Diabetes mellitus type 2 pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 55: Line 55:
* In 1923, when Banting and Bests were awarded the [[Nobel Prize]] for [[insulin]] discovery, most researchers believed that this had led to a cure for [[diabetes]]. However, despite the advances in the [[Blood sugar|blood glucose]] management, there is no cure for [[diabetes]] or for the prevention of its major [[Complication (medicine)|complications]].  
* In 1923, when Banting and Bests were awarded the [[Nobel Prize]] for [[insulin]] discovery, most researchers believed that this had led to a cure for [[diabetes]]. However, despite the advances in the [[Blood sugar|blood glucose]] management, there is no cure for [[diabetes]] or for the prevention of its major [[Complication (medicine)|complications]].  
* Scientists have observed that people with [[type 2 diabetes]] have overly active, and sometimes dysfunctional [[immune system]]<nowiki/>s, which are linked to some [[Complication (medicine)|complications]]. In current times, [[diabetes]] is seen as the disease of high blood [[glucose]], or lack of [[insulin]], however chronic [[Inflammation|inflammatory]] states and the overabundance of [[reactive oxygen species]] ([[Reactive oxygen species|ROS]]) also play a part in the disease process.<ref name="pmid14679177">{{cite journal| author=Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al.| title=Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. | journal=J Clin Invest | year= 2003 | volume= 112 | issue= 12 | pages= 1821-30 | pmid=14679177 | doi=10.1172/JCI19451 | pmc=PMC296998 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14679177  }} </ref>.
* Scientists have observed that people with [[type 2 diabetes]] have overly active, and sometimes dysfunctional [[immune system]]<nowiki/>s, which are linked to some [[Complication (medicine)|complications]]. In current times, [[diabetes]] is seen as the disease of high blood [[glucose]], or lack of [[insulin]], however chronic [[Inflammation|inflammatory]] states and the overabundance of [[reactive oxygen species]] ([[Reactive oxygen species|ROS]]) also play a part in the disease process.<ref name="pmid14679177">{{cite journal| author=Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al.| title=Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. | journal=J Clin Invest | year= 2003 | volume= 112 | issue= 12 | pages= 1821-30 | pmid=14679177 | doi=10.1172/JCI19451 | pmc=PMC296998 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14679177  }} </ref>.
* [[Inflammation]] is part of a healthy immune response, an orchestrated onslaught of cells and chemicals that heal injury and fight [[infection]]. [[Chronic inflammation]] is a process which occurs throughout the body when a trigger activates the [[immune system]]. This inflammation results in the cascade of [[reactive oxygen species]] and further damage to tissue.  <ref name="pmid14679177">{{cite journal| author=Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al.| title=Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. | journal=J Clin Invest | year= 2003 | volume= 112 | issue= 12 | pages= 1821-30 | pmid=14679177 | doi=10.1172/JCI19451 | pmc=PMC296998 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14679177  }} </ref> <ref name="pmid22252015">{{cite journal| author=Calle MC, Fernandez ML| title=Inflammation and type 2 diabetes. | journal=Diabetes Metab | year= 2012 | volume= 38 | issue= 3 | pages= 183-91 | pmid=22252015 | doi=10.1016/j.diabet.2011.11.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22252015  }} </ref>.  
* [[Inflammation]] is part of a healthy immune response, an orchestrated onslaught of cells and chemicals that heal injury and fight [[infection]]. [[Chronic inflammation]] is a process which occurs throughout the body when a trigger activates the [[immune system]]. This inflammation results in the cascade of [[reactive oxygen species]] and further damage to tissue.  <ref name="pmid14679177">{{cite journal| author=Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al.| title=Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. | journal=J Clin Invest | year= 2003 | volume= 112 | issue= 12 | pages= 1821-30 | pmid=14679177 | doi=10.1172/JCI19451 | pmc=PMC296998 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=14679177  }} </ref> <ref name="pmid22252015">{{cite journal| author=Calle MC, Fernandez ML| title=Inflammation and type 2 diabetes. | journal=Diabetes Metab | year= 2012 | volume= 38 | issue= 3 | pages= 183-91 | pmid=22252015 | doi=10.1016/j.diabet.2011.11.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22252015  }} </ref>.
* In 1993, scientists showed that the [[Tumour necrosis factor|tumor necrosis factor α]] ([[Tumor necrosis factor-alpha|TNF-α]]) expression was up-regulated in the [[adipose tissue]] of [[Obesity|obese]] mice with [[Diabetes mellitus type 2|type 2 diabetes]] <ref name="pmid7678183">{{cite journal| author=Hotamisligil GS, Shargill NS, Spiegelman BM| title=Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. | journal=Science | year= 1993 | volume= 259 | issue= 5091 | pages= 87-91 | pmid=7678183 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7678183  }} </ref>. When mice deficient in [[Tumor necrosis factor-alpha|TNF-α]] were bred, [[diabetes]] did not develop. It appeared that [[inflammation]] preceded diabetes, long before [[diagnosis]].
* In 1993, scientists showed that the [[Tumour necrosis factor|tumor necrosis factor α]] ([[Tumor necrosis factor-alpha|TNF-α]]) expression was up-regulated in the [[adipose tissue]] of [[Obesity|obese]] mice with [[Diabetes mellitus type 2|type 2 diabetes]] <ref name="pmid7678183">{{cite journal| author=Hotamisligil GS, Shargill NS, Spiegelman BM| title=Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. | journal=Science | year= 1993 | volume= 259 | issue= 5091 | pages= 87-91 | pmid=7678183 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=7678183  }} </ref>. When mice deficient in [[Tumor necrosis factor-alpha|TNF-α]] were bred, [[diabetes]] did not develop. It appeared that [[inflammation]] preceded diabetes, long before [[diagnosis]].


Line 62: Line 62:
* [[Leukocytes]] and [[Innate immune system|innate immunity]] is the main source of [[inflammation]] in humans. In animal species, [[adipose tissue]] is the mediator of [[Innate immune system|innate immunity]]. In insects, [[adipocytes]] have a [[Receptor (biochemistry)|receptor]] for the cell wall of [[bacteria]] and [[fungi]], called [[TLR 1|toll like receptor]]. It is responsible for nuclear factor 1 β (NF1β) activation which induces the secretion of [[Antiseptic|antibacterial]] [[Peptide|peptides]] and other defense mechanisms. This induces the [[Inflammation|inflammatory]] cascades. [[Fat tissue]] also manages the storage of [[Lipid|lipids]] in the [[liver]] <ref name="pmid12881560">{{cite journal| author=Rolff J, Siva-Jothy MT| title=Invertebrate ecological immunology. | journal=Science | year= 2003 | volume= 301 | issue= 5632 | pages= 472-5 | pmid=12881560 | doi=10.1126/science.1080623 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12881560  }} </ref>.However some aspects of [[innate immunity]] are still preserved in the [[Adipocyte|adipocytes]]. Moreover [[adipose tissue]] is populated with tissue resident [[macrophages]], which is significantly increased by diet induced [[weight gain]] <ref name="pmid15890981">{{cite journal| author=Berg AH, Scherer PE| title=Adipose tissue, inflammation, and cardiovascular disease. | journal=Circ Res | year= 2005 | volume= 96 | issue= 9 | pages= 939-49 | pmid=15890981 | doi=10.1161/01.RES.0000163635.62927.34 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15890981  }} </ref>.
* [[Leukocytes]] and [[Innate immune system|innate immunity]] is the main source of [[inflammation]] in humans. In animal species, [[adipose tissue]] is the mediator of [[Innate immune system|innate immunity]]. In insects, [[adipocytes]] have a [[Receptor (biochemistry)|receptor]] for the cell wall of [[bacteria]] and [[fungi]], called [[TLR 1|toll like receptor]]. It is responsible for nuclear factor 1 β (NF1β) activation which induces the secretion of [[Antiseptic|antibacterial]] [[Peptide|peptides]] and other defense mechanisms. This induces the [[Inflammation|inflammatory]] cascades. [[Fat tissue]] also manages the storage of [[Lipid|lipids]] in the [[liver]] <ref name="pmid12881560">{{cite journal| author=Rolff J, Siva-Jothy MT| title=Invertebrate ecological immunology. | journal=Science | year= 2003 | volume= 301 | issue= 5632 | pages= 472-5 | pmid=12881560 | doi=10.1126/science.1080623 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12881560  }} </ref>.However some aspects of [[innate immunity]] are still preserved in the [[Adipocyte|adipocytes]]. Moreover [[adipose tissue]] is populated with tissue resident [[macrophages]], which is significantly increased by diet induced [[weight gain]] <ref name="pmid15890981">{{cite journal| author=Berg AH, Scherer PE| title=Adipose tissue, inflammation, and cardiovascular disease. | journal=Circ Res | year= 2005 | volume= 96 | issue= 9 | pages= 939-49 | pmid=15890981 | doi=10.1161/01.RES.0000163635.62927.34 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15890981  }} </ref>.


* The first theory in regards to [[Adipose tissue|fat tissue]] being the source of [[inflammation]] and [[diabetes]], is that there is an overabundance of energy in the form of [[glucose]] and [[lipid]] in [[obesity]]. This leads to [[mitochondrial]] dysfunction and [[reactive oxygen species]] ([[Reactive oxygen species|ROS]]) production from the [[Adipocyte|adipocytes]]. [[Reactive oxygen species|ROS]] can activate the immunity by inducing the NF1β and hence secretion of the inflammatory [[Cytokine|cytokines]] <ref name="pmid15890981">{{cite journal| author=Berg AH, Scherer PE| title=Adipose tissue, inflammation, and cardiovascular disease. | journal=Circ Res | year= 2005 | volume= 96 | issue= 9 | pages= 939-49 | pmid=15890981 | doi=10.1161/01.RES.0000163635.62927.34 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15890981  }} </ref>.  The second [[theory]] is the [[Hypoxia (medical)|hypoxia]] theory reported by Trayhurn and Wood <ref name="pmid15469638">{{cite journal| author=Trayhurn P, Wood IS| title=Adipokines: inflammation and the pleiotropic role of white adipose tissue. | journal=Br J Nutr | year= 2004 | volume= 92 | issue= 3 | pages= 347-55 | pmid=15469638 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15469638  }} </ref>. The [[fat]] cells expand when a person gains weight. These [[fat]] cells sometimes do not get enough [[oxygen]]. In response to [[Hypoxia (medical)|hypoxia]]; they induce [[cytokines]], which activate the [[angiogenesis]], [[metabolism]] and cellular stress. These [[Cytokine|cytokines]] induce [[insulin resistance]] and hence lead to [[diabetes]].  
* The first theory in regards to [[Adipose tissue|fat tissue]] being the source of [[inflammation]] and [[diabetes]], is that there is an overabundance of energy in the form of [[glucose]] and [[lipid]] in [[obesity]]. This leads to [[mitochondrial]] dysfunction and [[reactive oxygen species]] ([[Reactive oxygen species|ROS]]) production from the [[Adipocyte|adipocytes]]. [[Reactive oxygen species|ROS]] can activate the immunity by inducing the NF1β and hence secretion of the inflammatory [[Cytokine|cytokines]] <ref name="pmid15890981">{{cite journal| author=Berg AH, Scherer PE| title=Adipose tissue, inflammation, and cardiovascular disease. | journal=Circ Res | year= 2005 | volume= 96 | issue= 9 | pages= 939-49 | pmid=15890981 | doi=10.1161/01.RES.0000163635.62927.34 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15890981  }} </ref>.  The second [[theory]] is the [[Hypoxia (medical)|hypoxia]] theory reported by Trayhurn and Wood <ref name="pmid15469638">{{cite journal| author=Trayhurn P, Wood IS| title=Adipokines: inflammation and the pleiotropic role of white adipose tissue. | journal=Br J Nutr | year= 2004 | volume= 92 | issue= 3 | pages= 347-55 | pmid=15469638 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=15469638  }} </ref>. The [[fat]] cells expand when a person gains weight. These [[fat]] cells sometimes do not get enough [[oxygen]]. In response to [[Hypoxia (medical)|hypoxia]]; they induce [[cytokines]], which activate the [[angiogenesis]], [[metabolism]] and cellular stress. These [[Cytokine|cytokines]] induce [[insulin resistance]] and hence lead to [[diabetes]].
* The [[adipose tissue]] is not usually considered as an immune or inflammatory organ, however these observations provide evidence for the link between [[obesity]] and [[inflammation]].
* The [[adipose tissue]] is not usually considered as an immune or inflammatory organ, however these observations provide evidence for the link between [[obesity]] and [[inflammation]].


====Systemic Inflammation in Diabetes====
====Systemic Inflammation in Diabetes====


* A growing body of evidence demonstrates that [[adipose tissue]] [[inflammation]] eventually results in systemic [[inflammation]]<ref name="pmid22252015">{{cite journal| author=Calle MC, Fernandez ML| title=Inflammation and type 2 diabetes. | journal=Diabetes Metab | year= 2012 | volume= 38 | issue= 3 | pages= 183-91 | pmid=22252015 | doi=10.1016/j.diabet.2011.11.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22252015  }} </ref>. [[C-reactive protein|C reactive protein]] ([[C-reactive protein|CRP]]) is an inflammatory marker produced by the [[liver]] in response to [[TNFα]] and [[Interleukin 6|Interleukin-6]].  
* A growing body of evidence demonstrates that [[adipose tissue]] [[inflammation]] eventually results in systemic [[inflammation]]<ref name="pmid22252015">{{cite journal| author=Calle MC, Fernandez ML| title=Inflammation and type 2 diabetes. | journal=Diabetes Metab | year= 2012 | volume= 38 | issue= 3 | pages= 183-91 | pmid=22252015 | doi=10.1016/j.diabet.2011.11.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22252015  }} </ref>. [[C-reactive protein|C reactive protein]] ([[C-reactive protein|CRP]]) is an inflammatory marker produced by the [[liver]] in response to [[TNFα]] and [[Interleukin 6|Interleukin-6]].
* [[CRP]] has been shown to precede [[diabetes]] years before diagnosis. Elevated [[C-reactive protein|CRP]] levels are unquestionably associated with [[obesity]] and increased risk of [[cardiovascular]] disorders. Patients with a high [[C-reactive protein|CRP]] levels are at a higher [[Mortality rate|mortality risk]] from [[heart]] disease.  
* [[CRP]] has been shown to precede [[diabetes]] years before diagnosis. Elevated [[C-reactive protein|CRP]] levels are unquestionably associated with [[obesity]] and increased risk of [[cardiovascular]] disorders. Patients with a high [[C-reactive protein|CRP]] levels are at a higher [[Mortality rate|mortality risk]] from [[heart]] disease.  
* Other inflammatory markers are also disproportionately elevated in [[diabetes]] which results into systemic [[inflammation]]. The systemic [[inflammation]] result into [[insulin resistance]] and [[insulin resistance]] results into [[obesity]]. Hence both [[diabetes]] and [[inflammation]] reinforce each other via a positive feedback <ref name="pmid22252015">{{cite journal| author=Calle MC, Fernandez ML| title=Inflammation and type 2 diabetes. | journal=Diabetes Metab | year= 2012 | volume= 38 | issue= 3 | pages= 183-91 | pmid=22252015 | doi=10.1016/j.diabet.2011.11.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22252015  }} </ref>.
* Other inflammatory markers are also disproportionately elevated in [[diabetes]] which results into systemic [[inflammation]]. The systemic [[inflammation]] result into [[insulin resistance]] and [[insulin resistance]] results into [[obesity]]. Hence both [[diabetes]] and [[inflammation]] reinforce each other via a positive feedback <ref name="pmid22252015">{{cite journal| author=Calle MC, Fernandez ML| title=Inflammation and type 2 diabetes. | journal=Diabetes Metab | year= 2012 | volume= 38 | issue= 3 | pages= 183-91 | pmid=22252015 | doi=10.1016/j.diabet.2011.11.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22252015  }} </ref>.


== Genetics ==
== Genetics ==
[Disease name] is transmitted in [mode of genetic transmission] pattern.
 
* Variants in 11 [[genes]] have been related to [[Diabetes mellitus type 2|type 2 diabetes mellitus]] development. these genes include:<ref name="LyssenkoJonsson2008">{{cite journal|last1=Lyssenko|first1=Valeriya|last2=Jonsson|first2=Anna|last3=Almgren|first3=Peter|last4=Pulizzi|first4=Nicoló|last5=Isomaa|first5=Bo|last6=Tuomi|first6=Tiinamaija|last7=Berglund|first7=Göran|last8=Altshuler|first8=David|last9=Nilsson|first9=Peter|last10=Groop|first10=Leif|title=Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes|journal=New England Journal of Medicine|volume=359|issue=21|year=2008|pages=2220–2232|issn=0028-4793|doi=10.1056/NEJMoa0801869}}</ref>
** ''[[TCF7L2]]''
** ''[[PPARG]],''
** ''[[FTO gene|FTO]],''
** ''KCNJ11,''
** ''[[NOTCH2]],''
** ''[[WFS1]],''
** ''[[CDKAL1]],''
** ''[[IGF2BP2]],''
** ''[[SLC30A8]],''
** ''[[JAZF1]],''
** ''[[HHEX]]''
* 8 variants of these [[genes]] are related to [[beta cell]] dysfunction.<ref name="LyssenkoJonsson20082">{{cite journal|last1=Lyssenko|first1=Valeriya|last2=Jonsson|first2=Anna|last3=Almgren|first3=Peter|last4=Pulizzi|first4=Nicoló|last5=Isomaa|first5=Bo|last6=Tuomi|first6=Tiinamaija|last7=Berglund|first7=Göran|last8=Altshuler|first8=David|last9=Nilsson|first9=Peter|last10=Groop|first10=Leif|title=Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes|journal=New England Journal of Medicine|volume=359|issue=21|year=2008|pages=2220–2232|issn=0028-4793|doi=10.1056/NEJMoa0801869}}</ref> 


== Associated Conditions ==
== Associated Conditions ==
Line 78: Line 91:




*[[Diabetes mellitus type 2]] is often associated with [[obesity]] and [[hypertension]] and elevated [[cholesterol]] ([[combined hyperlipidemia]]), and with the condition [[Metabolic syndrome]]. It is also associated with [[acromegaly]], [[Cushing's syndrome]], [[Non-alcoholic fatty liver disease|Nonalcoholic steatohepatitis]]([[Non-alcoholic fatty liver disease|NASH]]) and a number of other [[endocrinology|endocrinological]] disorders.<ref name="YounossiGolabi2019">{{cite journal|last1=Younossi|first1=Zobair M.|last2=Golabi|first2=Pegah|last3=de Avila|first3=Leyla|last4=Paik|first4=James Minhui|last5=Srishord|first5=Manirath|last6=Fukui|first6=Natsu|last7=Qiu|first7=Ying|last8=Burns|first8=Leah|last9=Afendy|first9=Arian|last10=Nader|first10=Fatema|title=The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis|journal=Journal of Hepatology|volume=71|issue=4|year=2019|pages=793–801|issn=01688278|doi=10.1016/j.jhep.2019.06.021}}</ref>  
*[[Diabetes mellitus type 2]] is often associated with [[obesity]] and [[hypertension]] and elevated [[cholesterol]] ([[combined hyperlipidemia]]), and with the condition [[Metabolic syndrome]]. It is also associated with [[acromegaly]], [[Cushing's syndrome]], [[Non-alcoholic fatty liver disease|Nonalcoholic steatohepatitis]]([[Non-alcoholic fatty liver disease|NASH]]) and a number of other [[endocrinology|endocrinological]] disorders.<ref name="YounossiGolabi2019">{{cite journal|last1=Younossi|first1=Zobair M.|last2=Golabi|first2=Pegah|last3=de Avila|first3=Leyla|last4=Paik|first4=James Minhui|last5=Srishord|first5=Manirath|last6=Fukui|first6=Natsu|last7=Qiu|first7=Ying|last8=Burns|first8=Leah|last9=Afendy|first9=Arian|last10=Nader|first10=Fatema|title=The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis|journal=Journal of Hepatology|volume=71|issue=4|year=2019|pages=793–801|issn=01688278|doi=10.1016/j.jhep.2019.06.021}}</ref>
*Additional factors found to increase risk of [[Diabetes mellitus type 2|type 2 diabetes]] include [[Ageing|aging]]<ref>Jack, L., Jr., Boseman, L. & Vinicor, F. Aging Americans and diabetes. A public health and clinical response. ''Geriatrics'' '''2004''', 59, 14-17.</ref>, high-[[fat]] diets<ref>Lovejoy, J. C. The influence of dietary fat on insulin resistance. ''Curr Diab Rep'' '''2002''', 2,435-440.</ref> and a less active lifestyle<ref>Hu, F. B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38,103-108.</ref>.
*Additional factors found to increase risk of [[Diabetes mellitus type 2|type 2 diabetes]] include [[Ageing|aging]]<ref>Jack, L., Jr., Boseman, L. & Vinicor, F. Aging Americans and diabetes. A public health and clinical response. ''Geriatrics'' '''2004''', 59, 14-17.</ref>, high-[[fat]] diets<ref>Lovejoy, J. C. The influence of dietary fat on insulin resistance. ''Curr Diab Rep'' '''2002''', 2,435-440.</ref> and a less active lifestyle<ref>Hu, F. B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38,103-108.</ref>.
* There is a bidirectional relationship between [[Diabetes mellitus]] and [[sarcopenia]]. Numerous factors like accumulation of [[Advanced glycation endproduct|advanced glycation end-product]], [[inflammation]], [[insulin resistance]], vascular [[Complication (medicine)|complications]] and [[Oxidative stress|oxidative injury]] can interfere with muscle health. This impaired muscle health can eventually lead to [[Diabetes mellitus type 2|type 2 diabetes]].<ref name="pmid31372016">{{cite journal| author=Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D| title=Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. | journal=Diabetes Metab Syndr Obes | year= 2019 | volume= 12 | issue=  | pages= 1057-1072 | pmid=31372016 | doi=10.2147/DMSO.S186600 | pmc=6630094 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31372016  }}</ref>
* There is a bidirectional relationship between [[Diabetes mellitus]] and [[sarcopenia]]. Numerous factors like accumulation of [[Advanced glycation endproduct|advanced glycation end-product]], [[inflammation]], [[insulin resistance]], vascular [[Complication (medicine)|complications]] and [[Oxidative stress|oxidative injury]] can interfere with muscle health. This impaired muscle health can eventually lead to [[Diabetes mellitus type 2|type 2 diabetes]].<ref name="pmid31372016">{{cite journal| author=Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D| title=Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. | journal=Diabetes Metab Syndr Obes | year= 2019 | volume= 12 | issue=  | pages= 1057-1072 | pmid=31372016 | doi=10.2147/DMSO.S186600 | pmc=6630094 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=31372016  }}</ref>

Revision as of 18:58, 30 July 2020

Diabetes mellitus main page

Diabetes mellitus type 2 Microchapters

Home

Patient information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Diabetes Mellitus Type 2 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical therapy

Life Style Modification
Pharmacotherapy
Glycemic Control

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Priyamvada Singh, M.B.B.S. [2]; Cafer Zorkun, M.D., Ph.D. [3],Seyedmahdi Pahlavani, M.D. [4]

Overview

The exact pathophysiology of type 2 diabetes mellitus is not fully understood. The underlying pathology is the development of insulin resistance. Contrary to type 1 diabetes, patients with type 2 diabetes sufficiently produce insulin. However, the cellular response to the circulating insulin is diminished in type 2 DM. The mechanism by which the insulin resistance develops is postulated to be influenced by both genetic and environmental factors. Environmental influences on the pathogenesis of type 2 DM include high glycemic diets, central obesity, older age, male gender, low-fiber diet, and highly saturated fat diet.

Pathophysiology

Pathogenesis

Beta-cell function

  • Some carbohydrates are not converted e.g fruit sugar (fructose) is usable as cellular fuel but it is not converted to glucose, and it therefore does not participate in the insulin/glucose metabolic regulatory mechanism.
  • Insulin is used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage.
  • If the amount of insulin available is insufficient, if cells respond poorly to the effects of insulin (insulin insensitivity or resistance), or if the insulin itself is defective, then glucose will not be absorbed properly by those body cells that require it nor will it be stored appropriately in the liver and muscles. The net effect is persistent high levels of blood glucose, poor protein synthesis, and other metabolic derangements, such as acidosis.
Mechanism of insulin release in normal pancreatic beta cells
Mechanism of insulin release in normal pancreatic beta cells

Inflammation and Diabetes

Obesity as the Link Between Diabetes and Inflammation

Systemic Inflammation in Diabetes

Genetics

Associated Conditions

Gross Pathology

On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

  1. Montonen, J.; Knekt, P.; Jarvinen, R.; Reunanen, A. (2004). "Dietary Antioxidant Intake and Risk of Type 2 Diabetes". Diabetes Care. 27 (2): 362–366. doi:10.2337/diacare.27.2.362. ISSN 0149-5992.
  2. van der Schaft, Niels; Schoufour, Josje D.; Nano, Jana; Kiefte-de Jong, Jessica C.; Muka, Taulant; Sijbrands, Eric J. G.; Ikram, M. Arfan; Franco, Oscar H.; Voortman, Trudy (2019). "Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: the Rotterdam Study". European Journal of Epidemiology. 34 (9): 853–861. doi:10.1007/s10654-019-00548-9. ISSN 0393-2990.
  3. Kaneto, H.; Kajimoto, Y.; Miyagawa, J.; Matsuoka, T.; Fujitani, Y.; Umayahara, Y.; Hanafusa, T.; Matsuzawa, Y.; Yamasaki, Y.; Hori, M. (1999). "Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity". Diabetes. 48 (12): 2398–2406. doi:10.2337/diabetes.48.12.2398. ISSN 0012-1797.
  4. 4.0 4.1 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ; et al. (2003). "Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance". J Clin Invest. 112 (12): 1821–30. doi:10.1172/JCI19451. PMC 296998. PMID 14679177.
  5. 5.0 5.1 5.2 Calle MC, Fernandez ML (2012). "Inflammation and type 2 diabetes". Diabetes Metab. 38 (3): 183–91. doi:10.1016/j.diabet.2011.11.006. PMID 22252015.
  6. Hotamisligil GS, Shargill NS, Spiegelman BM (1993). "Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance". Science. 259 (5091): 87–91. PMID 7678183.
  7. Rolff J, Siva-Jothy MT (2003). "Invertebrate ecological immunology". Science. 301 (5632): 472–5. doi:10.1126/science.1080623. PMID 12881560.
  8. 8.0 8.1 Berg AH, Scherer PE (2005). "Adipose tissue, inflammation, and cardiovascular disease". Circ Res. 96 (9): 939–49. doi:10.1161/01.RES.0000163635.62927.34. PMID 15890981.
  9. Trayhurn P, Wood IS (2004). "Adipokines: inflammation and the pleiotropic role of white adipose tissue". Br J Nutr. 92 (3): 347–55. PMID 15469638.
  10. Lyssenko, Valeriya; Jonsson, Anna; Almgren, Peter; Pulizzi, Nicoló; Isomaa, Bo; Tuomi, Tiinamaija; Berglund, Göran; Altshuler, David; Nilsson, Peter; Groop, Leif (2008). "Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes". New England Journal of Medicine. 359 (21): 2220–2232. doi:10.1056/NEJMoa0801869. ISSN 0028-4793.
  11. Lyssenko, Valeriya; Jonsson, Anna; Almgren, Peter; Pulizzi, Nicoló; Isomaa, Bo; Tuomi, Tiinamaija; Berglund, Göran; Altshuler, David; Nilsson, Peter; Groop, Leif (2008). "Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes". New England Journal of Medicine. 359 (21): 2220–2232. doi:10.1056/NEJMoa0801869. ISSN 0028-4793.
  12. Younossi, Zobair M.; Golabi, Pegah; de Avila, Leyla; Paik, James Minhui; Srishord, Manirath; Fukui, Natsu; Qiu, Ying; Burns, Leah; Afendy, Arian; Nader, Fatema (2019). "The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis". Journal of Hepatology. 71 (4): 793–801. doi:10.1016/j.jhep.2019.06.021. ISSN 0168-8278.
  13. Jack, L., Jr., Boseman, L. & Vinicor, F. Aging Americans and diabetes. A public health and clinical response. Geriatrics 2004, 59, 14-17.
  14. Lovejoy, J. C. The influence of dietary fat on insulin resistance. Curr Diab Rep 2002, 2,435-440.
  15. Hu, F. B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38,103-108.
  16. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D (2019). "Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship". Diabetes Metab Syndr Obes. 12: 1057–1072. doi:10.2147/DMSO.S186600. PMC 6630094 Check |pmc= value (help). PMID 31372016.
  17. Ge, Xiao-Jun; Du, Yu-Xuan; Zheng, Li-Mei; Wang, Mei; Jiang, Jun-Yao (2020). "Mortality trends of liver cancer among patients with type 2 diabetes at the global and national level". Journal of Diabetes and its Complications. 34 (8): 107612. doi:10.1016/j.jdiacomp.2020.107612. ISSN 1056-8727.
  18. Wu, Yingjie; Zhou, An; Tang, Li; Lei, Yuanyuan; Tang, Bo; Zhang, Linjing (2020). "Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes". Journal of Diabetes Research. 2020: 1–11. doi:10.1155/2020/6138438. ISSN 2314-6745.


Template:WH Template:WS