]] have KISS1 receptor (GPR54) inactivating [[gene]] [[mutations]].<ref name="pmid12944565">{{cite journal |vauthors=de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E |title=Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue=19 |pages=10972–6 |year=2003 |pmid=12944565 |pmc=196911 |doi=10.1073/pnas.1834399100 |url=}}</ref><ref name="SeminaraMessager2003">{{cite journal|last1=Seminara|first1=Stephanie B.|last2=Messager|first2=Sophie|last3=Chatzidaki|first3=Emmanouella E.|last4=Thresher|first4=Rosemary R.|last5=Acierno|first5=James S.|last6=Shagoury|first6=Jenna K.|last7=Bo-Abbas|first7=Yousef|last8=Kuohung|first8=Wendy|last9=Schwinof|first9=Kristine M.|last10=Hendrick|first10=Alan G.|last11=Zahn|first11=Dirk|last12=Dixon|first12=John|last13=Kaiser|first13=Ursula B.|last14=Slaugenhaupt|first14=Susan A.|last15=Gusella|first15=James F.|last16=O'Rahilly|first16=Stephen|last17=Carlton|first17=Mark B.L.|last18=Crowley|first18=William F.|last19=Aparicio|first19=Samuel A.J.R.|last20=Colledge|first20=William H.|title=TheGPR54Gene as a Regulator of Puberty|journal=New England Journal of Medicine|volume=349|issue=17|year=2003|pages=1614–1627|issn=0028-4793|doi=10.1056/NEJMoa035322}}</ref>
* By the time of [[puberty]], the KISS1 genes become activated through [[neuroanatomical]] and functional changes from environmental triggers, critical for [[brain]] sexual [[maturation]] and HPG activation with pulsatile [[GnRH]].<ref name="pmid23015158">{{cite journal| author=Kaur KK, Allahbadia G, Singh M| title=Kisspeptins in human reproduction-future therapeutic potential. | journal=J Assist Reprod Genet | year= 2012 | volume= 29 | issue= 10 | pages= 999-1011 | pmid=23015158 | doi=10.1007/s10815-012-9856-1 | pmc=3492584 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23015158  }}</ref>
* By the time of [[puberty]], the KISS1 genes become activated through [[neuroanatomical]] and functional changes from environmental triggers, critical for [[brain]] sexual [[maturation]] and HPG activation with pulsatile [[GnRH]].<ref name="pmid23015158">{{cite journal| author=Kaur KK, Allahbadia G, Singh M| title=Kisspeptins in human reproduction-future therapeutic potential. | journal=J Assist Reprod Genet | year= 2012 | volume= 29 | issue= 10 | pages= 999-1011 | pmid=23015158 | doi=10.1007/s10815-012-9856-1 | pmc=3492584 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23015158  }}</ref>
* Along HPG axis [[neurons]], [[gamma-aminobutyric acid]] is [[inhibitory]] and [[glutamate]] is [[Excitatory neurotransmitter|excitatory neurotransmitters]]. In related KNDy [[neurons]] in [[arcuate nucleus]], the materials secreted are included [[kisspeptin]], [[neurokinin B]], and [[dynorphin A]]. Before the [[puberty]] begins, inhibitory [[dynorphin A]] is the dominant element; decreased by stimulatory effect of [[neurokinin B]], when [[puberty]] started. Conclusively, [[kisspeptin]] and [[GnRH]]/[[LH]] are increased.<ref name="UenoyamaTsukamura2014">{{cite journal|last1=Uenoyama|first1=Yoshihisa|last2=Tsukamura|first2=Hiroko|last3=Maeda|first3=Kei-ichiro|title=KNDy neuron as a gatekeeper of puberty onset|journal=Journal of Obstetrics and Gynaecology Research|volume=40|issue=6|year=2014|pages=1518–1526|issn=13418076|doi=10.1111/jog.12398}}</ref>
* Along HPG axis [[neurons]], [[gamma-aminobutyric acid]] is [[inhibitory]] and [[glutamate]] is [[Excitatory neurotransmitter|excitatory neurotransmitters]]. In related KNDy [[neurons]] in [[arcuate nucleus]], the materials secreted include [[kisspeptin]], [[neurokinin B]], and [[dynorphin A]]. Before [[puberty]] begins, inhibitory [[dynorphin A]] is the dominant element; decreased by stimulatory effect of [[neurokinin B]], when [[puberty]] started. Conclusively, [[kisspeptin]] and [[GnRH]]/[[LH]] are increased.<ref name="UenoyamaTsukamura2014">{{cite journal|last1=Uenoyama|first1=Yoshihisa|last2=Tsukamura|first2=Hiroko|last3=Maeda|first3=Kei-ichiro|title=KNDy neuron as a gatekeeper of puberty onset|journal=Journal of Obstetrics and Gynaecology Research|volume=40|issue=6|year=2014|pages=1518–1526|issn=13418076|doi=10.1111/jog.12398}}</ref>


=== Kallmann syndrome 1 (KAL1) ===
=== Kallmann syndrome 1 (KAL1) ===
* The [[KAL1 gene|KAL1]] [[gene]], also called [[anosmin-1]], with [[OMIM]] number of 308700 is on [[chromosome]] Xp22.3, encode an [[Extracellular matrix protein|extracellular matrix glycoprotein]].  
* The [[KAL1 gene|KAL1]] [[gene]], also called [[anosmin-1]], with [[OMIM]] number of 308700 is on [[chromosome]] Xp22.3, encode an [[Extracellular matrix protein|extracellular matrix glycoprotein]].  
* [[Anosmin-1]] is expressed at five weeks of [[gestation]] in [[forebrain]] area of near [[olfactory bulbs]], stimulate the [[afferent fibers]] projections from there.<ref name="pmid10340754">{{cite journal |vauthors=Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C |title=Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome |journal=Dev. Dyn. |volume=215 |issue=1 |pages=26–44 |year=1999 |pmid=10340754 |doi=10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D |url=}}</ref>
* [[Anosmin-1]] expressed at five weeks of [[gestation]] in [[forebrain]] area near [[olfactory bulbs]], stimulate the [[afferent fibers]] projections.<ref name="pmid10340754">{{cite journal |vauthors=Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C |title=Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome |journal=Dev. Dyn. |volume=215 |issue=1 |pages=26–44 |year=1999 |pmid=10340754 |doi=10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D |url=}}</ref>
* [[X-linked]] [[Kallman syndrome|Kallmann syndrome]] is directly associated with [[KAL1 gene|KAL1]] deletion. It is assumed to result in an absence of [[Olfactory system|olfactory fibers]] along with disturbed migration of [[GnRH]] [[neurons]], supposed to form from migrated [[olfactory placode]].<ref name="pmid2687610">{{cite journal |vauthors=Schwanzel-Fukuda M, Bick D, Pfaff DW |title=Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome |journal=Brain Res. Mol. Brain Res. |volume=6 |issue=4 |pages=311–26 |year=1989 |pmid=2687610 |doi= |url=}}</ref>
* [[X-linked]] [[Kallman syndrome|Kallmann syndrome]] is directly associated with [[KAL1 gene|KAL1]] deletion which results in an absence of [[Olfactory system|olfactory fibers]] along with disturbed migration of [[GnRH]] [[neurons]].<ref name="pmid2687610">{{cite journal |vauthors=Schwanzel-Fukuda M, Bick D, Pfaff DW |title=Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome |journal=Brain Res. Mol. Brain Res. |volume=6 |issue=4 |pages=311–26 |year=1989 |pmid=2687610 |doi= |url=}}</ref>
* Male patient with [[KAL1 gene|KAL1]] [[mutation]] would have central [[hypogonadism]] and [[anosmia]]/[[hyposmia]]. Additionally, more [[diseases]] are assumed to be related to [[KAL1 gene]], such as midline [[facial]] defects ([[cleft lip]] and/or [[cleft palate]]), short [[metacarpals]], [[renal agenesis]], [[sensorineural hearing loss]], bimanual [[synkinesis]], [[oculomotor]] abnormalities, and [[cerebellar ataxia]].<ref name="pmid17624596">{{cite journal |vauthors=Trarbach EB, Silveira LG, Latronico AC |title=Genetic insights into human isolated gonadotropin deficiency |journal=Pituitary |volume=10 |issue=4 |pages=381–91 |year=2007 |pmid=17624596 |doi=10.1007/s11102-007-0061-7 |url=}}</ref>
* Male patients with [[KAL1 gene|KAL1]] [[mutation]] would have central [[hypogonadism]] and [[anosmia]]/[[hyposmia]]. Additionally, more [[diseases]] are assumed to be related to [[KAL1 gene]], such as midline [[facial]] defects ([[cleft lip]] and/or [[cleft palate]]), short [[metacarpals]], [[renal agenesis]], [[sensorineural hearing loss]], bimanual [[synkinesis]], [[oculomotor]] abnormalities, and [[cerebellar ataxia]].<ref name="pmid17624596">{{cite journal |vauthors=Trarbach EB, Silveira LG, Latronico AC |title=Genetic insights into human isolated gonadotropin deficiency |journal=Pituitary |volume=10 |issue=4 |pages=381–91 |year=2007 |pmid=17624596 |doi=10.1007/s11102-007-0061-7 |url=}}</ref>


=== Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8) ===
=== Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8) ===
* The [[FGFR1]] [[gene]], also called KAL2, with [[OMIM]] number of 136350 is on [[chromosome]] 8q12, encode a receptor [[Tyrosine kinase|tyrosine kinase protein]]. The [[FGF8]] gene, also called KAL6, is on [[chromosome]] 10q24.
* The [[FGFR1]] [[gene]], also called KAL2, with [[OMIM]] number of 136350 found on [[chromosome]] 8q12, encodes receptor [[Tyrosine kinase|tyrosine kinase protein]]. The [[FGF8]] gene, also called KAL6, is found on [[chromosome]] 10q24.
* [[FGFR1]] pathway is assumed to be the main role in [[embryogenesis]], [[homeostasis]], and [[wound healing]]. [[FGF8]] critical role in primary generation of [[neural tissue]] has been established by so many researchers.<ref name="pmid15548653">{{cite journal |vauthors=González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM |title=Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism |journal=J. Neurosci. |volume=24 |issue=46 |pages=10384–92 |year=2004 |pmid=15548653 |doi=10.1523/JNEUROSCI.3400-04.2004 |url=}}</ref>
* [[FGFR1]] pathway is assumed to play the main role in [[embryogenesis]], [[homeostasis]], and [[wound healing]]. [[FGF8]] critical role in primary generation of [[neural tissue]] has been established by so many researchers.<ref name="pmid15548653">{{cite journal |vauthors=González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM |title=Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism |journal=J. Neurosci. |volume=24 |issue=46 |pages=10384–92 |year=2004 |pmid=15548653 |doi=10.1523/JNEUROSCI.3400-04.2004 |url=}}</ref>
* On the other hand, interaction between [[FGFR1]], [[FGF8]], and [[heparan sulfate]] helps [[olfactory bulb]] to become differentiated and developed, also facilitates [[GnRH]] [[neurons]] migration and function.<ref name="pmid12571102">{{cite journal |vauthors=Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK |title=FGF signaling through FGFR1 is required for olfactory bulb morphogenesis |journal=Development |volume=130 |issue=6 |pages=1101–11 |year=2003 |pmid=12571102 |doi= |url=}}</ref>
* On the other hand, interaction between [[FGFR1]], [[FGF8]], and [[heparan sulfate]] helps [[olfactory bulb]] to become differentiated and developed, also facilitates [[GnRH]] [[neurons]] migration and function.<ref name="pmid12571102">{{cite journal |vauthors=Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK |title=FGF signaling through FGFR1 is required for olfactory bulb morphogenesis |journal=Development |volume=130 |issue=6 |pages=1101–11 |year=2003 |pmid=12571102 |doi= |url=}}</ref>
* Dominant [[deletion mutation]] of [[FGFR1]] gene is found to cause a 30% decrease in [[hypothalamic]] [[GnRH]] [[neurons]].<ref name="pmid15459253">{{cite journal |vauthors=Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI |title=Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population |journal=Mol. Endocrinol. |volume=19 |issue=1 |pages=225–36 |year=2005 |pmid=15459253 |doi=10.1210/me.2004-0330 |url=}}</ref> Other defects related to [[FGFR1]] include [[cleft palate]] or [[Cleft lip|lip]], dental [[agenesis]] and bimanual [[synkinesis]].<ref name="pmid17624596" /> Other disorders related to [[FGF8]] are including [[cardiac]], [[craniofacial]], [[forebrain]], [[midbrain]], and [[cerebellar]] developmental abnormalities.
* Dominant [[deletion mutation]] of [[FGFR1]] gene is found to cause a 30% decrease in [[hypothalamic]] [[GnRH]] [[neurons]].<ref name="pmid15459253">{{cite journal |vauthors=Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI |title=Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population |journal=Mol. Endocrinol. |volume=19 |issue=1 |pages=225–36 |year=2005 |pmid=15459253 |doi=10.1210/me.2004-0330 |url=}}</ref> Other defects related to [[FGFR1]] include [[cleft palate]] or [[Cleft lip|lip]], dental [[agenesis]] and bimanual [[synkinesis]].<ref name="pmid17624596" /> Other disorders related to [[FGF8]] include [[cardiac]], [[craniofacial]], [[forebrain]], [[midbrain]], and [[cerebellar]] developmental abnormalities.


=== Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1) ===
=== Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1) ===
* The HS6ST1 [[gene]] with [[OMIM]] number of 604846 is on [[chromosome]] 2q21, has some functions in [[extracellular]] sugar modifications; but has been found mutated in [[hypogonadism]].<ref name="pmid21700882">{{cite journal |vauthors=Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE |title=Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=28 |pages=11524–9 |year=2011 |pmid=21700882 |pmc=3136273 |doi=10.1073/pnas.1102284108 |url=}}</ref>  
* The HS6ST1 [[gene]] with [[OMIM]] number 604846 on [[chromosome]] 2q21, has some functions in [[extracellular]] sugar modifications; but has been found mutated in [[hypogonadism]].<ref name="pmid21700882">{{cite journal |vauthors=Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE |title=Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=108 |issue=28 |pages=11524–9 |year=2011 |pmid=21700882 |pmc=3136273 |doi=10.1073/pnas.1102284108 |url=}}</ref>  


* The modifications of [[heparan sulfate]] [[polysaccharides]] in [[extracellular matrix]] have some roles in [[FGFR]]-[[FGF1|FGF]] and also [[Anosmin-1|anosmin1]]-[[cell membrane]] interactions.<ref name="pmid15096041">{{cite journal |vauthors=Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ |title=Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly |journal=Biochemistry |volume=43 |issue=16 |pages=4724–30 |year=2004 |pmid=15096041 |doi=10.1021/bi0352320 |url=}}</ref><ref name="pmid16677626">{{cite journal |vauthors=Hudson ML, Kinnunen T, Cinar HN, Chisholm AD |title=C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations |journal=Dev. Biol. |volume=294 |issue=2 |pages=352–65 |year=2006 |pmid=16677626 |doi=10.1016/j.ydbio.2006.02.036 |url=}}</ref>
* The modifications of [[heparan sulfate]] [[polysaccharides]] in [[extracellular matrix]] have some roles in [[FGFR]]-[[FGF1|FGF]] and also [[Anosmin-1|anosmin1]]-[[cell membrane]] interactions.<ref name="pmid15096041">{{cite journal |vauthors=Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ |title=Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly |journal=Biochemistry |volume=43 |issue=16 |pages=4724–30 |year=2004 |pmid=15096041 |doi=10.1021/bi0352320 |url=}}</ref><ref name="pmid16677626">{{cite journal |vauthors=Hudson ML, Kinnunen T, Cinar HN, Chisholm AD |title=C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations |journal=Dev. Biol. |volume=294 |issue=2 |pages=352–65 |year=2006 |pmid=16677626 |doi=10.1016/j.ydbio.2006.02.036 |url=}}</ref>
Line 412: Line 413:


=== Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2) ===
=== Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2) ===
* The [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] [[genes]], also called KAL4 and KAL3, with [[OMIM]] numbers of 607002 and 607123 are on [[chromosomes]] 3p21.1 and 20p13, respectively. They are believed to be cause of [[Kallman syndrome|Kallmann syndrome]].
* The [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] [[genes]], also called KAL4 and KAL3, with [[OMIM]] numbers of 607002 and 607123 on [[chromosomes]] 3p21.1 and 20p13, respectively. They are believed to be cause of [[Kallman syndrome|Kallmann syndrome]].
* [[Prokineticin|PROKR2]] is a [[G protein coupled receptor|G protein coupled receptor (GPCR)]], has a major role in [[olfactory bulb]] development; the [[mutation]] may lead to severe [[gonadal]] [[atrophy]].<ref name="pmid16537498">{{cite journal |vauthors=Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y |title=Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue=11 |pages=4140–5 |year=2006 |pmid=16537498 |pmc=1449660 |doi=10.1073/pnas.0508881103 |url=}}</ref>
* [[Prokineticin|PROKR2,]] a [[G protein coupled receptor|G protein coupled receptor (GPCR)]], has a major role in [[olfactory bulb]] development; the [[mutation]] may lead to severe [[gonadal]] [[atrophy]].<ref name="pmid16537498">{{cite journal |vauthors=Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y |title=Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue=11 |pages=4140–5 |year=2006 |pmid=16537498 |pmc=1449660 |doi=10.1073/pnas.0508881103 |url=}}</ref>
* In [[prokineticin]] system, there are two receptors ([[Prokineticin receptor 1|PROKR1]] and [[Prokineticin receptor 2|PROKR2]]) and two [[ligands]] ([[Prokineticin|PROK1]] and [[Prokineticin|PROK2]]). [[Prokineticin|PROK1]] and its receptor ([[Prokineticin receptor 1|PROKR1]]) have some roles in [[gastrointestinal]] system [[motility]]. However, [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] are parts of [[neuroendocrine system]], located in [[arcuate nucleus]], [[olfactory tract]], and [[suprachiasmatic nucleus]].<ref name="pmid11259612">{{cite journal |vauthors=Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY |title=Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle |journal=Mol. Pharmacol. |volume=59 |issue=4 |pages=692–8 |year=2001 |pmid=11259612 |doi= |url=}}</ref>
* In [[prokineticin]] system, there are two receptors ([[Prokineticin receptor 1|PROKR1]] and [[Prokineticin receptor 2|PROKR2]]) and two [[ligands]] ([[Prokineticin|PROK1]] and [[Prokineticin|PROK2]]). [[Prokineticin|PROK1]] and its receptor ([[Prokineticin receptor 1|PROKR1]]) have some roles in [[gastrointestinal]] system [[motility]]. However, [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] are parts of [[neuroendocrine system]], located in [[arcuate nucleus]], [[olfactory tract]], and [[suprachiasmatic nucleus]].<ref name="pmid11259612">{{cite journal |vauthors=Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY |title=Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle |journal=Mol. Pharmacol. |volume=59 |issue=4 |pages=692–8 |year=2001 |pmid=11259612 |doi= |url=}}</ref>
* It seems that mutated versions of [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] could lead to decrease [[GnRH]] production and [[hypogonadism]]. Other disorders caused by their [[mutations]] include [[fibrous dysplasia]], [[sleep disorder]], severe [[obesity]], [[synkinesis]], and [[epilepsy]].<ref name="pmid18559922">{{cite journal |vauthors=Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N |title=Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum |journal=J. Clin. Endocrinol. Metab. |volume=93 |issue=9 |pages=3551–9 |year=2008 |pmid=18559922 |pmc=2567850 |doi=10.1210/jc.2007-2654 |url=}}</ref>
* It seems that mutated versions of [[Prokineticin|PROK2]] and [[Prokineticin receptor 2|PROKR2]] could lead to decrease [[GnRH]] production and [[hypogonadism]]. Other disorders caused by their [[mutations]] include [[fibrous dysplasia]], [[sleep disorder]], severe [[obesity]], [[synkinesis]], and [[epilepsy]].<ref name="pmid18559922">{{cite journal |vauthors=Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N |title=Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum |journal=J. Clin. Endocrinol. Metab. |volume=93 |issue=9 |pages=3551–9 |year=2008 |pmid=18559922 |pmc=2567850 |doi=10.1210/jc.2007-2654 |url=}}</ref>
Line 419: Line 420:
=== Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3) ===
=== Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3) ===
* The [[Tachykinin|TAC3]] and [[Tachykinin receptor 3|TACR3]] [[genes]], also called [[Neurokinin B|neurokinin B (NKB)]] and [[neurokinin]] 3 receptor (NK3R), with [[OMIM]] numbers of 162330 and 152332, are on [[chromosomes]] 12q13–q21 and 4q25, respectively.<ref name="pmid19079066">{{cite journal |vauthors=Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK |title=TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction |journal=Nat. Genet. |volume=41 |issue=3 |pages=354–358 |year=2009 |pmid=19079066 |pmc=4312696 |doi=10.1038/ng.306 |url=}}</ref>
* The [[Tachykinin|TAC3]] and [[Tachykinin receptor 3|TACR3]] [[genes]], also called [[Neurokinin B|neurokinin B (NKB)]] and [[neurokinin]] 3 receptor (NK3R), with [[OMIM]] numbers of 162330 and 152332, are on [[chromosomes]] 12q13–q21 and 4q25, respectively.<ref name="pmid19079066">{{cite journal |vauthors=Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK |title=TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction |journal=Nat. Genet. |volume=41 |issue=3 |pages=354–358 |year=2009 |pmid=19079066 |pmc=4312696 |doi=10.1038/ng.306 |url=}}</ref>
* During the surveys, it has found that normal function of [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system is necessary for an intact HPG axis and also its development during [[puberty]]. On the other hand, [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system disturbance is declared to cause [[micropenis]] and also [[cryptorchidism]] in males, showing the major role in fetal [[gonadotropins]] secretion.<ref name="pmid15212980">{{cite journal |vauthors=Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML |title=mRNA expression of tachykinins and tachykinin receptors in different human tissues |journal=Eur. J. Pharmacol. |volume=494 |issue=2-3 |pages=233–9 |year=2004 |pmid=15212980 |doi=10.1016/j.ejphar.2004.05.016 |url=}}</ref>
* Normal function of [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system is necessary for an intact HPG axis and also its development during [[puberty]]. [[Tachykinin|TAC3]]/[[Tachykinin receptor 3|TACR3]] system disturbance is known to cause [[micropenis]] and also [[cryptorchidism]] in males, showing the major role in fetal [[gonadotropins]] secretion.<ref name="pmid15212980">{{cite journal |vauthors=Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML |title=mRNA expression of tachykinins and tachykinin receptors in different human tissues |journal=Eur. J. Pharmacol. |volume=494 |issue=2-3 |pages=233–9 |year=2004 |pmid=15212980 |doi=10.1016/j.ejphar.2004.05.016 |url=}}</ref>
* [[Tachykinin receptor 3|TACR3]] encoded protein (NK3R) is [[G protein-coupled receptor|GPCR]], initially produced in [[central nervous system]]. The major mechanism, through which the mutated [[gene]] may lead to [[neuroendocrine]] disturbance and delayed [[puberty]], is not completely discovered.<ref name="pmid19719764">{{cite journal |vauthors=Semple RK, Topaloglu AK |title=The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions |journal=Clin. Endocrinol. (Oxf) |volume=72 |issue=4 |pages=427–35 |year=2010 |pmid=19719764 |doi=10.1111/j.1365-2265.2009.03687.x |url=}}</ref>
* [[Tachykinin receptor 3|TACR3]] encoded protein (NK3R) is [[G protein-coupled receptor|GPCR]], initially produced in [[central nervous system]]. The major mechanism, through which the mutated [[gene]] may lead to [[neuroendocrine]] disturbance and delayed [[puberty]], is not completely discovered.<ref name="pmid19719764">{{cite journal |vauthors=Semple RK, Topaloglu AK |title=The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions |journal=Clin. Endocrinol. (Oxf) |volume=72 |issue=4 |pages=427–35 |year=2010 |pmid=19719764 |doi=10.1111/j.1365-2265.2009.03687.x |url=}}</ref>
* [[Tachykinin|TAC3]] encoded protein (NKB) is produced in [[arcuate nucleus]] of [[hypothalamus]] and play an important role in [[GnRH]] secretion. Parallel to that, [[kisspeptin]] is also produced and secreted in [[arcuate nucleus]], whereas, both of them inhibited by [[estrogen]]. It may be considered that [[kisspeptin]] and [[Neurokinin B|NKB]] have same roles in diverting [[negative feedback]] from [[sex hormones]] to [[GnRH]]. Their mutation showed to related with [[hypogonadism]].  
* [[Tachykinin|TAC3]] encoded protein (NKB) is produced in [[arcuate nucleus]] of [[hypothalamus]] and play an important role in [[GnRH]] secretion. Parallel to that, [[kisspeptin]] is also produced and secreted in [[arcuate nucleus]], where both of them are inhibited by [[estrogen]]. It may be considered that [[kisspeptin]] and [[Neurokinin B|NKB]] have same roles in diverting [[negative feedback]] from [[sex hormones]] to [[GnRH]]. Their mutation is related with [[hypogonadism]].  


=== Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR) ===
=== Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR) ===
* The [[Gonadotropin-releasing hormone|GnRH1]] and [[GnRHR]] [[genes]] with [[OMIM]] numbers of 152760 and 138850 are on [[chromosomes]] 8p21–8p11.2 and 4q21.2, respectively.<ref name="pmid19535795">{{cite journal |vauthors=Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J |title=Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation |journal=N. Engl. J. Med. |volume=360 |issue=26 |pages=2742–8 |year=2009 |pmid=19535795 |doi=10.1056/NEJMoa0900136 |url=}}</ref>
* The [[Gonadotropin-releasing hormone|GnRH1]] and [[GnRHR]] [[genes]] with [[OMIM]] numbers 152760 and 138850 are on [[chromosomes]] 8p21–8p11.2 and 4q21.2, respectively.<ref name="pmid19535795">{{cite journal |vauthors=Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J |title=Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation |journal=N. Engl. J. Med. |volume=360 |issue=26 |pages=2742–8 |year=2009 |pmid=19535795 |doi=10.1056/NEJMoa0900136 |url=}}</ref>
* In HPG axis, [[GnRH]] is one of the most effective elements; therefore, its defect could directly influence the axis and slow down the progress. Mutated [[gene]] in mice make them sexually infantile, [[infertile]], and with low [[sex hormones]] and [[gonadotropins]].<ref name="pmid198666">{{cite journal |vauthors=Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G |title=Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism |journal=Nature |volume=269 |issue=5626 |pages=338–40 |year=1977 |pmid=198666 |doi= |url=}}</ref>  
* In HPG axis, [[GnRH]] is one of the most effective elements; therefore, its defect could directly influence the axis and slow down its progress. Mutated [[gene]] in mice make them sexually infantile, [[infertile]], and with low [[sex hormones]] and [[gonadotropins]].<ref name="pmid198666">{{cite journal |vauthors=Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G |title=Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism |journal=Nature |volume=269 |issue=5626 |pages=338–40 |year=1977 |pmid=198666 |doi= |url=}}</ref>  
* The GnRHR [[gene]] is also responsible for [[gonadal]] normal functions, its mutation could lead to [[hypogonadism]] and delayed [[puberty]]. It seems that the [[mutation]] has other outcomes, such as [[atrophic]] [[gonads]] along with low [[LH]]/[[FSH]] and [[sex hormones]], sexual [[puberty]] disturbance, inability to [[Conceive a child|conceive]], and failure to impact from exogenous [[GnRH]]. <ref name="pmid20068010">{{cite journal |vauthors=Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM |title=Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice |journal=Endocrinology |volume=151 |issue=3 |pages=1142–52 |year=2010 |pmid=20068010 |doi=10.1210/en.2009-0598 |url=}}</ref>
* The GnRHR [[gene]] is also responsible for [[gonadal]] normal functions, its mutation could lead to [[hypogonadism]] and delayed [[puberty]]. It seems that the [[mutation]] has other outcomes, such as [[atrophic]] [[gonads]] along with low [[LH]]/[[FSH]] and [[sex hormones]], sexual [[puberty]] disturbance, inability to [[Conceive a child|conceive]], and resistance from exogenous [[GnRH]]. <ref name="pmid20068010">{{cite journal |vauthors=Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM |title=Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice |journal=Endocrinology |volume=151 |issue=3 |pages=1142–52 |year=2010 |pmid=20068010 |doi=10.1210/en.2009-0598 |url=}}</ref>
* These [[genes]] variable expressivity could cause spectrum of symptoms, from fertile eunuch syndrome and partial idiopathic [[hypogonadotropic hypogonadism]] to complete [[GnRH]] resistance (i.e., characterized by [[cryptorchidism]]), [[microphallus]], very low [[LH]]/[[FSH]], and delayed [[puberty]].<ref name="pmid12536356">{{cite journal |vauthors=Silveira LF, MacColl GS, Bouloux PM |title=Hypogonadotropic hypogonadism |journal=Semin. Reprod. Med. |volume=20 |issue=4 |pages=327–38 |year=2002 |pmid=12536356 |doi=10.1055/s-2002-36707 |url=}}</ref>
* Variable expressivity in these genes could cause spectrum of symptoms, from fertile eunuch syndrome and partial idiopathic [[hypogonadotropic hypogonadism]] to complete [[GnRH]] resistance (i.e., characterized by [[cryptorchidism]]), [[microphallus]], very low [[LH]]/[[FSH]], and delayed [[puberty]].<ref name="pmid12536356">{{cite journal |vauthors=Silveira LF, MacColl GS, Bouloux PM |title=Hypogonadotropic hypogonadism |journal=Semin. Reprod. Med. |volume=20 |issue=4 |pages=327–38 |year=2002 |pmid=12536356 |doi=10.1055/s-2002-36707 |url=}}</ref>
* The other disorders that have found to be related to [[GnRH]] mutation are including [[tooth]] abnormal [[maturation]] and biomineralization.<ref name="pmid17948256">{{cite journal |vauthors=Tiong J, Locastro T, Wray S |title=Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization |journal=Dev. Dyn. |volume=236 |issue=11 |pages=2980–92 |year=2007 |pmid=17948256 |doi=10.1002/dvdy.21332 |url=}}</ref>
* The other disorders that have been associated with [[GnRH]] mutation include [[tooth]] abnormal [[maturation]] and biomineralization.<ref name="pmid17948256">{{cite journal |vauthors=Tiong J, Locastro T, Wray S |title=Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization |journal=Dev. Dyn. |volume=236 |issue=11 |pages=2980–92 |year=2007 |pmid=17948256 |doi=10.1002/dvdy.21332 |url=}}</ref>


=== Chromodomain helicase DNA-binding protein 7 (CHD7)  ===
=== Chromodomain helicase DNA-binding protein 7 (CHD7)  ===
* The [[CHD7]] gene, also called as KAL5, with [[OMIM]] number of 608892 is on [[chromosome]] 8q12.1.
* The [[CHD7]] gene, also called KAL5, with [[OMIM]] number 608892 is found on [[chromosome]] 8q12.1.
* The main result of the [[CHD7]] gene [[mutation]] is [[autosomal dominant]] [[CHARGE syndrome]]; combination of [[hypogonadism]] and [[Kallman syndrome|Kallmann syndrome]], which includes:<ref name="pmid188349672">{{cite journal |vauthors=Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC |title=Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Am. J. Hum. Genet. |volume=83 |issue=4 |pages=511–9 |year=2008 |pmid=18834967 |pmc=2561938 |doi=10.1016/j.ajhg.2008.09.005 |url=}}</ref>
* The main result of the [[CHD7]] gene [[mutation]] is [[autosomal dominant]] [[CHARGE syndrome]]; combination of [[hypogonadism]] and [[Kallman syndrome|Kallmann syndrome]], which includes:<ref name="pmid188349672">{{cite journal |vauthors=Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC |title=Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Am. J. Hum. Genet. |volume=83 |issue=4 |pages=511–9 |year=2008 |pmid=18834967 |pmc=2561938 |doi=10.1016/j.ajhg.2008.09.005 |url=}}</ref>
** [[Coloboma|'''C'''olobomata]]
** [[Coloboma|'''C'''olobomata]]
Line 439: Line 440:
** [[Genital|'''G'''enital]] anomalies
** [[Genital|'''G'''enital]] anomalies
** [[Ear|'''E'''ar]] anomalies
** [[Ear|'''E'''ar]] anomalies
* In patients with [[hypogonadism]] or [[Kallman syndrome|Kallmann syndrome]] with specific features, such as [[semicircular canals]] [[hypoplasia]] or [[aplasia]], [[dysmorphic]] ears, and also [[deafness]], would be better to screen for [[CHD7]] [[gene]] situation.
* Screening for CHD7 gene is recommended in patients with [[hypogonadism]] or [[Kallman syndrome|Kallmann syndrome]] with specific features, such as [[semicircular canals]] [[hypoplasia]] or [[aplasia]], [[dysmorphic]] ears, and [[deafness]].


=== Nasal embryonic LH-releasing hormone factor (NELF) ===
=== Nasal embryonic LH-releasing hormone factor (NELF) ===
* The NELF [[gene]] with [[OMIM]] number of 608137 is on [[chromosome]] ''9q34.3; it is mostly in [[nervous tissues]] specifically during [[fetal development]] and also may be found in [[olfactory bulb]] and [[pituitary]] [[LH]] releasing cells.''
* The NELF [[gene]] with [[OMIM]] number 608137 on [[chromosome]] ''9q34.3'' is found mostly in [[nervous tissues]] specifically during [[fetal development]]. It has also been found in [[olfactory bulb]] and [[pituitary]] [[LH]] releasing cells.
* ''The most common function is in [[olfactory]] axons and also [[GnRH]] [[neurons]], before and during [[neuron]] migration in developmental process.''<ref name="pmid108987962">{{cite journal |vauthors=Kramer PR, Wray S |title=Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons |journal=Genes Dev. |volume=14 |issue=14 |pages=1824–34 |year=2000 |pmid=10898796 |pmc=316793 |doi= |url=}}</ref>
* The most common function is in [[olfactory]] axons and also [[GnRH]] [[neurons]], before and during [[neuron]] migration in developmental process.<ref name="pmid108987962">{{cite journal |vauthors=Kramer PR, Wray S |title=Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons |journal=Genes Dev. |volume=14 |issue=14 |pages=1824–34 |year=2000 |pmid=10898796 |pmc=316793 |doi= |url=}}</ref>
* It is assumed to has some relations with Kallmann syndrome. <ref name="pmid21300340">{{cite journal |vauthors=Xu N, Kim HG, Bhagavath B, Cho SG, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AM, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim SH, Cameron RS, Layman LC |title=Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Fertil. Steril. |volume=95 |issue=5 |pages=1613–20.e1–7 |year=2011 |pmid=21300340 |pmc=3888818 |doi=10.1016/j.fertnstert.2011.01.010 |url=}}</ref>
* It has some relations with Kallmann syndrome. <ref name="pmid21300340">{{cite journal |vauthors=Xu N, Kim HG, Bhagavath B, Cho SG, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AM, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim SH, Cameron RS, Layman LC |title=Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome |journal=Fertil. Steril. |volume=95 |issue=5 |pages=1613–20.e1–7 |year=2011 |pmid=21300340 |pmc=3888818 |doi=10.1016/j.fertnstert.2011.01.010 |url=}}</ref>


=== Early B-cell factor 2 (EBF2) ===
=== Early B-cell factor 2 (EBF2) ===
* The EBF2 [[gene]] with [[OMIM]] number of 609934 is on [[chromosome]] ''8p21.2; mostly expressed in mice [[osteoblasts]] and [[osteoclast]] cells.''<ref name="pmid12466206">{{cite journal |vauthors=Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG |title=Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice |journal=Development |volume=130 |issue=2 |pages=401–10 |year=2003 |pmid=12466206 |doi= |url=}}</ref>
* The EBF2 [[gene]] with [[OMIM]] number of 609934 is on [[chromosome]] ''8p21.2; mostly expressed in mice [[osteoblasts]] and [[osteoclast]] cells.''<ref name="pmid12466206">{{cite journal |vauthors=Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG |title=Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice |journal=Development |volume=130 |issue=2 |pages=401–10 |year=2003 |pmid=12466206 |doi= |url=}}</ref>
* The gene is believed to has an effective role in HPG axis. In mutated version, it can cause defect in the axis, leading to secondary [[hypogonadism]].<ref name="pmid16423815">{{cite journal |vauthors=Trarbach EB, Baptista MT, Garmes HM, Hackel C |title=Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients |journal=J. Endocrinol. |volume=187 |issue=3 |pages=361–8 |year=2005 |pmid=16423815 |doi=10.1677/joe.1.06103 |url=}}</ref>
* The gene is believed to have an effective role in HPG axis. In mutated version, it can cause defect in the axis, leading to secondary [[hypogonadism]].<ref name="pmid16423815">{{cite journal |vauthors=Trarbach EB, Baptista MT, Garmes HM, Hackel C |title=Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients |journal=J. Endocrinol. |volume=187 |issue=3 |pages=361–8 |year=2005 |pmid=16423815 |doi=10.1677/joe.1.06103 |url=}}</ref>


=== DSS-AHC on the X-chromosome 1 (DAX1) ===
=== DSS-AHC on the X-chromosome 1 (DAX1) ===
* The [[DAX1]] [[gene]], also called [[nuclear receptor]] 0B (NR0B), with [[OMIM]] number of 300473 is on [[chromosome]] ''Xp21.2, mostly expressed in all members of HPG axis ([[hypothalamus]], [[pituitary]], and [[gonads]]).''<ref name="pmid8593542">{{cite journal |vauthors=Guo W, Burris TP, McCabe ER |title=Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis |journal=Biochem. Mol. Med. |volume=56 |issue=1 |pages=8–13 |year=1995 |pmid=8593542 |doi= |url=}}</ref>  
* The [[DAX1]] [[gene]], also called [[nuclear receptor]] 0B (NR0B), with [[OMIM]] number of 300473 on [[chromosome]] ''Xp21.2, mostly expressed in all members of HPG axis ([[hypothalamus]], [[pituitary]], and [[gonads]]).''<ref name="pmid8593542">{{cite journal |vauthors=Guo W, Burris TP, McCabe ER |title=Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis |journal=Biochem. Mol. Med. |volume=56 |issue=1 |pages=8–13 |year=1995 |pmid=8593542 |doi= |url=}}</ref>  
* During the [[spermatogenesis]] and [[steroidogenesis]], it seems that both [[Sertoli cell|sertoli]] and [[leydig cells]] have increased the expression of [[DAX1]] gene. It is assumed that during [[puberty]], the peak expression of [[DAX1]] occurred.<ref name="pmid16834661">{{cite journal |vauthors=Kojima Y, Sasaki S, Hayashi Y, Umemoto Y, Morohashi K, Kohri K |title=Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia |journal=Int. J. Urol. |volume=13 |issue=6 |pages=785–93 |year=2006 |pmid=16834661 |doi=10.1111/j.1442-2042.2006.01403.x |url=}}</ref>
* During the [[spermatogenesis]] and [[steroidogenesis]], it seems that both [[Sertoli cell|sertoli]] and [[leydig cells]] have increased expression of [[DAX1]] gene. It is assumed that during [[puberty]], the peak expression of [[DAX1]] occurred.<ref name="pmid16834661">{{cite journal |vauthors=Kojima Y, Sasaki S, Hayashi Y, Umemoto Y, Morohashi K, Kohri K |title=Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia |journal=Int. J. Urol. |volume=13 |issue=6 |pages=785–93 |year=2006 |pmid=16834661 |doi=10.1111/j.1442-2042.2006.01403.x |url=}}</ref>
* Other [[disease]] that can be caused by [[DAX1]] mutation is congenital [[Adrenal cortex insufficiency|adrenal cortex hypoplasia]].<ref name="pmid7990953">{{cite journal |vauthors=Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER |title=An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita |journal=Nature |volume=372 |issue=6507 |pages=635–41 |year=1994 |pmid=7990953 |doi=10.1038/372635a0 |url=}}</ref>
* Another disease that can be caused by [[DAX1]] mutation is congenital [[Adrenal cortex insufficiency|adrenal cortex hypoplasia]].<ref name="pmid7990953">{{cite journal |vauthors=Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER |title=An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita |journal=Nature |volume=372 |issue=6507 |pages=635–41 |year=1994 |pmid=7990953 |doi=10.1038/372635a0 |url=}}</ref>


=== Steroidogenic factor 1 (SF1) ===
=== Steroidogenic factor 1 (SF1) ===
* The [[SF1 (gene)|SF1]] [[gene]], also called [[nuclear receptor]] 5A1 (NR5A1), with [[OMIM]] number of 184757 is on [[chromosome]] ''9q33.3, has some roles in [[reproduction]], [[steroidogenesis]], and [[sexual differentiation]].''  
* The [[SF1 (gene)|SF1]] [[gene]], also called [[nuclear receptor]] 5A1 (NR5A1), with [[OMIM]] number of 184757 on [[chromosome]] ''9q33.3, has some roles in [[reproduction]], [[steroidogenesis]], and [[sexual differentiation]].''  
* It is mainly expressed in [[Sertoli cell|sertoli]] and [[leydig cells]], plays an important role in [[steroidogenesis]] and [[spermatogenesis]]. The [[SF1]] is believed to experience increase in expression during [[childhood]] into [[adolescence]], become dominantly expressed by [[leydig cells]] in [[puberty]].<ref name="pmid16834661" />
* It is mainly expressed in [[Sertoli cell|sertoli]] and [[leydig cells]], plays an important role in [[steroidogenesis]] and [[spermatogenesis]]. The [[SF1]] is believed to experience increase in expression during [[childhood]] into [[adolescence]], become dominantly expressed by [[leydig cells]] in [[puberty]].<ref name="pmid16834661" />
* It seems that other diseases can be caused by [[SF1 (gene)|SF1]] mutation, such as male [[pseudohermaphroditism]], [[Denys-Drash syndrome]], and also [[hypospadias]].<ref name="pmid9590178">{{cite journal |vauthors=Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA |title=Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression |journal=Cell |volume=93 |issue=3 |pages=445–54 |year=1998 |pmid=9590178 |doi= |url=}}</ref>
* It seems that other diseases can be caused by [[SF1 (gene)|SF1]] mutation, such as male [[pseudohermaphroditism]], [[Denys-Drash syndrome]], and also [[hypospadias]].<ref name="pmid9590178">{{cite journal |vauthors=Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA |title=Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression |journal=Cell |volume=93 |issue=3 |pages=445–54 |year=1998 |pmid=9590178 |doi= |url=}}</ref>
Line 478: Line 479:
* The [[LEP]] and [[LEPR|LEPR genes]], also called OB and OBR, with [[OMIM]] numbers of 164160 and 601007 are on [[chromosome]]<nowiki/>s ''7q32.1 and 1p31.3, respectively; both of them have major roles in modulation of [[body weight]][[Lactotrophs|.]]''
* The [[LEP]] and [[LEPR|LEPR genes]], also called OB and OBR, with [[OMIM]] numbers of 164160 and 601007 are on [[chromosome]]<nowiki/>s ''7q32.1 and 1p31.3, respectively; both of them have major roles in modulation of [[body weight]][[Lactotrophs|.]]''
* These [[genes]] are believed to carry the message of beginning the [[puberty]], [[recombinant]] [[leptin]] injection in female mice may result in [[puberty]] and also cure their [[maturation]] problems.<ref name="pmid8589726">{{cite journal |vauthors=Chehab FF, Lim ME, Lu R |title=Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin |journal=Nat. Genet. |volume=12 |issue=3 |pages=318–20 |year=1996 |pmid=8589726 |doi=10.1038/ng0396-318 |url=}}</ref>
* These [[genes]] are believed to carry the message of beginning the [[puberty]], [[recombinant]] [[leptin]] injection in female mice may result in [[puberty]] and also cure their [[maturation]] problems.<ref name="pmid8589726">{{cite journal |vauthors=Chehab FF, Lim ME, Lu R |title=Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin |journal=Nat. Genet. |volume=12 |issue=3 |pages=318–20 |year=1996 |pmid=8589726 |doi=10.1038/ng0396-318 |url=}}</ref>
* It seems that [[leptin]] level in human beings become increased about 50% just before [[puberty]] and also during the [[puberty]].<ref name="pmid9100574">{{cite journal |vauthors=Mantzoros CS, Flier JS, Rogol AD |title=A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty |journal=J. Clin. Endocrinol. Metab. |volume=82 |issue=4 |pages=1066–70 |year=1997 |pmid=9100574 |doi=10.1210/jcem.82.4.3878 |url=}}</ref>
* [[leptin]] level in human beings become increased about 50% just before [[puberty]] and also during the [[puberty]].<ref name="pmid9100574">{{cite journal |vauthors=Mantzoros CS, Flier JS, Rogol AD |title=A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty |journal=J. Clin. Endocrinol. Metab. |volume=82 |issue=4 |pages=1066–70 |year=1997 |pmid=9100574 |doi=10.1210/jcem.82.4.3878 |url=}}</ref>
* [[Mutation]] in these [[genes]] may also result in disorders in [[hematopoiesis]], [[angiogenesis]], [[wound healing]], and the [[immune]] or [[inflammatory response]].
* [[Mutation]] in these [[genes]] may also result in disorders in [[hematopoiesis]], [[angiogenesis]], [[wound healing]], and the [[immune]] or [[inflammatory response]].


Line 515: Line 516:
*On microscopic [[histopathological]] analysis, the main finding is lack of differentiation of [[gonadal]] cells; the characteristic finding of delayed [[puberty]].
*On microscopic [[histopathological]] analysis, the main finding is lack of differentiation of [[gonadal]] cells; the characteristic finding of delayed [[puberty]].
*Microscopic evaluation of [[ovaries]] in a patient with delayed [[puberty]] may reveal the presence of normal [[Cuboidal epithelium|cubical epithelium]]. The [[ovary]] has some dense [[fibrous tissue]], about 0.4 mm thick band, in the [[cortex]]. The band is extended under the [[tunica albuginea]], devoid of [[Follicle|follicles]]. Under the fibrous band there will be numerous small [[Follicle|follicles]]. These [[Follicle|follicles]] consist of:
*Microscopic evaluation of [[ovaries]] in a patient with delayed [[puberty]] may reveal the presence of normal [[Cuboidal epithelium|cubical epithelium]]. The [[ovary]] has some dense [[fibrous tissue]], about 0.4 mm thick band, in the [[cortex]]. The band is extended under the [[tunica albuginea]], devoid of [[Follicle|follicles]]. Under the fibrous band there will be numerous small [[Follicle|follicles]]. These [[Follicle|follicles]] consist of:
**'''Primordial follicles:''' Consisted of [[oocyte]] in first [[prophase]] covered with simple [[squamous]] layer of pregranulosa cells (51% of all [[oocytes]]).
**'''Primordial follicles:''' Consists of [[oocyte]] in first [[prophase]] covered with simple [[squamous]] layer of pregranulosa cells (51% of all [[oocytes]]).
**'''Intermediary follicles:''' Consisted of [[oocyte]] covered with mixture of [[squamous]] and [[Cuboidal epithelia|cubical]] cells (42% of all [[oocytes]]).
**'''Intermediary follicles:''' Consists of [[oocyte]] covered with mixture of [[squamous]] and [[Cuboidal epithelia|cubical]] cells (42% of all [[oocytes]]).
**'''Primary follicles:''' Consisted of a [[monolayer]] of [[Cuboidal epithelia|cubical]] [[granulosa cells]] (7% of all [[oocytes]]).
**'''Primary follicles:''' Consists of a [[monolayer]] of [[Cuboidal epithelia|cubical]] [[granulosa cells]] (7% of all [[oocytes]]).
*There are not any [[Follicle|follicles]] beyond the primary ones in all sections.<ref name="pmid12915623">{{cite journal |vauthors=Meduri G, Touraine P, Beau I, Lahuna O, Desroches A, Vacher-Lavenu MC, Kuttenn F, Misrahi M |title=Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies |journal=J. Clin. Endocrinol. Metab. |volume=88 |issue=8 |pages=3491–8 |year=2003 |pmid=12915623 |doi=10.1210/jc.2003-030217 |url=}}</ref>
*There are no [[Follicle|follicles]] beyond the primary follicles in all sections.<ref name="pmid12915623">{{cite journal |vauthors=Meduri G, Touraine P, Beau I, Lahuna O, Desroches A, Vacher-Lavenu MC, Kuttenn F, Misrahi M |title=Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies |journal=J. Clin. Endocrinol. Metab. |volume=88 |issue=8 |pages=3491–8 |year=2003 |pmid=12915623 |doi=10.1210/jc.2003-030217 |url=}}</ref>


==References==
==References==
{{reflist|2}}
{{reflist|2}}
{{WS}}
{{WH}}


[[Category:Disease]]
[[Category:Disease]]
[[Category:Medicine]]
[[Category:Pediatrics]]
[[Category:Endocrinology]]
[[Category:Endocrinology]]
 
[[Category:Mature chapter]]
{{WS}}
[[Category:Developmental biology]]
{{WH}}
[[Category:Sexuality and age]]
[[Category:Sexual health]]
[[Category:Growth disorders]]
[[Category:Congenital disorders]]
[[Category:Up-To-Date]]

Latest revision as of 21:15, 29 July 2020

Delayed puberty Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Delayed puberty from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Delayed puberty pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Delayed puberty pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Delayed puberty pathophysiology

CDC on Delayed puberty pathophysiology

Delayed puberty pathophysiology in the news

Blogs on Delayed puberty pathophysiology

Directions to Hospitals Treating Delayed puberty

Risk calculators and risk factors for Delayed puberty pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Eiman Ghaffarpasand, M.D. [2]

Overview

Delayed puberty is the result of disturbances in hypothalamus-pituitary-gonadal (HPG) axis. Genetics plays an important role in the development of delayed puberty. In case of constitutional delay of growth and puberty (CDGP), 50-75% of patients have a positive family history of delayed puberty. About 25 various genes, in 3 different group of Kallmann syndrome-related genes, hypothalamus-pituitary-gonadal (HPG) axis related genes, and obesity-related genes play roles in delayed puberty. On gross pathology, lack of testicular enlargement in boys or breast development in girls is the characteristic finding of delayed puberty. Microscopic evaluation of ovaries in a patient with delayed puberty may reveal the presence of normal cuboidal epithelium; the ovary has some dense fibrous tissue, about 0.4 mm thick band, in the cortex. The band is extended under the tunica albuginea, devoid of follicles. Under the fibrous band, there will be numerous small follicles. These follicles consist of primordial (51%), intermediary (42%), and primary (7%) follicles.

Pathophysiology

Pathogenesis

Group Form of disease Disease Pathogenesis
Primary hypogonadism Congenital Chromosomal abnormality Lack or disorder of a specific cell line or enzyme that is responsible for producing one of the sex-steroids in gonads
Gonadal agenesis Lack of gonads, as a main source of sex-steroids
Acquired Any external stress to the gonadal tissues Destruction of gonadal cell line, responsible for producing and secreting sex-steroids
Secondary hypogonadism Congenital GnRH deficiency Lack or disorder of a specific cell line or enzyme that is responsible for producing GnRH in hypothalamus
LH and FSH deficiency Lack or disorder of a specific cell line or enzyme that is responsible for producing LH or FSH in pituitary gonadotropic cells
Acquired Any external stress to the hypothalamus or anterior pituitary Destruction of hypothalamus or anterior pituitary cell line, responsible for producing and secreting GnRH, LH, or FSH

Antimullerian hormone and inhibin B

Sex Hormone Source of secretion After birth Childhood Puberty Function
Boys Antimullerian hormone Sertoli cells of testes
Inhibin B Sertoli cells of testes
Girls Antimullerian hormone Granulosa cells of preantral follicles in ovary
  • Marker for the assessment of follicular pool
Inhibin B Both preantral and small antral follicles in ovary

Genetics

  • Genetics plays an important role in delayed puberty. It is assumed that the main factor in determining puberty timing is genetic elements.[3]

The major genes in delayed puberty

Abbreviations (alphabetic):
CHD7: Chromodomain helicase DNA-binding protein 7 gene, DAX1: DSS-AHC on the X-chromosome 1, EBF2: Early B-cell factor 2 gene, FGF8: Fibroblast growth factor 8 gene, FGFR1: Fibroblast growth factor receptor 1 gene, FSH: Follicle stimulating hormone, GnRH: Gonadotropin releasing hormone, GnRH1: Gonadotropin releasing hormone 1 gene, GnRHR: Gonadotropin releasing hormone receptor gene, GPR54: G protein-coupled receptor-54 gene, HESX-1: Homeobox gene 1, HPG axis: Hypothalamus-pituitary-gonadal axis, HS6ST1: Heparan sulfate 6-O-sulphotransferase 1 gene, KAL1: Kallmann syndrome 1 gene, LEP: Leptin gene, LEPR: Leptin receptor gene, LH: Luteinizing hormone, LHX3: LIM homeobox gene 3, NEC1: Neuroendocrine convertase 1, NELF: Nasal embryonic LH-releasing hormone factor gene, NK3R: Neurokinin 3 receptor gene, NKB: Neurokinin B gene, NR0B: Nuclear receptor 0B, NR5A1: Nuclear receptor 5A1, OMIM: Online Mendelian Inheritance in Man, PC1: Proprotein convertase 1, PROK2 : Prokineticin 2 gene, PROKR2: Prokineticin 2 receptor gene, PROP-1: PROP paired-like homeobox 1, RPX: Rathke pouch homeobox, SF-1: Steroidogenic factor 1, TAC3: Tachykinin 3 gene,TACR3: Tachykinin 3 receptor gene,

Groups Gene Other name(s) OMIM number Chromosome Function Other related disorders
Kallmann syndrome

and

Isolated hypogonadotropic hypogonadism[6]

KAL1 KAL1, anosmin-1 308700 Xp22.3
FGFR1 KAL2 136350 8q12
PROKR2 KAL3 607123 20p13
PROK2 KAL4 607002 3p21.1
CHD7 KAL5 608892 8q12.1
FGF8 KAL6 600483 10q24
GPR54 KISS1R 604161 19p13.3
  • Regulation of GnRH secretion
-
KISS1 KISS1, kisspeptin1 603286 1q32 -
HS6ST1 - 604846 2q21 -
TAC3 NKB 162330 12q13–q21
TACR3 NK3R 152332 4q25
GnRH1 - 152760 8p21–8p11.2
  • One of the most important elements in HPG axis
GnRHR - 138850 4q21.2
NELF - 608137 9q34.3 -
EBF2 - 609934 8p21.2
  • Effective role in HPG axis
-
HPG axis development DAX1 NR0B 300473 Xp21.2
SF-1 NR5A1 184757 9q33.3
HESX-1 RPX 601802 3p14.3
LHX3 LIM3 600577 9q34.3
PROP-1 - 601538 5q35.3
Obesity related

hypogonadotropic hypogonadism

LEP OB 164160 7q32.1
LEPR OBR 601007 1p31.3
PC1 NEC1 162150 5q15

Kisspeptin system (KISS1R and KISS1)

Kallmann syndrome 1 (KAL1)

Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8)

Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1)

Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2)

Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3)

Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR)

Chromodomain helicase DNA-binding protein 7 (CHD7)

Nasal embryonic LH-releasing hormone factor (NELF)

Early B-cell factor 2 (EBF2)

DSS-AHC on the X-chromosome 1 (DAX1)

Steroidogenic factor 1 (SF1)

Homeobox gene 1 (HESX1)

LIM homeobox gene 3 (LHX3)

PROP paired-like homeobox 1 (PROP1)

Leptin and leptin receptor (LEP and LEPR)

Proprotein convrtase 1 (PC1)

Makorin RING-finger protein 3 (MKRN3)

Estrogen receptor α (ESR1)

Associated Conditions

The associated conditions that are related to delayed puberty, are as following:[1]

 
 
 
 
 
 
 
 
Associated conditions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Primary hypogonadism
 
 
 
Secondary hypogonadism
 
 
 
Functional hypogonadism
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Turner syndrome
Noonan syndrome
Fragile X syndrome
Cryptorchidism
Gonadal dysgenesis
• Testicular agenesis
Trauma/Testicular torsion
Chemotherapy/Radiation therapy
Mumps, coxsackie
Galactosemia
• Autoimmune oophiritis
• Autoimmune orchitis
5-alpha reductase deficiency
Lyase deficiency
Congenital lipoid adrenal hyperplasia
Androgen insensitivity
• Sertoli cell only syndrome (Del Castillo syndrome)
 
 
 
Astrocytoma
Germinoma
Glioma
Craniopharyngioma
Prolactinoma
Langerhans cell histiocytosis
Rathke pouch cyst
Kallmann syndrome
• Isolated hypogonadotropic hypogonadism
• HPG axis development
Obesity and hypogonadotropic hypogonadism
Prader-Willi syndrome
Bardet-Biedl syndrome
CHARGE syndrome
Gaucher disease
• Post central nervous system Infection
Septo-optic dysplasia
• Congenital hypopituitarism
Chemotherapy/Radiation therapy
Trauma
 
 
 
Cystic Fibrosis
Asthma
Inflammatory bowel disease
Celiac disease
Juvenile rheumatoid arthritis
Anorexia nervosa/Bulimia
Sickle cell disease
Hemosiderosis
Thalassemia
Chronic renal disease
AIDS
Diabetes mellitus
Hypothyroidism
Hyperprolactinemia
Growth hormone deficiency
Cushing syndrome
• Excessive exercise
Malnutrition
 

Gross Pathology

  • On gross pathology, lack of testicular enlargement in boys or breast development in girls is the characteristic finding of delayed puberty.
  • The time to examine these developments is 2-2.5 standard deviations of age more than the standard population mean.


Microscopic Pathology

References

  1. 1.0 1.1 Palmert, Mark R.; Dunkel, Leo (2012). "Delayed Puberty". New England Journal of Medicine. 366 (5): 443–453. doi:10.1056/NEJMcp1109290. ISSN 0028-4793.
  2. Wei C, Crowne EC (2016). "Recent advances in the understanding and management of delayed puberty". Arch. Dis. Child. 101 (5): 481–8. doi:10.1136/archdischild-2014-307963. PMID 26353794.
  3. Gajdos ZK, Henderson KD, Hirschhorn JN, Palmert MR (2010). "Genetic determinants of pubertal timing in the general population". Mol. Cell. Endocrinol. 324 (1–2): 21–9. doi:10.1016/j.mce.2010.01.038. PMC 2891370. PMID 20144687.
  4. Wehkalampi K, Widén E, Laine T, Palotie A, Dunkel L (2008). "Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care". J. Clin. Endocrinol. Metab. 93 (3): 723–8. doi:10.1210/jc.2007-1786. PMID 18160460.
  5. Sedlmeyer IL, Hirschhorn JN, Palmert MR (2002). "Pedigree analysis of constitutional delay of growth and maturation: determination of familial aggregation and inheritance patterns". J. Clin. Endocrinol. Metab. 87 (12): 5581–6. doi:10.1210/jc.2002-020862. PMID 12466356.
  6. Bonomi, Marco; Libri, Domenico Vladimiro; Guizzardi, Fabiana; Guarducci, Elena; Maiolo, Elisabetta; Pignatti, Elisa; Asci, Roberta; Persani, Luca (2011). "New understandings of the genetic basis of isolated idiopathic central hypogonadism". Asian Journal of Andrology. 14 (1): 49–56. doi:10.1038/aja.2011.68. ISSN 1008-682X.
  7. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003). "Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54". Proc. Natl. Acad. Sci. U.S.A. 100 (19): 10972–6. doi:10.1073/pnas.1834399100. PMC 196911. PMID 12944565.
  8. Seminara, Stephanie B.; Messager, Sophie; Chatzidaki, Emmanouella E.; Thresher, Rosemary R.; Acierno, James S.; Shagoury, Jenna K.; Bo-Abbas, Yousef; Kuohung, Wendy; Schwinof, Kristine M.; Hendrick, Alan G.; Zahn, Dirk; Dixon, John; Kaiser, Ursula B.; Slaugenhaupt, Susan A.; Gusella, James F.; O'Rahilly, Stephen; Carlton, Mark B.L.; Crowley, William F.; Aparicio, Samuel A.J.R.; Colledge, William H. (2003). "TheGPR54Gene as a Regulator of Puberty". New England Journal of Medicine. 349 (17): 1614–1627. doi:10.1056/NEJMoa035322. ISSN 0028-4793.
  9. Kaur KK, Allahbadia G, Singh M (2012). "Kisspeptins in human reproduction-future therapeutic potential". J Assist Reprod Genet. 29 (10): 999–1011. doi:10.1007/s10815-012-9856-1. PMC 3492584. PMID 23015158.
  10. Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-ichiro (2014). "KNDy neuron as a gatekeeper of puberty onset". Journal of Obstetrics and Gynaecology Research. 40 (6): 1518–1526. doi:10.1111/jog.12398. ISSN 1341-8076.
  11. Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C (1999). "Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome". Dev. Dyn. 215 (1): 26–44. doi:10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D. PMID 10340754.
  12. Schwanzel-Fukuda M, Bick D, Pfaff DW (1989). "Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome". Brain Res. Mol. Brain Res. 6 (4): 311–26. PMID 2687610.
  13. 13.0 13.1 Trarbach EB, Silveira LG, Latronico AC (2007). "Genetic insights into human isolated gonadotropin deficiency". Pituitary. 10 (4): 381–91. doi:10.1007/s11102-007-0061-7. PMID 17624596.
  14. González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004). "Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism". J. Neurosci. 24 (46): 10384–92. doi:10.1523/JNEUROSCI.3400-04.2004. PMID 15548653.
  15. Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK (2003). "FGF signaling through FGFR1 is required for olfactory bulb morphogenesis". Development. 130 (6): 1101–11. PMID 12571102.
  16. Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI (2005). "Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population". Mol. Endocrinol. 19 (1): 225–36. doi:10.1210/me.2004-0330. PMID 15459253.
  17. 17.0 17.1 Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE (2011). "Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism". Proc. Natl. Acad. Sci. U.S.A. 108 (28): 11524–9. doi:10.1073/pnas.1102284108. PMC 3136273. PMID 21700882.
  18. Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ (2004). "Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly". Biochemistry. 43 (16): 4724–30. doi:10.1021/bi0352320. PMID 15096041.
  19. Hudson ML, Kinnunen T, Cinar HN, Chisholm AD (2006). "C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations". Dev. Biol. 294 (2): 352–65. doi:10.1016/j.ydbio.2006.02.036. PMID 16677626.
  20. Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y (2006). "Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2". Proc. Natl. Acad. Sci. U.S.A. 103 (11): 4140–5. doi:10.1073/pnas.0508881103. PMC 1449660. PMID 16537498.
  21. Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY (2001). "Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle". Mol. Pharmacol. 59 (4): 692–8. PMID 11259612.
  22. Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N (2008). "Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum". J. Clin. Endocrinol. Metab. 93 (9): 3551–9. doi:10.1210/jc.2007-2654. PMC 2567850. PMID 18559922.
  23. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK (2009). "TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction". Nat. Genet. 41 (3): 354–358. doi:10.1038/ng.306. PMC 4312696. PMID 19079066.
  24. Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML (2004). "mRNA expression of tachykinins and tachykinin receptors in different human tissues". Eur. J. Pharmacol. 494 (2–3): 233–9. doi:10.1016/j.ejphar.2004.05.016. PMID 15212980.
  25. Semple RK, Topaloglu AK (2010). "The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions". Clin. Endocrinol. (Oxf). 72 (4): 427–35. doi:10.1111/j.1365-2265.2009.03687.x. PMID 19719764.
  26. Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J (2009). "Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation". N. Engl. J. Med. 360 (26): 2742–8. doi:10.1056/NEJMoa0900136. PMID 19535795.
  27. Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G (1977). "Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism". Nature. 269 (5626): 338–40. PMID 198666.
  28. Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM (2010). "Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice". Endocrinology. 151 (3): 1142–52. doi:10.1210/en.2009-0598. PMID 20068010.
  29. Silveira LF, MacColl GS, Bouloux PM (2002). "Hypogonadotropic hypogonadism". Semin. Reprod. Med. 20 (4): 327–38. doi:10.1055/s-2002-36707. PMID 12536356.
  30. Tiong J, Locastro T, Wray S (2007). "Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization". Dev. Dyn. 236 (11): 2980–92. doi:10.1002/dvdy.21332. PMID 17948256.
  31. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC (2008). "Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome". Am. J. Hum. Genet. 83 (4): 511–9. doi:10.1016/j.ajhg.2008.09.005. PMC 2561938. PMID 18834967.
  32. Kramer PR, Wray S (2000). "Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons". Genes Dev. 14 (14): 1824–34. PMC 316793. PMID 10898796.
  33. Xu N, Kim HG, Bhagavath B, Cho SG, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AM, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim SH, Cameron RS, Layman LC (2011). "Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome". Fertil. Steril. 95 (5): 1613–20.e1–7. doi:10.1016/j.fertnstert.2011.01.010. PMC 3888818. PMID 21300340.
  34. Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG (2003). "Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice". Development. 130 (2): 401–10. PMID 12466206.
  35. Trarbach EB, Baptista MT, Garmes HM, Hackel C (2005). "Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients". J. Endocrinol. 187 (3): 361–8. doi:10.1677/joe.1.06103. PMID 16423815.
  36. Guo W, Burris TP, McCabe ER (1995). "Expression of DAX-1, the gene responsible for X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism, in the hypothalamic-pituitary-adrenal/gonadal axis". Biochem. Mol. Med. 56 (1): 8–13. PMID 8593542.
  37. 37.0 37.1 Kojima Y, Sasaki S, Hayashi Y, Umemoto Y, Morohashi K, Kohri K (2006). "Role of transcription factors Ad4bp/SF-1 and DAX-1 in steroidogenesis and spermatogenesis in human testicular development and idiopathic azoospermia". Int. J. Urol. 13 (6): 785–93. doi:10.1111/j.1442-2042.2006.01403.x. PMID 16834661.
  38. Zanaria E, Muscatelli F, Bardoni B, Strom TM, Guioli S, Guo W, Lalli E, Moser C, Walker AP, McCabe ER (1994). "An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita". Nature. 372 (6507): 635–41. doi:10.1038/372635a0. PMID 7990953.
  39. Nachtigal MW, Hirokawa Y, Enyeart-VanHouten DL, Flanagan JN, Hammer GD, Ingraham HA (1998). "Wilms' tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression". Cell. 93 (3): 445–54. PMID 9590178.
  40. 40.0 40.1 Dattani MT, Martinez-Barbera JP, Thomas PQ, Brickman JM, Gupta R, Mårtensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC (1998). "Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse". Nat. Genet. 19 (2): 125–33. doi:10.1038/477. PMID 9620767.
  41. Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson IC, Beddington RS (2001). "Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia". Hum. Mol. Genet. 10 (1): 39–45. PMID 11136712.
  42. 42.0 42.1 Rajab A, Kelberman D, de Castro SC, Biebermann H, Shaikh H, Pearce K, Hall CM, Shaikh G, Gerrelli D, Grueters A, Krude H, Dattani MT (2008). "Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss". Hum. Mol. Genet. 17 (14): 2150–9. doi:10.1093/hmg/ddn114. PMID 18407919.
  43. Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, Duriez B, Cacheux V, Moers A, Goossens M, Grüters A, Amselem S (2000). "Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency". Nat. Genet. 25 (2): 182–6. doi:10.1038/76041. PMID 10835633. Vancouver style error: initials (help)
  44. Duquesnoy P, Roy A, Dastot F, Ghali I, Teinturier C, Netchine I, Cacheux V, Hafez M, Salah N, Chaussain JL, Goossens M, Bougnères P, Amselem S (1998). "Human Prop-1: cloning, mapping, genomic structure. Mutations in familial combined pituitary hormone deficiency". FEBS Lett. 437 (3): 216–20. PMID 9824293.
  45. Wu W, Cogan JD, Pfäffle RW, Dasen JS, Frisch H, O'Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA, Rosenfeld MG (1998). "Mutations in PROP1 cause familial combined pituitary hormone deficiency". Nat. Genet. 18 (2): 147–9. doi:10.1038/ng0298-147. PMID 9462743.
  46. Chehab FF, Lim ME, Lu R (1996). "Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin". Nat. Genet. 12 (3): 318–20. doi:10.1038/ng0396-318. PMID 8589726.
  47. Mantzoros CS, Flier JS, Rogol AD (1997). "A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty". J. Clin. Endocrinol. Metab. 82 (4): 1066–70. doi:10.1210/jcem.82.4.3878. PMID 9100574.
  48. Jansen E, Ayoubi TA, Meulemans SM, Van de Ven WJ (1995). "Neuroendocrine-specific expression of the human prohormone convertase 1 gene. Hormonal regulation of transcription through distinct cAMP response elements". J. Biol. Chem. 270 (25): 15391–7. PMID 7797529.
  49. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, Hutton JC, O'Rahilly S (1997). "Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene". Nat. Genet. 16 (3): 303–6. doi:10.1038/ng0797-303. PMID 9207799.
  50. Hughes, Ieuan A. (2013). "Releasing the Brake on Puberty". New England Journal of Medicine. 368 (26): 2513–2515. doi:10.1056/NEJMe1306743. ISSN 0028-4793.
  51. Quaynor, Samuel D.; Stradtman, Earl W.; Kim, Hyung-Goo; Shen, Yiping; Chorich, Lynn P.; Schreihofer, Derek A.; Layman, Lawrence C. (2013). "Delayed Puberty and Estrogen Resistance in a Woman with Estrogen Receptor α Variant". New England Journal of Medicine. 369 (2): 164–171. doi:10.1056/NEJMoa1303611. ISSN 0028-4793.
  52. Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM (2008). "Classical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing". Endocrinology. 149 (11): 5328–34. doi:10.1210/en.2008-0520. PMC 2584581. PMID 18635656.
  53. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993). "Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene". Proc. Natl. Acad. Sci. U.S.A. 90 (23): 11162–6. PMC 47942. PMID 8248223.
  54. Meduri G, Touraine P, Beau I, Lahuna O, Desroches A, Vacher-Lavenu MC, Kuttenn F, Misrahi M (2003). "Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies". J. Clin. Endocrinol. Metab. 88 (8): 3491–8. doi:10.1210/jc.2003-030217. PMID 12915623.

Template:WS Template:WH