COVID-19-associated multisystem inflammatory syndrome: Difference between revisions

Jump to navigation Jump to search
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 7: Line 7:
'''For COVID-19 frequently asked outpatient questions, click [[COVID-19 frequently asked outpatient questions|here]]'''
'''For COVID-19 frequently asked outpatient questions, click [[COVID-19 frequently asked outpatient questions|here]]'''


{{CMG}}; {{AE}} {{HAR}} {{Jose}} {{Sahar}}
{{CMG}}; {{AE}} {{HAR}} {{Jose}} {{Sahar}} {{Aisha}}


{{SK}} '''Multisystem Inflammatory Syndrome in Children (MIS-C)'''
{{SK}} '''Multisystem Inflammatory Syndrome in Children (MIS-C)'''
Line 15: Line 15:
==Historical Perspective==
==Historical Perspective==


*<nowiki/> [[COVID-19]]-associated multisystem inflammatory syndrome was first reported as a new [[febrile]] pediatric entity began to appear in late April 2020 during the [[COVID-19]] pandemic in Western Eu<nowiki/>rope.<ref name="pmid32441751">{{cite journal| author=Shulman ST| title=Pediatric Coronavirus Disease-2019-Associated Multisystem Inflammatory Syndrome. | journal=J Pediatric Infect Dis Soc | year= 2020 | volume= 9 | issue= 3 | pages= 285-286 | pmid=32441751 | doi=10.1093/jpids/piaa062 | pmc=7313948 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32441751  }} </ref>
*<nowiki/> [[COVID-19]]-associated multisystem inflammatory syndrome was first reported as a new [[febrile]] pediatric entity, which began to appear in late April 2020 during the [[COVID-19]] pandemic in Wes<nowiki/>tern Europe.<ref name="pmid32441751">{{cite journal| author=Shulman ST| title=Pediatric Coronavirus Disease-2019-Associated Multisystem Inflammatory Syndrome. | journal=J Pediatric Infect Dis Soc | year= 2020 | volume= 9 | issue= 3 | pages= 285-286 | pmid=32441751 | doi=10.1093/jpids/piaa062 | pmc=7313948 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32441751  }} </ref>
*Cases of children with such symptoms were quickly identified in the New York City area, which was then the most heavily affected city in the U.S. by the [[COVID-19]] pandemic;<ref name="pmid32441751" />
*Cases of children with such symptoms were quickly identified in the New York City area, which was at that time the most heavily affected city in the U.S. by the [[COVID-19]] pandemic;<ref name="pmid32441751" />
* A repor<nowiki/><nowiki/>t of 8 cases from Evelina London Children's Hospital was published on 6 May 2020, showing very prominent markers of [[inflammation]] such as [[ferritin]], [[D-dimers]], [[triglycerides]], eleva<nowiki/>ted [[cardiac enzymes]], high [[NT-pro-BNP]] levels and [[troponin]], being empirically treated with [[IVIG]];<ref name="pmid32441751" />
* A repor<nowiki/><nowiki/>t of 8 cases from Evelina London Children's Hospital was published on 6 May 2020, showing very prominent markers of [[inflammation]] such as [[ferritin]], [[D-dimers]], [[triglycerides]], eleva<nowiki/>ted [[cardiac enzymes]], high [[NT-pro-BNP]] levels and [[troponin]], being empirically treated with [[IVIG]];<ref name="pmid32441751" />
* On May 22, an article from the Journal of [[Pediatric]] Infectious Diseases Society addressed some of the similarities and differences of this new entity with [[Kawasaki's disease]], noting th<nowiki/>at the demographics affected was significantly different, as it was not seen in Asia despite the pandemic also affecting such countries, but it was affecting mostly children of African ethnicity. The author also differentiated some of the laboratory findings, resembling the [[macrophage activation syndrome]] and not [[Kawasaki's disease]].<ref name="pmid32441751" />
* On May 22, an article from the Journal of [[Pediatric]] Infectious Diseases Society addressed some of the similarities and differences of this new entity with [[Kawasaki's disease]], noting th<nowiki/>at the demographics affected were significantly different, as it was not seen in Asia despite the pandemic also affecting such countries, but it was affecting mostly children of African ethnicity. The author also differentiated some of the laboratory findings, resembling the [[macrophage activation syndrome]] and not [[Kawasaki's disease]].<ref name="pmid32441751" />


==Classification of Disease Severity of COVID-19-associated multisystem inflammatory syndrome ==
==Classification of Disease Severity of COVID-19-associated multisystem inflammatory syndrome ==
Line 29: Line 29:
*It is thought that [[COVID-19]]-associated multisystem inflammatory syndrome is caused by either [[IgG]] [[antibody]]-mediated enhancement of the disease, an [[acute]] [[viral]] presentation, or due to [[cytokine storm]].<ref name="pmid32546853">{{cite journal| author=Rowley AH| title=Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. | journal=Nat Rev Immunol | year= 2020 | volume=  | issue=  | pages=  | pmid=32546853 | doi=10.1038/s41577-020-0367-5 | pmc=7296515 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32546853  }} </ref>
*It is thought that [[COVID-19]]-associated multisystem inflammatory syndrome is caused by either [[IgG]] [[antibody]]-mediated enhancement of the disease, an [[acute]] [[viral]] presentation, or due to [[cytokine storm]].<ref name="pmid32546853">{{cite journal| author=Rowley AH| title=Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. | journal=Nat Rev Immunol | year= 2020 | volume=  | issue=  | pages=  | pmid=32546853 | doi=10.1038/s41577-020-0367-5 | pmc=7296515 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32546853  }} </ref>
*Since there is a lag time between [[COVID-19]]-associated multisystem inflammatory syndrome appearance and [[COVID-19]] infection ([[median]] time: 25 days)<ref name="pmid32598831">{{cite journal| author=Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF | display-authors=etal| title=Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. | journal=N Engl J Med | year= 2020 | volume=  | issue=  | pages=  | pmid=32598831 | doi=10.1056/NEJMoa2021680 | pmc=7346765 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32598831  }} </ref> it is suspected to be a post-infectious phenomenon related to [[IgG]] antibody-mediated enhancement of disease. There are two arguments that support this theory: the presence of [[IgG]] [[antibodies]] against SARS-CoV2 and the presence of the lag time between [[COVID-19]] symptoms and COVID-19-associated multisystem inflammatory syndrome.<ref name="pmid32546853" />
*Since there is a lag time between [[COVID-19]]-associated multisystem inflammatory syndrome appearance and [[COVID-19]] infection ([[median]] time: 25 days)<ref name="pmid32598831">{{cite journal| author=Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF | display-authors=etal| title=Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. | journal=N Engl J Med | year= 2020 | volume=  | issue=  | pages=  | pmid=32598831 | doi=10.1056/NEJMoa2021680 | pmc=7346765 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32598831  }} </ref> it is suspected to be a post-infectious phenomenon related to [[IgG]] antibody-mediated enhancement of disease. There are two arguments that support this theory: the presence of [[IgG]] [[antibodies]] against SARS-CoV2 and the presence of the lag time between [[COVID-19]] symptoms and COVID-19-associated multisystem inflammatory syndrome.<ref name="pmid32546853" />
*There is, however, another theory that states that it is still an [[acute]] [[viral]] presentation of the [[disease]] due to the fact that children presenting with such symptoms undergone exploratory [[laparotomy]] which found [[mesenteric adenitis]], supporting GI infection. [[SARS-CoV2]] is also known to easily infect [[enterocytes]]. Another interesting point to consider is that the worsening of illness has not been seen in [[patients]] with [[COVID-19]] who are treated with convalescent plasma, which could have occurred if it was an antibody-mediated enhancement.<ref name="pmid32546853" />
*There is, however, another theory that states that it is still an [[acute]] [[viral]] presentation of the [[disease]] due to the fact that children presenting with such symptoms undergone exploratory [[laparotomy]] which found [[mesenteric adenitis]], supporting GI infection. [[SARS-CoV2]] is also known to easily infect [[enterocytes]]. Another interesting point to consider is that the worsening of illness has not been observed in [[patients]] with [[COVID-19]] who are treated with convalescent plasma, which could have occurred if it was an antibody-mediated enhancement.<ref name="pmid32546853" />
*There is another hypothesis for the [[cytokine storm]] seen on children with COVID-19-associated multisystem inflammatory syndrome is originated from the known ability of [[coronaviruses]] to block type I and type III [[interferon]] responses, delaying the [[cytokine storm]] in [[patients]] that could not control the [[viral replication]] on earlier phases of the disease.<ref name="pmid32546853" />
*There is another hypothesis for the [[cytokine storm]] seen on children with COVID-19-associated multisystem inflammatory syndrome is originated from the known ability of [[coronaviruses]] to block type I and type III [[interferon]] responses, delaying the [[cytokine storm]] in [[patients]] that could not control the [[viral replication]] on earlier phases of the disease.<ref name="pmid32546853" />


Line 39: Line 39:
'''Age'''
'''Age'''


*Children aged age over 5 years seem to have a worse [[prognosis]] than younger ones.<ref name="pmid32511676">{{cite journal| author=Cheung EW, Zachariah P, Gorelik M, Boneparth A, Kernie SG, Orange JS | display-authors=etal| title=Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. | journal=JAMA | year= 2020 | volume=  | issue=  | pages=  | pmid=32511676 | doi=10.1001/jama.2020.10374 | pmc=7281352 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32511676  }} </ref>
*Children aged 5 years and older seem to have a worse [[prognosis]] than children less than 5 years old.<ref name="pmid32511676">{{cite journal| author=Cheung EW, Zachariah P, Gorelik M, Boneparth A, Kernie SG, Orange JS | display-authors=etal| title=Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. | journal=JAMA | year= 2020 | volume=  | issue=  | pages=  | pmid=32511676 | doi=10.1001/jama.2020.10374 | pmc=7281352 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32511676  }} </ref>
*The [[median]] age found out in a study published by JAMA was 9 years.<ref name="pmid32511692" />
*A recent study published in the Journal of American Medical Associated reported that children with this disease had a [[median]] age of 9 years.<ref name="pmid32511692" />


'''Gender'''
'''Gender'''


* Most of the cases seem to happen in boys.<ref name="pmid32511692" /><ref name="pmid32386565">{{cite journal| author=Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P| title=Hyperinflammatory shock in children during COVID-19 pandemic. | journal=Lancet | year= 2020 | volume= 395 | issue= 10237 | pages= 1607-1608 | pmid=32386565 | doi=10.1016/S0140-6736(20)31094-1 | pmc=7204765 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32386565  }} </ref>
* Most of the cases presented in males.<ref name="pmid32511692" /><ref name="pmid32386565">{{cite journal| author=Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P| title=Hyperinflammatory shock in children during COVID-19 pandemic. | journal=Lancet | year= 2020 | volume= 395 | issue= 10237 | pages= 1607-1608 | pmid=32386565 | doi=10.1016/S0140-6736(20)31094-1 | pmc=7204765 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32386565  }} </ref>


'''Race'''
'''Race'''


*It seems to affect predominantly blacks and asians.<ref name="pmid32511692" /><ref name="pmid32386565" />
*It seems to affect predominantly blacks and Asian children.<ref name="pmid32511692" /><ref name="pmid32386565" />


'''Comorbidities'''
'''Comorbidities'''


* Clinical evidence of association with underlying diseases is still scarce since it is a rare presentation of [[COVID-19]] in children and teenagers.<ref>{{Cite web|url=https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19|title=World Health Organization - Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19|last=|first=|date=07/13/2020|website=WHO|archive-url=|archive-date=|dead-url=|access-date=}}</ref>
* Clinical evidence of the association with underlying diseases is still undetermined.<ref>{{Cite web|url=https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19|title=World Health Organization - Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19|last=|first=|date=07/13/2020|website=WHO|archive-url=|archive-date=|dead-url=|access-date=}}</ref>


==Natural History, Complications, and Prognosis==
==Natural History, Complications, and Prognosis==
Line 64: Line 64:
*Cytokine storm syndrome
*Cytokine storm syndrome
Factors associated with poor prognosis in COVID-19-associated multisystem inflammatory syndrome include:<ref name=":5">Pouletty, Marie, et al. "Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort." ''Annals of the Rheumatic Diseases'' (2020).</ref>
Factors associated with poor prognosis in COVID-19-associated multisystem inflammatory syndrome include:<ref name=":5">Pouletty, Marie, et al. "Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort." ''Annals of the Rheumatic Diseases'' (2020).</ref>
* Children older than 5 years old
* Children younger than 1 month<ref name="urlClinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study | The BMJ">{{cite web |url=https://www.bmj.com/content/370/bmj.m3249 |title=Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study &#124; The BMJ |format= |work= |accessdate=}}</ref>
* Children older than 5 years old (age 10-14years)
* A [[ferritin]] level of higher than 1400 µg/L
* A [[ferritin]] level of higher than 1400 µg/L
* Black ethnicity<ref name="urlClinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study | The BMJ">{{cite web |url=https://www.bmj.com/content/370/bmj.m3249 |title=Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study &#124; The BMJ |format= |work= |accessdate=}}</ref>
== Diagnosis ==
== Diagnosis ==
===Diagnostic Criteria===
===Diagnostic Criteria===
The table below describes various diagnostic criteria for COVID-19-associated multisystem inflammatory syndrome:<ref name="FeldsteinRose2020">{{cite journal|last1=Feldstein|first1=Leora R.|last2=Rose|first2=Erica B.|last3=Horwitz|first3=Steven M.|last4=Collins|first4=Jennifer P.|last5=Newhams|first5=Margaret M.|last6=Son|first6=Mary Beth F.|last7=Newburger|first7=Jane W.|last8=Kleinman|first8=Lawrence C.|last9=Heidemann|first9=Sabrina M.|last10=Martin|first10=Amarilis A.|last11=Singh|first11=Aalok R.|last12=Li|first12=Simon|last13=Tarquinio|first13=Keiko M.|last14=Jaggi|first14=Preeti|last15=Oster|first15=Matthew E.|last16=Zackai|first16=Sheemon P.|last17=Gillen|first17=Jennifer|last18=Ratner|first18=Adam J.|last19=Walsh|first19=Rowan F.|last20=Fitzgerald|first20=Julie C.|last21=Keenaghan|first21=Michael A.|last22=Alharash|first22=Hussam|last23=Doymaz|first23=Sule|last24=Clouser|first24=Katharine N.|last25=Giuliano|first25=John S.|last26=Gupta|first26=Anjali|last27=Parker|first27=Robert M.|last28=Maddux|first28=Aline B.|last29=Havalad|first29=Vinod|last30=Ramsingh|first30=Stacy|last31=Bukulmez|first31=Hulya|last32=Bradford|first32=Tamara T.|last33=Smith|first33=Lincoln S.|last34=Tenforde|first34=Mark W.|last35=Carroll|first35=Christopher L.|last36=Riggs|first36=Becky J.|last37=Gertz|first37=Shira J.|last38=Daube|first38=Ariel|last39=Lansell|first39=Amanda|last40=Coronado Munoz|first40=Alvaro|last41=Hobbs|first41=Charlotte V.|last42=Marohn|first42=Kimberly L.|last43=Halasa|first43=Natasha B.|last44=Patel|first44=Manish M.|last45=Randolph|first45=Adrienne G.|title=Multisystem Inflammatory Syndrome in U.S. Children and Adolescents|journal=New England Journal of Medicine|year=2020|issn=0028-4793|doi=10.1056/NEJMoa2021680}}</ref><ref name="urlMultisystem inflammatory syndrome in children and adolescents temporally related to COVID-19">{{cite web |url=https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 |title=Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19 |format= |work= |accessdate=}}</ref><ref name="urlGuidance - Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) | RCPCH">{{cite web |url=https://www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims |title=Guidance - Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) &#124; RCPCH |format= |work= |accessdate=}}</ref>
The table below describes various diagnostic criteria for COVID-19-associated multisystem inflammatory syndrome:<ref name="FeldsteinRose2020">{{cite journal|last1=Feldstein|first1=Leora R.|last2=Rose|first2=Erica B.|last3=Horwitz|first3=Steven M.|last4=Collins|first4=Jennifer P.|last5=Newhams|first5=Margaret M.|last6=Son|first6=Mary Beth F.|last7=Newburger|first7=Jane W.|last8=Kleinman|first8=Lawrence C.|last9=Heidemann|first9=Sabrina M.|last10=Martin|first10=Amarilis A.|last11=Singh|first11=Aalok R.|last12=Li|first12=Simon|last13=Tarquinio|first13=Keiko M.|last14=Jaggi|first14=Preeti|last15=Oster|first15=Matthew E.|last16=Zackai|first16=Sheemon P.|last17=Gillen|first17=Jennifer|last18=Ratner|first18=Adam J.|last19=Walsh|first19=Rowan F.|last20=Fitzgerald|first20=Julie C.|last21=Keenaghan|first21=Michael A.|last22=Alharash|first22=Hussam|last23=Doymaz|first23=Sule|last24=Clouser|first24=Katharine N.|last25=Giuliano|first25=John S.|last26=Gupta|first26=Anjali|last27=Parker|first27=Robert M.|last28=Maddux|first28=Aline B.|last29=Havalad|first29=Vinod|last30=Ramsingh|first30=Stacy|last31=Bukulmez|first31=Hulya|last32=Bradford|first32=Tamara T.|last33=Smith|first33=Lincoln S.|last34=Tenforde|first34=Mark W.|last35=Carroll|first35=Christopher L.|last36=Riggs|first36=Becky J.|last37=Gertz|first37=Shira J.|last38=Daube|first38=Ariel|last39=Lansell|first39=Amanda|last40=Coronado Munoz|first40=Alvaro|last41=Hobbs|first41=Charlotte V.|last42=Marohn|first42=Kimberly L.|last43=Halasa|first43=Natasha B.|last44=Patel|first44=Manish M.|last45=Randolph|first45=Adrienne G.|title=Multisystem Inflammatory Syndrome in U.S. Children and Adolescents|journal=New England Journal of Medicine|year=2020|issn=0028-4793|doi=10.1056/NEJMoa2021680}}</ref><ref name="urlMultisystem inflammatory syndrome in children and adolescents temporally related to COVID-19">{{cite web |url=https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 |title=Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19 |format= |work= |accessdate=}}</ref><ref name="urlGuidance - Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) | RCPCH">{{cite web |url=https://www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims |title=Guidance - Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) &#124; RCPCH |format= |work= |accessdate=}}</ref><br />
<br />
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 82: Line 84:


(United States)  Criteria
(United States)  Criteria
!Africa Centres for Disease Control and Prevention
|-
|-
!Age
!Age
Line 91: Line 92:
|
|
*Younger than 21 years old
*Younger than 21 years old
|
* Younger than 21 years old
|-
|-
! rowspan="6" |Clinical Features
! rowspan="6" |Clinical Features
Line 101: Line 100:
|
|
*[[Fever]] (body temperature, >38.0°C) or report of subjective [[fever]] present at least 24 hours
*[[Fever]] (body temperature, >38.0°C) or report of subjective [[fever]] present at least 24 hours
|
* Fever (temperature >38.0°C)
|-
|-
|
|
Line 110: Line 107:
|
|
*Severe disease course leading to hospitalization
*Severe disease course leading to hospitalization
|
* Evidence of multiple organ involvement: cardiac, renal, respiratory, hematologic, gastrointestinal, dermatologic or neurologic
|-
|-
|1. [[Rash]] or non-purulent [[Conjunctivitis|conjunctival injection]] or mucocutaneous involvement  
|1. [[Rash]] or non-purulent [[Conjunctivitis|conjunctival injection]] or mucocutaneous involvement  
| rowspan="4" |
| rowspan="4" |
*Multisystem organ involvement (at least two systems)
*Multisystem organ involvement (at least two systems)
|
|-
|-
|2. Low blood pressure/[[Shock]]
|2. Low blood pressure/[[Shock]]
|
|-
|-
|3. Findings consistent with [[myocarditis]], [[pericarditis]], [[valvulitis]] or [[coronary]] involvement
|3. Findings consistent with [[myocarditis]], [[pericarditis]], [[valvulitis]] or [[coronary]] involvement
|
|-
|-
|4. Acute [[gastrointestinal]] symptoms
|4. Acute [[gastrointestinal]] symptoms
|
|-
|-
! rowspan="2" |Laboratory Findings
! rowspan="2" |Laboratory Findings
Line 133: Line 124:
| rowspan="2" |
| rowspan="2" |
*Laboratory evidence of [[inflammation]]
*Laboratory evidence of [[inflammation]]
|
|-
|-
|
|
*Laboratory evidence of [[inflammation]]
*Laboratory evidence of [[inflammation]]
|
* One or more of the following:
** High [[C-reactive protein (CRP)|C-reactive protein]]
** High [[erythrocyte sedimentation rate]]
** High [[fibrinogen]]
** High [[procalcitonin]]
** High [[D-dimer level|d-dimer]]
** High [[ferritin]]
** High [[LDH]]
** High [[IL-6]]
** High [[neutrophils]] count
** Low [[lymphocyte]] count
** Low [[Albumins|albumin]]
<br />
|-
|-
!Diagnosis of SARS-CoV-2
!Diagnosis of SARS-CoV-2
Line 162: Line 137:
*Laboratory-confirmed [[SARS-CoV-2]] infection
*Laboratory-confirmed [[SARS-CoV-2]] infection
*A history of COVID-19 exposure within the 4 weeks prior to the onset of [[symptoms]] 
*A history of COVID-19 exposure within the 4 weeks prior to the onset of [[symptoms]] 
|
* Positive test (using RT-PCR, serology or antigen test) for recent or ongoing SARS-CoV2
* Exposure to COVID-19 in the last 4 weeks before symptom onset
|-
|-
!Others
!Others
Line 173: Line 145:
|
|
*Absence of other diagnoses
*Absence of other diagnoses
|
* No other plausible diagnosis
|}
|}


Line 253: Line 223:
Treatment of patients with COVID-19-associated multisystem inflammatory syndrome includes:<ref name="HennonPenque2020">{{cite journal|last1=Hennon|first1=Teresa R.|last2=Penque|first2=Michelle D.|last3=Abdul-Aziz|first3=Rabheh|last4=Alibrahim|first4=Omar S.|last5=McGreevy|first5=Megan B.|last6=Prout|first6=Andrew J.|last7=Schaefer|first7=Beverly A.|last8=Ambrusko|first8=Steven J.|last9=Pastore|first9=John V.|last10=Turkovich|first10=Stephen J.|last11=Gomez-Duarte|first11=Oscar G.|last12=Hicar|first12=Mark D.|title=COVID-19 associated Multisystem Inflammatory Syndrome in Children (MIS-C) guidelines; a Western New York approach|journal=Progress in Pediatric Cardiology|volume=57|year=2020|pages=101232|issn=10589813|doi=10.1016/j.ppedcard.2020.101232}}</ref>
Treatment of patients with COVID-19-associated multisystem inflammatory syndrome includes:<ref name="HennonPenque2020">{{cite journal|last1=Hennon|first1=Teresa R.|last2=Penque|first2=Michelle D.|last3=Abdul-Aziz|first3=Rabheh|last4=Alibrahim|first4=Omar S.|last5=McGreevy|first5=Megan B.|last6=Prout|first6=Andrew J.|last7=Schaefer|first7=Beverly A.|last8=Ambrusko|first8=Steven J.|last9=Pastore|first9=John V.|last10=Turkovich|first10=Stephen J.|last11=Gomez-Duarte|first11=Oscar G.|last12=Hicar|first12=Mark D.|title=COVID-19 associated Multisystem Inflammatory Syndrome in Children (MIS-C) guidelines; a Western New York approach|journal=Progress in Pediatric Cardiology|volume=57|year=2020|pages=101232|issn=10589813|doi=10.1016/j.ppedcard.2020.101232}}</ref>
* [[Antibiotics]]: broad-spectrum antibiotics are recommended initially.
* [[Antibiotics]]: broad-spectrum antibiotics are recommended initially.
** If the symptoms are mild, [[ceftriaxone]] may be sufficient.  
** If the symptoms are mild, [[ceftriaxone]] may be sufficient.
** If the [[gastrointestinal]] symptoms are predominant, then metronidazole is recommended.
** If the [[gastrointestinal]] symptoms are predominant, then metronidazole is recommended.
** In case of severe [[symptoms]] including [[shock]]] the following antibiotics have been recommended:
** In case of severe [[symptoms]] including [[shock]] the following antibiotics have been recommended:
***[[Vancomycin]], [[clindamycin]], and [[cefepime]]
***[[Vancomycin]], [[clindamycin]], and [[cefepime]]
***[[Vancomycin]], [[meropenem]], and [[gentamicin]]
***[[Vancomycin]], [[meropenem]], and [[gentamicin]]
Line 264: Line 234:
** [[IVIG]] 2 g/kg for all patients with
** [[IVIG]] 2 g/kg for all patients with
** [[Aspirin]] 20–25 mg/kg/dose every 6 h (80–100 mg/kg/day) for all patients with
** [[Aspirin]] 20–25 mg/kg/dose every 6 h (80–100 mg/kg/day) for all patients with
[[Patients]] with KD-like illness in high-risk categories should receive IVIG with other agents.
[[Patients]] with KD-like illness in high-risk categories should receive IVIG with other agents.The high-risk category includes:
The high-risk category includes:
*Infants
*Infants
*Those with KD shock syndrome
*Those with KD shock syndrome
Line 278: Line 247:
* [[Tocilizumab]] ([[interleukin-6]] inhibitor) is another agent that has been used in some cases.  
* [[Tocilizumab]] ([[interleukin-6]] inhibitor) is another agent that has been used in some cases.  
=== Prevention ===
=== Prevention ===
*MIS-C can be prevented by reducing the risk of child exposure to [[COVID-19|COVID]]-19 infection.
*MIS-C can be prevented by reducing the risk of a child's exposure to [[COVID-19|COVID]]-19 infection.


== References ==
== References ==
{{Reflist|2}}
{{Reflist|2}}
[[Category:Up-To-Date]]

Latest revision as of 22:03, 31 August 2020

WikiDoc Resources for COVID-19-associated multisystem inflammatory syndrome

Articles

Most recent articles on COVID-19-associated multisystem inflammatory syndrome

Most cited articles on COVID-19-associated multisystem inflammatory syndrome

Review articles on COVID-19-associated multisystem inflammatory syndrome

Articles on COVID-19-associated multisystem inflammatory syndrome in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on COVID-19-associated multisystem inflammatory syndrome

Images of COVID-19-associated multisystem inflammatory syndrome

Photos of COVID-19-associated multisystem inflammatory syndrome

Podcasts & MP3s on COVID-19-associated multisystem inflammatory syndrome

Videos on COVID-19-associated multisystem inflammatory syndrome

Evidence Based Medicine

Cochrane Collaboration on COVID-19-associated multisystem inflammatory syndrome

Bandolier on COVID-19-associated multisystem inflammatory syndrome

TRIP on COVID-19-associated multisystem inflammatory syndrome

Clinical Trials

Ongoing Trials on COVID-19-associated multisystem inflammatory syndrome at Clinical Trials.gov

Trial results on COVID-19-associated multisystem inflammatory syndrome

Clinical Trials on COVID-19-associated multisystem inflammatory syndrome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on COVID-19-associated multisystem inflammatory syndrome

NICE Guidance on COVID-19-associated multisystem inflammatory syndrome

NHS PRODIGY Guidance

FDA on COVID-19-associated multisystem inflammatory syndrome

CDC on COVID-19-associated multisystem inflammatory syndrome

Books

Books on COVID-19-associated multisystem inflammatory syndrome

News

COVID-19-associated multisystem inflammatory syndrome in the news

Be alerted to news on COVID-19-associated multisystem inflammatory syndrome

News trends on COVID-19-associated multisystem inflammatory syndrome

Commentary

Blogs on COVID-19-associated multisystem inflammatory syndrome

Definitions

Definitions of COVID-19-associated multisystem inflammatory syndrome

Patient Resources / Community

Patient resources on COVID-19-associated multisystem inflammatory syndrome

Discussion groups on COVID-19-associated multisystem inflammatory syndrome

Patient Handouts on COVID-19-associated multisystem inflammatory syndrome

Directions to Hospitals Treating COVID-19-associated multisystem inflammatory syndrome

Risk calculators and risk factors for COVID-19-associated multisystem inflammatory syndrome

Healthcare Provider Resources

Symptoms of COVID-19-associated multisystem inflammatory syndrome

Causes & Risk Factors for COVID-19-associated multisystem inflammatory syndrome

Diagnostic studies for COVID-19-associated multisystem inflammatory syndrome

Treatment of COVID-19-associated multisystem inflammatory syndrome

Continuing Medical Education (CME)

CME Programs on COVID-19-associated multisystem inflammatory syndrome

International

COVID-19-associated multisystem inflammatory syndrome en Espanol

COVID-19-associated multisystem inflammatory syndrome en Francais

Business

COVID-19-associated multisystem inflammatory syndrome in the Marketplace

Patents on COVID-19-associated multisystem inflammatory syndrome

Experimental / Informatics

List of terms related to COVID-19-associated multisystem inflammatory syndrome

For COVID-19 main page, click here

For COVID-19 frequently asked inpatient questions, click here

For COVID-19 frequently asked outpatient questions, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Harmeet Kharoud M.D.[2] José Eduardo Riceto Loyola Junior, M.D.[3] Sahar Memar Montazerin, M.D.[4] Aisha Adigun, B.Sc., M.D.[5]

Synonyms and keywords: Multisystem Inflammatory Syndrome in Children (MIS-C)

Overview

COVID-19-associated multisystem inflammatory syndrome (also known as PIMS-TS - pediatric inflammatory multisystem syndrome temporally with SARS-CoV2 infection or MIS-C - multisystem inflammatory syndrome in children) is an uncommon clinical entity caused by SARS-CoV2 and seen mostly on children. It presents with: fever > 3 days and elevated markers of inflammation and 2 of the following 5 criteria: rash or conjunctivitis; hypotension or shock; myocardial dysfunction, pericarditis, valvulitis or coronary abnormalities; evidence of coagulopathy and/or acute gastrointestinal problems along with evidence of COVID-19. It seems to be a severe form of COVID-19 in children presenting with symptoms that can be challenging to differentiate from other pediatric infectious diseases such as toxic shock syndrome and Kawasaki disease. The pathophysiology of this form of SARS-CoV2 infection remains unknown.

Historical Perspective

  • COVID-19-associated multisystem inflammatory syndrome was first reported as a new febrile pediatric entity, which began to appear in late April 2020 during the COVID-19 pandemic in Western Europe.[1]
  • Cases of children with such symptoms were quickly identified in the New York City area, which was at that time the most heavily affected city in the U.S. by the COVID-19 pandemic;[1]
  • A report of 8 cases from Evelina London Children's Hospital was published on 6 May 2020, showing very prominent markers of inflammation such as ferritin, D-dimers, triglycerides, elevated cardiac enzymes, high NT-pro-BNP levels and troponin, being empirically treated with IVIG;[1]
  • On May 22, an article from the Journal of Pediatric Infectious Diseases Society addressed some of the similarities and differences of this new entity with Kawasaki's disease, noting that the demographics affected were significantly different, as it was not seen in Asia despite the pandemic also affecting such countries, but it was affecting mostly children of African ethnicity. The author also differentiated some of the laboratory findings, resembling the macrophage activation syndrome and not Kawasaki's disease.[1]

Classification of Disease Severity of COVID-19-associated multisystem inflammatory syndrome

  • There is no established system for the classification of COVID-19-associated multisystem inflammatory syndrome.

Pathophysiology

  • The exact pathophysiological mechanism of COVID-19-associated multisystem inflammatory syndrome is unclear;
  • It is thought that COVID-19-associated multisystem inflammatory syndrome is caused by either IgG antibody-mediated enhancement of the disease, an acute viral presentation, or due to cytokine storm.[2]
  • Since there is a lag time between COVID-19-associated multisystem inflammatory syndrome appearance and COVID-19 infection (median time: 25 days)[3] it is suspected to be a post-infectious phenomenon related to IgG antibody-mediated enhancement of disease. There are two arguments that support this theory: the presence of IgG antibodies against SARS-CoV2 and the presence of the lag time between COVID-19 symptoms and COVID-19-associated multisystem inflammatory syndrome.[2]
  • There is, however, another theory that states that it is still an acute viral presentation of the disease due to the fact that children presenting with such symptoms undergone exploratory laparotomy which found mesenteric adenitis, supporting GI infection. SARS-CoV2 is also known to easily infect enterocytes. Another interesting point to consider is that the worsening of illness has not been observed in patients with COVID-19 who are treated with convalescent plasma, which could have occurred if it was an antibody-mediated enhancement.[2]
  • There is another hypothesis for the cytokine storm seen on children with COVID-19-associated multisystem inflammatory syndrome is originated from the known ability of coronaviruses to block type I and type III interferon responses, delaying the cytokine storm in patients that could not control the viral replication on earlier phases of the disease.[2]

Differentiating COVID-19-associated multisystem inflammatory syndrome Disease from other disease

  • For further information about the differential diagnosis, click here.
  • To view the differential diagnosis of COVID-19, click here.

Epidemiology and Demographics

Age

  • Children aged 5 years and older seem to have a worse prognosis than children less than 5 years old.[4]
  • A recent study published in the Journal of American Medical Associated reported that children with this disease had a median age of 9 years.[5]

Gender

  • Most of the cases presented in males.[5][6]

Race

  • It seems to affect predominantly blacks and Asian children.[5][6]

Comorbidities

  • Clinical evidence of the association with underlying diseases is still undetermined.[7]

Natural History, Complications, and Prognosis

Complications of COVID-19-associated multisystem inflammatory syndrome include:[8][9][10][11][12][13]

Factors associated with poor prognosis in COVID-19-associated multisystem inflammatory syndrome include:[14]

  • Children younger than 1 month[15]
  • Children older than 5 years old (age 10-14years)
  • A ferritin level of higher than 1400 µg/L
  • Black ethnicity[15]

Diagnosis

Diagnostic Criteria

The table below describes various diagnostic criteria for COVID-19-associated multisystem inflammatory syndrome:[16][17][18]

Features World Health Organization  

Criteria

Royal College of Paediatrics and Child Health

(United Kingdom)  Criteria

Centers for Disease Control and Prevention

(United States)  Criteria

Age
  • 0-19 years old
  • Not specified
  • Younger than 21 years old
Clinical Features
  • Fever lasting more than 3 days
  • Fever (body temperature, >38.0°C) or report of subjective fever present at least 24 hours
  • More than 2 of the followings:
  • Evidence of single or multi-organ involvement
  • Severe disease course leading to hospitalization
1. Rash or non-purulent conjunctival injection or mucocutaneous involvement
  • Multisystem organ involvement (at least two systems)
2. Low blood pressure/Shock
3. Findings consistent with myocarditis, pericarditis, valvulitis or coronary involvement
4. Acute gastrointestinal symptoms
Laboratory Findings 5. Laboratory evidence of coagulopathy
Diagnosis of SARS-CoV-2
  • Laboratory-confirmed SARS-CoV-2 infection
  • A history of COVID-19 exposure
  • Laboratory-confirmed SARS-CoV-2 infection
  • A history of COVID-19 exposure within the 4 weeks prior to the onset of symptoms 
Others
  • Absence of other possible cause
  • Exclusion of other possible cause
  • Absence of other diagnoses

History and Symptoms

COVID-19 associated multisystem inflammatory syndrome is associated with the following symptoms:[16][13]

Physical Examination

COVID-19 associated multisystem inflammatory syndrome is associated with the following physical examination findings:[16]

Laboratory Findings

COVID-19 associated multisystem inflammatory syndrome is associated with the following laboratory findings:[16][19]

Less common laboratory findings include:

Inflammatory biomarkers

Elevation of inflammatory markers including erythrocyte sedimentation rate, reactive protein, and procalcitonin are usually seen in MIS-C. Increased level of Interleukin-6 (IL-6), Interleukin-10 (IL-10) d-dimer, serum ferritin, prothrombin time have also been seen in MIS-C.

Cardiac biomarkers

Elevation of cardic enzymes including cardiac troponins (cardiac troponin I(cTnI) and cardiac troponin T (cTnT)) and Brain natriuretic peptide (BNP)) has been observed in MIS-C patients.

X-ray

X-ray of patients with COVID-19 associated multiorgan system inflammatory syndrome may be normal. When abnormal, findings may include the followings:[20]

Echocardiography or Ultrasound

Abdominal ultrasound imaging of patients with COVID-19 associated multiorgan system inflammatory syndrome may include the following findings:[20]

  • Free-fluid
  • Localised inflammatory change within the right iliac fossa
  • A combination of echogenic expanded mesenteric fat and enlarged lymph nodes
  • Bowel wall thickening of parts of ileum and cecum
  • Gall bladder wall thickening and edema

To view the echocardiographic findings on COVID-19, click here.

CT scan

Chest CT scan of patients with COVID-19-associated multisystem inflammatory syndrome includes the following patterns:[20]

  • Consolidation and collapse of the lung bases
  • Pleural effusions
  • Diffuse bilateral ground-glass opacities with dense, patchy consolidation

Abdominal CT scan may show the following abnormalities:

To view the CT scan findings on COVID-19, click here.

MRI

Other Imaging Findings

  • To view other imaging findings on COVID-19, click here.

Other Diagnostic Studies

Treatment

Medical Therapy

Treatment of patients with COVID-19-associated multisystem inflammatory syndrome includes:[13]

  • Antibiotics: broad-spectrum antibiotics are recommended initially.
  • Remdesivir is indicated in children with PCR positive COVID-19 and/or with a presentation consistent with typical COVID-19.
    • It should be administered 5 mg/kg loading dose IV once (max dose 200 mg) on day 1, then 2.5 mg/kg (100 mg max dose) IV daily for nine days.
  • Cardiac and respiratory support is recommended for patients presenting with shock.
  • IVIG and aspirin for Kawasaki-like disease
    • IVIG 2 g/kg for all patients with
    • Aspirin 20–25 mg/kg/dose every 6 h (80–100 mg/kg/day) for all patients with

Patients with KD-like illness in high-risk categories should receive IVIG with other agents.The high-risk category includes:

  • Infants
  • Those with KD shock syndrome
  • Those with CRP > 130 g/dL
  • Those with admission echo Z score > 2.5 or aneurysms
  • Asian race

The following treatment regimen is recommended for patients with KD-like illness in high-risk categories:

  • IVIG 2 g/kg as a single infusion with three-day pulse methylprednisolone. If fails, then:
  • The second dose of IVIG or infliximab (a Tumor necrosis factor (TNF)-alpha inhibitor)
  • Venous thromboembolism prophylaxis may be indicated as well.
  • Few studies have reported that interleukin-1 inhibitors may be effective in the treatment of severe cases.[21]
  • Tocilizumab (interleukin-6 inhibitor) is another agent that has been used in some cases.

Prevention

  • MIS-C can be prevented by reducing the risk of a child's exposure to COVID-19 infection.

References

  1. 1.0 1.1 1.2 1.3 Shulman ST (2020). "Pediatric Coronavirus Disease-2019-Associated Multisystem Inflammatory Syndrome". J Pediatric Infect Dis Soc. 9 (3): 285–286. doi:10.1093/jpids/piaa062. PMC 7313948 Check |pmc= value (help). PMID 32441751 Check |pmid= value (help).
  2. 2.0 2.1 2.2 2.3 Rowley AH (2020). "Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children". Nat Rev Immunol. doi:10.1038/s41577-020-0367-5. PMC 7296515 Check |pmc= value (help). PMID 32546853 Check |pmid= value (help).
  3. Feldstein LR, Rose EB, Horwitz SM, Collins JP, Newhams MM, Son MBF; et al. (2020). "Multisystem Inflammatory Syndrome in U.S. Children and Adolescents". N Engl J Med. doi:10.1056/NEJMoa2021680. PMC 7346765 Check |pmc= value (help). PMID 32598831 Check |pmid= value (help).
  4. Cheung EW, Zachariah P, Gorelik M, Boneparth A, Kernie SG, Orange JS; et al. (2020). "Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City". JAMA. doi:10.1001/jama.2020.10374. PMC 7281352 Check |pmc= value (help). PMID 32511676 Check |pmid= value (help).
  5. 5.0 5.1 5.2
  6. 6.0 6.1 Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P (2020). "Hyperinflammatory shock in children during COVID-19 pandemic". Lancet. 395 (10237): 1607–1608. doi:10.1016/S0140-6736(20)31094-1. PMC 7204765 Check |pmc= value (help). PMID 32386565 Check |pmid= value (help).
  7. "World Health Organization - Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19". WHO. 07/13/2020. Check date values in: |date= (help)
  8. Riphagen, Shelley; Gomez, Xabier; Gonzalez-Martinez, Carmen; Wilkinson, Nick; Theocharis, Paraskevi (2020). "Hyperinflammatory shock in children during COVID-19 pandemic". The Lancet. 395 (10237): 1607–1608. doi:10.1016/S0140-6736(20)31094-1. ISSN 0140-6736.
  9. DeBiasi, Roberta L.; Song, Xiaoyan; Delaney, Meghan; Bell, Michael; Smith, Karen; Pershad, Jay; Ansusinha, Emily; Hahn, Andrea; Hamdy, Rana; Harik, Nada; Hanisch, Benjamin; Jantausch, Barbara; Koay, Adeline; Steinhorn, Robin; Newman, Kurt; Wessel, David (2020). "Severe COVID-19 in Children and Young Adults in the Washington, DC Metropolitan Region". The Journal of Pediatrics. doi:10.1016/j.jpeds.2020.05.007. ISSN 0022-3476.
  10. Verdoni, Lucio; Mazza, Angelo; Gervasoni, Annalisa; Martelli, Laura; Ruggeri, Maurizio; Ciuffreda, Matteo; Bonanomi, Ezio; D'Antiga, Lorenzo (2020). "An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study". The Lancet. 395 (10239): 1771–1778. doi:10.1016/S0140-6736(20)31103-X. ISSN 0140-6736.
  11. Belhadjer, Zahra; Méot, Mathilde; Bajolle, Fanny; Khraiche, Diala; Legendre, Antoine; Abakka, Samya; Auriau, Johanne; Grimaud, Marion; Oualha, Mehdi; Beghetti, Maurice; Wacker, Julie; Ovaert, Caroline; Hascoet, Sebastien; Selegny, Maëlle; Malekzadeh-Milani, Sophie; Maltret, Alice; Bosser, Gilles; Giroux, Nathan; Bonnemains, Laurent; Bordet, Jeanne; Di Filippo, Sylvie; Mauran, Pierre; Falcon-Eicher, Sylvie; Thambo, Jean-Benoît; Lefort, Bruno; Moceri, Pamela; Houyel, Lucile; Renolleau, Sylvain; Bonnet, Damien (2020). "Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic". Circulation. doi:10.1161/CIRCULATIONAHA.120.048360. ISSN 0009-7322.
  12. Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; Endeman, H. (2020). "Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis". Thrombosis Research. 191: 148–150. doi:10.1016/j.thromres.2020.04.041. ISSN 0049-3848.
  13. 13.0 13.1 13.2 Hennon, Teresa R.; Penque, Michelle D.; Abdul-Aziz, Rabheh; Alibrahim, Omar S.; McGreevy, Megan B.; Prout, Andrew J.; Schaefer, Beverly A.; Ambrusko, Steven J.; Pastore, John V.; Turkovich, Stephen J.; Gomez-Duarte, Oscar G.; Hicar, Mark D. (2020). "COVID-19 associated Multisystem Inflammatory Syndrome in Children (MIS-C) guidelines; a Western New York approach". Progress in Pediatric Cardiology. 57: 101232. doi:10.1016/j.ppedcard.2020.101232. ISSN 1058-9813.
  14. Pouletty, Marie, et al. "Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort." Annals of the Rheumatic Diseases (2020).
  15. 15.0 15.1 "Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study | The BMJ".
  16. 16.0 16.1 16.2 16.3 Feldstein, Leora R.; Rose, Erica B.; Horwitz, Steven M.; Collins, Jennifer P.; Newhams, Margaret M.; Son, Mary Beth F.; Newburger, Jane W.; Kleinman, Lawrence C.; Heidemann, Sabrina M.; Martin, Amarilis A.; Singh, Aalok R.; Li, Simon; Tarquinio, Keiko M.; Jaggi, Preeti; Oster, Matthew E.; Zackai, Sheemon P.; Gillen, Jennifer; Ratner, Adam J.; Walsh, Rowan F.; Fitzgerald, Julie C.; Keenaghan, Michael A.; Alharash, Hussam; Doymaz, Sule; Clouser, Katharine N.; Giuliano, John S.; Gupta, Anjali; Parker, Robert M.; Maddux, Aline B.; Havalad, Vinod; Ramsingh, Stacy; Bukulmez, Hulya; Bradford, Tamara T.; Smith, Lincoln S.; Tenforde, Mark W.; Carroll, Christopher L.; Riggs, Becky J.; Gertz, Shira J.; Daube, Ariel; Lansell, Amanda; Coronado Munoz, Alvaro; Hobbs, Charlotte V.; Marohn, Kimberly L.; Halasa, Natasha B.; Patel, Manish M.; Randolph, Adrienne G. (2020). "Multisystem Inflammatory Syndrome in U.S. Children and Adolescents". New England Journal of Medicine. doi:10.1056/NEJMoa2021680. ISSN 0028-4793.
  17. "Guidance - Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 (PIMS) | RCPCH".
  18. Cheung, Eva W.; Zachariah, Philip; Gorelik, Mark; Boneparth, Alexis; Kernie, Steven G.; Orange, Jordan S.; Milner, Joshua D. (2020). "Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City". JAMA. doi:10.1001/jama.2020.10374. ISSN 0098-7484.
  19. 20.0 20.1 20.2 Hameed, Shema; Elbaaly, Heba; Reid, Catriona E. L.; Santos, Rui M. F.; Shivamurthy, Vinay; Wong, James; Jogeesvaran, K. Haran (2020). "Spectrum of Imaging Findings on Chest Radiographs, US, CT, and MRI Images in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19". Radiology: 202543. doi:10.1148/radiol.2020202543. ISSN 0033-8419.
  20. Shah, Satish K.; Munoz, Alvaro Coronado (2020). "Multisystem Inflammatory Syndrome in Children in COVID-19 Pandemic". The Indian Journal of Pediatrics. doi:10.1007/s12098-020-03440-7. ISSN 0019-5456.