Chronic stable angina treatment anti-lipid agents: Difference between revisions
Line 25: | Line 25: | ||
*Population-based cohort analysis, reported in patients with [[atherosclerosis]], the use of statins have been associated with a reduction in the risk of subsequent [[sepsis]].<ref name="pmid16458766">Hackam DG, Mamdani M, Li P, Redelmeier DA (2006) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=16458766 Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis.] ''Lancet'' 367 (9508):413-8. [http://dx.doi.org/10.1016/S0140-6736(06)68041-0 DOI:10.1016/S0140-6736(06)68041-0] PMID: [http://pubmed.gov/16458766 16458766]</ref> | *Population-based cohort analysis, reported in patients with [[atherosclerosis]], the use of statins have been associated with a reduction in the risk of subsequent [[sepsis]].<ref name="pmid16458766">Hackam DG, Mamdani M, Li P, Redelmeier DA (2006) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=16458766 Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis.] ''Lancet'' 367 (9508):413-8. [http://dx.doi.org/10.1016/S0140-6736(06)68041-0 DOI:10.1016/S0140-6736(06)68041-0] PMID: [http://pubmed.gov/16458766 16458766]</ref> | ||
*[[Torcetrapib]] by inhibiting CETP '''markedly increases [[HDL|HDL-C]]''' levels and also decreases [[LDL|LDL-C]] levels, both when administered as monotherapy and when used concomitantly with [[statins]] and hence, may be effective in treating patients with [[HDL|low HDL]] levels.<ref name="pmid15071125">Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15071125 Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol.] ''N Engl J Med'' 350 (15):1505-15. [http://dx.doi.org/10.1056/NEJMoa031766 DOI:10.1056/NEJMoa031766] PMID: [http://pubmed.gov/15071125 15071125]</ref> | *[[Torcetrapib]], by inhibiting cholesteryl ester transfer protein (CETP), '''markedly increases [[HDL|HDL-C]]''' levels and also decreases [[LDL|LDL-C]] levels, both when administered as monotherapy and when used concomitantly with [[statins]] and hence, may be effective in treating patients with [[HDL|low HDL]] levels.<ref name="pmid15071125">Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW et al. (2004) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15071125 Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol.] ''N Engl J Med'' 350 (15):1505-15. [http://dx.doi.org/10.1056/NEJMoa031766 DOI:10.1056/NEJMoa031766] PMID: [http://pubmed.gov/15071125 15071125]</ref><ref name="pmid17387129">Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT et al. (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17387129 Effect of torcetrapib on the progression of coronary atherosclerosis.] ''N Engl J Med'' 356 (13):1304-16. [http://dx.doi.org/10.1056/NEJMoa070635 DOI:10.1056/NEJMoa070635] PMID: [http://pubmed.gov/17387129 17387129]</ref><ref name="pmid17630038">Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH et al. (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17630038 Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial.] ''Lancet'' 370 (9582):153-60. [http://dx.doi.org/10.1016/S0140-6736(07)61088-5 DOI:10.1016/S0140-6736(07)61088-5] PMID: [http://pubmed.gov/17630038 17630038]</ref> | ||
==Indications== | ==Indications== |
Revision as of 16:38, 30 August 2011
Chronic stable angina Microchapters | ||
Classification | ||
---|---|---|
| ||
| ||
Differentiating Chronic Stable Angina from Acute Coronary Syndromes | ||
Diagnosis | ||
Alternative Therapies for Refractory Angina | ||
Discharge Care | ||
Guidelines for Asymptomatic Patients | ||
Case Studies | ||
Chronic stable angina treatment anti-lipid agents On the Web | ||
Chronic stable angina treatment anti-lipid agents in the news | ||
to Hospitals Treating Chronic stable angina treatment anti-lipid agents | ||
Risk calculators and risk factors for Chronic stable angina treatment anti-lipid agents | ||
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2] Phone:617-632-7753; Associate Editor(s)-In-Chief: Lakshmi Gopalakrishnan, M.B.B.S.
Overview
Statins by inhibiting HMG-CoA reductase subsequently reduce serum cholesterol levels and hence have been shown to be effective in the primary prevention of various hyperlipidemias and secondary prevention of ischemic heart disease.[1][2] The most commonly used statins are simvastatin, atorvastatin, pravastatin and rosuvastatin. The incidence of major cardiovascular mortality was reduced by 30% with the use of simvastatin[1] and pravastatin[3][4] in patients with coronary artery disease and hence may be used for both primary and secondary prevention.[5][6][7][8] However, there are no trials specifically performed on patients with stable angina but they form a significant portion in other major trials studying the efficacy of lipid-lowering drugs on the overall mortality from cardiovascular events.[9] In patients with low HDL and high triglycerides as an adjunctive to statin therapy, fibrates or niacin may be used.[10]
Mechanisms of benefit
- Statins competitively inhibit HMG-CoA reductase that is the rate-limiting enzyme of cholesterol synthesis and hence reduce intracellular cholesterol levels, subsequently, leading to increased clearance of serum LDL.[11] [5]
- Direct evidence of statin-based cholesterol lowering effect on atherosclerosis was presented in the ASTEROID trial, which demonstrated reduction in LDL-C with accompanied significant increase in HDL-C and subsequently resulting in the regression of atheroma in patients with coronary artery disease.[12]
- It has been postulated that statins have anti-inflammatory and anti-thrombotic effects.[13] [14] [15] [16]
- Non-lipid related properties of statins might be modulated by interference with isoprenoid synthesis or specific actions of some statins that block cell adhesion receptors and subsequently help to prevent atherosclerosis via:[17]
- improving endothelial function,
- modulate inflammatory responses,
- maintain plaque stability and prevent thrombus formation,
- increase nitric oxide bioavailability.
- The non-lipid properties of statins have shown to provide myocardial protection and hence lower the risk of procedural myocardial injury in elective coronary intervention. Such short-term myocardial protection is achieved by pre-treatment with atorvastatin 40mg/day for 7 days.[18]
- Long-term statin therapy have shown to reduce major cardiovascular events such as MI, stroke, and risk of revascularization in patients with different serum cholesterol levels.[3] [9] [19]
- Population-based cohort analysis, reported in patients with atherosclerosis, the use of statins have been associated with a reduction in the risk of subsequent sepsis.[20]
- Torcetrapib, by inhibiting cholesteryl ester transfer protein (CETP), markedly increases HDL-C levels and also decreases LDL-C levels, both when administered as monotherapy and when used concomitantly with statins and hence, may be effective in treating patients with low HDL levels.[21][22][23]
Indications
- In all patients with coronary artery disease, statins are indicated both for primary and secondary prevention, irrespective of the serum cholesterol concentrations, owing to its property of reducing over-all cardiovascular mortality.[3][5][9][19][2]
- In patients with stable angina, pre-treatment with atorvastatin was associated with the reduction of procedural myocardial injury, as assessed by biochemical markers.[18]
- Two randomized placebo-controlled trials reported that the use of simvastatin 40 mg/day and atorvastatin 10 mg/day provided similar primary protection against major cardiovascular events in diabetic patients without high LDL-cholesterol.[19][24]
- Statin therapy in diabetics with vascular disease and in the elderly have demonstrated beneficial effects.[9][24][25][26]
- Patients with coronary artery disease and associated low HDL with high triglycerides, as an adjunctive to statin therapy, fibrates or niacin has shown to be helpful in significantly reducing the risk of major cardiovascular events.[27][28]
- Fibrates are also beneficial in patients with diabetes or metabolic syndrome X.[10]
Contra-indications
All statins are contra-indicated in pregnancy and breastfeeding. Use of statin during early pregnancy has been associated to cause congenital anomalies in the fetus.
Drug interactions
Concomitant use of Fibrates, antibiotics (such as clarithromycin and erythromycin), anti-fungals (such as ketaconazole and itraconazole with any of the statins, increases the risk of myopathy and subsequent rhabdomyolysis.[29][30] However, the use of fenofibrate has not shown to interfere with the catabolism of pravastatin, hence is less likely to increase the risk of myopathy when used in concomitantly with statins.[31]
Dosage
- In patients with stable angina, an intensive lipid-lowering therapy with atorvastatin 80 mg/day has shown to provide significant clinical benefit and improve prognosis. However, this occurred with a greater incidence of elevated aminotransferase levels (from 0.2 to 1.2%;p<0.001).[8][32]
- Dose reduction of statin with the addition of cholesterol absorption inhibitor such as ezetimibe is indicated when adequate lipid control is not achieved with the highest statin dose or wherein statins are poorly tolerated.[33]
Adverse effects
- High dose atorvastatin is associated with greater incidence of elevated aminotransferases. Hence, liver function tests should be regularly monitored.[8]
- In patients undergoing coronary bypass surgery, peri-operative statin withdrawal have been associated with increased frequency of cardiac events.[34]
Supportive trial data
- In the Scandinavian Simvastatin Survival Study (4S) that assessed the effect of simvastatin on mortality and morbidity, involved 4444 patients with coronary heart disease who were randomized to either simvastatin or placebo. The study reported that there was a 30% relative reduction in the risk of mortality from all cardiovascular causes with the use of simvastatin.[1]
- In the ASCOT-LLA trial, that assessed the benefit of atorvastatin in the prevention of coronary and stroke events amongst hypertensive patients with a total cholesterol level of ≤6.5 mmol/L, involved 19,342 patients who were randomized to either atorvastatin or placebo. The primary endpoint from total cardiovascular events (389 atorvastatin vs 486 placebo, 0.79 [0.69-0.90], p=0.0005), total coronary events (178 vs 247, 0.71 [0.59-0.86], p=0.0005) and stroke (89 vs 121, 0.73 [0.56-0.96], p=0.024) during a median follow-up of 3.3 years was significantly reduced with atorvastatin.[7]
- In the Heart Protection Study that assessed the effect of simvastatin on the mortality, involved 20,536 patients who were randomized to either simvastatin or placebo. The study concluded that adding simvastatin reduced the rates of MI (8.7% vs 11.8; p<0.0001), stroke (4.3% vs 5.7%; p<0.0001) and revascularization (9.1% vs 11.7%; p<0.0001). The annual excess risk of myopathy was about 0.01%.[9]
- In the ASTEROID trial, that assessed the effect of intensive statin therapy on the progression atherosclerosis demonstrated that use of very high-intensity statin therapy resulted in significant regression of atherosclerosis.[12]
- Prospective meta-analysis that reviewed 14 randomized trials with 90,056 participants assessed the effects on different clinical outcomes per 1.0 mmol/L reduction in LDL cholesterol during a mean follow-up of 5 years. The primary endpoint from all-cause mortality per mmol/L reduction in LDL cholesterol was a 12% proportional reduction with a 19% significant reduction in coronary mortality and corresponding reductions in myocardial infarction or coronary death, in the need for coronary revascularization and in fatal or non-fatal stroke. Thus, the study concluded that in high-risk patients, prolong statin therapy with substantial LDL-C reduction subsequently reduced the 5-year incidence of incidence of major coronary events, coronary revascularization, and stroke.[2]
- A Meta-analysis reviewed 97 randomized controlled trials to assess the efficacy and safety of various lipid-lowering interventions and compared their impact on the overall cardiovascular mortality. The risk ratios for overall mortality in comparison to control group, was 0.87 for statins, 1.00 for fibrates, 0.84 for resins, 0.96 for niacin, 0.77 for n-3 fatty acids, and 0.97 for diet, while the risk ratios for cardiac mortality indicated a significant benefit from statins (0.78; 95% CI, 0.72-0.84), resins (0.70; 95% CI, 0.50-0.99) and n-3 fatty acids (0.68; 95% CI, 0.52-0.90). Thus, the study concluded statins and n-3 fatty acids provided better outcomes by reducing the risk of mortality and also concluded that any potential reduction in cardiac mortality from fibrates was counterbalanced by an increased risk of death from non-cardiovascular causes.[35]
- In the FIELD study, that assessed the effect of fenofibrate on cardiovascular events, involved 9,795 diabetic patients who were randomized to either fenofibrate or placebo. The study reported no significant reduction in the primary endpoint of coronary death and non-fatal MI, but a reduction in the total cardiovascular events was observed. Hence, the study concluded no significant benefit with the use of fenofibrate.[36]
- In the ILLUSTRATE trial, 1188 coronary artery disease patients with corrected LDL-C level of less than 100 mg/dL achieved with atorvastatin pre-treatment, who underwent intravascular ultrasonography at baseline, were randomized to receive either a combination of torcetrapib and atorvastatin or atorvastatin alone, to assess the effect of CETP inhibition and HDL elevation in reducing the progression of atherosclerosis. At 24-month follow-up, approximately 61% relative increase in HDL cholesterol levels and a 20% relative decrease in LDL cholesterol levels with a subsequent LDL:HDL ratio of less than 1.0 was observed in the combined torcetrapib-atorvastatin group. However, no significant difference in the change of percent atheroma volume between the 2 groups were observed. Thus, the study concluded that the CETP inhibitor torcetrapib was associated with a substantial increase in HDL cholesterol and decrease in LDL cholesterol levels with no significant reduction in the progression of atherosclerosis and was associated with an increase in blood pressure.[22]
- In the RADIANCE 2 trial to assess the effect of CETP inhibitor, torcetrapib, on carotid atherosclerosis progression involving 752 patients with mixed dyslipidemia who have high triglycerides, low HDL-C and high LDL-C levels. The study reported significant increase in the HDL-C levels and decrease in the LDL-C levels observed in patients receiving torcetrapib. However, similar to the ILLUSTRATE trial, no significant reduction in the progression of carotid atherosclerosis with an associated increase in blood pressure was observed.[23]
- In the ILLUMINATE trial, 15,067 patients with a high cardiovascular risk were randomized to receive either a potent CETP inhibitor such as torcetrapib in addition to atorvastatin or atorvastatin alone, to assess the impact of torcetrapib on clinical cardiovascular events. Premature termination of the study was due to an increased risk of cardiovascular events and death (82 deaths observed in the combined therapy group and 51 deaths in patients taking atorvastatin alone). Despite, the beneficial effects of significant LDL-cholesterol reduction and increase in the HDL cholesterol associated with torcetrapib use, the disadvantage of higher rates of MI, revascularization, heart failure, angina are presumably compound-specific.[37]
ACC/AHA Guidelines- Pharmacotherapy to Prevent MI and Death and Reduce Symptoms (DO NOT EDIT) [38] [39] [40]
“ |
Class I1. Dietary therapy for all patients should include reduced intake of saturated fats (to less than 7% of total calories), transfatty acids, and cholesterol (to less than 200 mg per day). (Level of Evidence: B) 2. Daily physical activity and weight management are recommended for all patients. (Level of Evidence: B) 3. Recommended lipid management includes assessment of a fasting lipid profile.
4. Drug combinations are beneficial for patients on lipid lowering therapy who are unable to achieve LDL-C less than 100 mg per dL. (Level of Evidence: C) 5. Lipid-lowering therapy in patients with documented CAD and LDL-LDL cholesterol greater than 130 mg/dL with a target LDL of less than 100 mg/dL. (Level of Evidence: A) Class IIa1. Adding plant stanol or sterols (2 g per day) and/or viscous fiber (greater than 10 g per day) is reasonable to further lower LDL-C. (Level of Evidence: B) 2. Lipid-lowering therapy in patients with documented CAD and LDL cholesterol 100 to 129 mg/dL, with a target LDL of 100 mg/dL. (Level of Evidence: B) 3. Recommended lipid management includes assessment of a fasting lipid profile.
4. Therapeutic options to reduce non–HDL-C are:
5. The following lipid management strategies can be beneficial:
Class IIb1. For all patients, encouraging consumption of omega-3 fatty acids in the form of fish or in capsule form (1 g per day) for risk reduction may be reasonable. For treatment of elevated TG, higher doses are usually necessary for risk reduction. (Level of Evidence: B) |
” |
ESC Guidelines- Pharmacological therapy to improve prognosis in patients with stable angina (DO NOT EDIT) [41]
“ |
Class I1. Statin therapy for all patients with coronary disease. (Level of Evidence: A) Class IIa1. High dose statin therapy in high-risk (more than 2% annual CV mortality) patients with proven coronary disease. (Level of Evidence: B) Class IIb1. Fibrate therapy in patients with low HDL and high triglycerides who have diabetes or the metabolic syndrome. (Level of evidence: B) 2. Fibrate or nicotinic acid as adjunctive therapy to statin in patients with low HDL and high triglycerides at high risk (more than 2% annual CV mortality). (Level of evidence: C) |
” |
Vote on and Suggest Revisions to the Current Guidelines
Sources
- The ACC/AHA/ACP–ASIM Guidelines for the Management of Patients With Chronic Stable Angina [38]
- TheACC/AHA 2002 Guideline Update for the Management of Patients With Chronic Stable Angina [39]
- The 2007 Chronic Angina Focused Update of the ACC/AHA 2002 Guidelines for the Management of Patients With Chronic Stable Angina [40]
- Guidelines on the management of stable angina pectoris: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology [41]
References
- ↑ 1.0 1.1 1.2 (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) Lancet 344 (8934):1383-9. PMID: 7968073
- ↑ 2.0 2.1 2.2 Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C et al. (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366 (9493):1267-78. DOI:10.1016/S0140-6736(05)67394-1 PMID: 16214597
- ↑ 3.0 3.1 3.2 Sacks FM, Tonkin AM, Shepherd J, Braunwald E, Cobbe S, Hawkins CM et al. (2000) Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation 102 (16):1893-900. PMID: 11034935
- ↑ (1998) Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 339 (19):1349-57. DOI:10.1056/NEJM199811053391902 PMID: 9841303
- ↑ 5.0 5.1 5.2 Grundy SM, Cleeman JI, Merz CN, Brewer HB, Clark LT, Hunninghake DB et al. (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines. J Am Coll Cardiol 44 (3):720-32. DOI:10.1016/j.jacc.2004.07.001 PMID: 15358046
- ↑ Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D et al. (2001) Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285 (13):1711-8. PMID: 11277825
- ↑ 7.0 7.1 Sever PS, Dahlöf B, Poulter NR, Wedel H, Beevers G, Caulfield M et al. (2003) Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361 (9364):1149-58. DOI:10.1016/S0140-6736(03)12948-0 PMID: 12686036
- ↑ 8.0 8.1 8.2 LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC et al. (2005) Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 352 (14):1425-35. DOI:10.1056/NEJMoa050461 PMID: 15755765
- ↑ 9.0 9.1 9.2 9.3 9.4 Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360 (9326):7-22. DOI:10.1016/S0140-6736(02)09327-3 PMID: 12114036
- ↑ 10.0 10.1 Robins SJ, Rubins HB, Faas FH, Schaefer EJ, Elam MB, Anderson JW et al. (2003) Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 26 (5):1513-7. PMID: 12716814
- ↑ Ma PT, Gil G, Südhof TC, Bilheimer DW, Goldstein JL, Brown MS (1986) Mevinolin, an inhibitor of cholesterol synthesis, induces mRNA for low density lipoprotein receptor in livers of hamsters and rabbits. Proc Natl Acad Sci U S A 83 (21):8370-4. PMID: 3464957
- ↑ 12.0 12.1 Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM et al. (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295 (13):1556-65. DOI:10.1001/jama.295.13.jpc60002 PMID: 16533939
- ↑ Faggiotto A, Paoletti R (1999) State-of-the-Art lecture. Statins and blockers of the renin-angiotensin system: vascular protection beyond their primary mode of action. Hypertension 34 (4 Pt 2):987-96. PMID: 10523396
- ↑ Bonetti PO, Lerman LO, Napoli C, Lerman A (2003) Statin effects beyond lipid lowering--are they clinically relevant? Eur Heart J 24 (3):225-48. PMID: 12590901
- ↑ Rosenson RS, Tangney CC (1998) Antiatherothrombotic properties of statins: implications for cardiovascular event reduction. JAMA 279 (20):1643-50. PMID: 9613915
- ↑ Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH et al. (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352 (1):20-8. DOI:10.1056/NEJMoa042378 PMID: 15635109
- ↑ Furberg CD (1999) Natural statins and stroke risk. Circulation 99 (2):185-8. PMID: 9892578
- ↑ 18.0 18.1 Pasceri V, Patti G, Nusca A, Pristipino C, Richichi G, Di Sciascio G et al. (2004) Randomized trial of atorvastatin for reduction of myocardial damage during coronary intervention: results from the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) study. Circulation 110 (6):674-8. DOI:10.1161/01.CIR.0000137828.06205.87 PMID: 15277322
- ↑ 19.0 19.1 19.2 Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ et al. (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364 (9435):685-96. DOI:10.1016/S0140-6736(04)16895-5 PMID: 15325833
- ↑ Hackam DG, Mamdani M, Li P, Redelmeier DA (2006) Statins and sepsis in patients with cardiovascular disease: a population-based cohort analysis. Lancet 367 (9508):413-8. DOI:10.1016/S0140-6736(06)68041-0 PMID: 16458766
- ↑ Brousseau ME, Schaefer EJ, Wolfe ML, Bloedon LT, Digenio AG, Clark RW et al. (2004) Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N Engl J Med 350 (15):1505-15. DOI:10.1056/NEJMoa031766 PMID: 15071125
- ↑ 22.0 22.1 Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT et al. (2007) Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 356 (13):1304-16. DOI:10.1056/NEJMoa070635 PMID: 17387129
- ↑ 23.0 23.1 Bots ML, Visseren FL, Evans GW, Riley WA, Revkin JH, Tegeler CH et al. (2007) Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2 study): a randomised, double-blind trial. Lancet 370 (9582):153-60. DOI:10.1016/S0140-6736(07)61088-5 PMID: 17630038
- ↑ 24.0 24.1 Collins R, Armitage J, Parish S, Sleigh P, Peto R, Heart Protection Study Collaborative Group (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361 (9374):2005-16. PMID: 12814710
- ↑ Goldberg RB, Mellies MJ, Sacks FM, Moyé LA, Howard BV, Howard WJ et al. (1998) Cardiovascular events and their reduction with pravastatin in diabetic and glucose-intolerant myocardial infarction survivors with average cholesterol levels: subgroup analyses in the cholesterol and recurrent events (CARE) trial. The Care Investigators. Circulation 98 (23):2513-9. PMID: 9843456
- ↑ Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM et al. (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360 (9346):1623-30. PMID: 12457784
- ↑ Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB et al. (1999) Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 341 (6):410-8. DOI:10.1056/NEJM199908053410604 PMID: 10438259
- ↑ Farnier M (2003) Combination therapy with an HMG-CoA reductase inhibitor and a fibric acid derivative: a critical review of potential benefits and drawbacks. Am J Cardiovasc Drugs 3 (3):169-78. PMID: 14727929
- ↑ 29.0 29.1 Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, La Grenade L et al. (2004) Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. JAMA 292 (21):2585-90. DOI:10.1001/jama.292.21.2585 PMID: 15572716
- ↑ Prueksaritanont T, Tang C, Qiu Y, Mu L, Subramanian R, Lin JH (2002) Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 30 (11):1280-7. PMID: 12386136
- ↑ Pan WJ, Gustavson LE, Achari R, Rieser MJ, Ye X, Gutterman C et al. (2000) Lack of a clinically significant pharmacokinetic interaction between fenofibrate and pravastatin in healthy volunteers. J Clin Pharmacol 40 (3):316-23. PMID: 10709162
- ↑ Pedersen TR, Faergeman O, Kastelein JJ, Olsson AG, Tikkanen MJ, Holme I et al. (2005) High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA 294 (19):2437-45. DOI:10.1001/jama.294.19.2437 PMID: 16287954
- ↑ Wierzbicki AS (2003) Ezetimibe: a new addition to lipid-lowering therapy. Int J Clin Pract 57 (8):653-5. PMID: 14627172
- ↑ Schouten O, Hoeks SE, Welten GM, Davignon J, Kastelein JJ, Vidakovic R et al. (2007) Effect of statin withdrawal on frequency of cardiac events after vascular surgery. Am J Cardiol 100 (2):316-20. DOI:10.1016/j.amjcard.2007.02.093 PMID: 17631090
- ↑ Studer M, Briel M, Leimenstoll B, Glass TR, Bucher HC (2005) Effect of different antilipidemic agents and diets on mortality: a systematic review. Arch Intern Med 165 (7):725-30. DOI:10.1001/archinte.165.7.725 PMID: 15824290
- ↑ Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR et al. (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366 (9500):1849-61. DOI:10.1016/S0140-6736(05)67667-2 PMID: 16310551
- ↑ Rensen PC, Jukema JW (2008) [Torcetrapib increases mortality in patients with a high risk of cardiovascular disorders.] Ned Tijdschr Geneeskd 152 (19):1088-90. PMID: 18552062
- ↑ 38.0 38.1 Gibbons RJ, Chatterjee K, Daley J, Douglas JS, Fihn SD, Gardin JM et al. (1999)guidelines for the management of patients with chronic stable angina: executive summary and recommendations. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Chronic Stable Angina).Circulation 99 (21):2829-48. PMID: 10351980
- ↑ 39.0 39.1 Gibbons RJ, Abrams J, Chatterjee K, Daley J, Deedwania PC, Douglas JS et al. (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 107 (1):149-58. PMID: 12515758
- ↑ 40.0 40.1 Fraker TD, Fihn SD, Gibbons RJ, Abrams J, Chatterjee K, Daley J et al. (2007)2007 chronic angina focused update of the ACC/AHA 2002 Guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused update of the 2002 Guidelines for the management of patients with chronic stable angina. Circulation 116 (23):2762-72.[1] PMID: 17998462
- ↑ 41.0 41.1 Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F; et al. (2006). "Guidelines on the management of stable angina pectoris: executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology". Eur Heart J. 27 (11): 1341–81. doi:10.1093/eurheartj/ehl001. PMID 16735367.