COVID-19 interventions

Jump to: navigation, search

For COVID-19 frequently asked outpatient questions, click here
For COVID-19 frequently asked inpatient questions, click here

COVID-19 Microchapters

Home

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 interventions On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 interventions

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 interventions

CDC on COVID-19 interventions

COVID-19 interventions in the news

Blogs on COVID-19 interventions

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 interventions

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Javaria Anwer M.D.[2]

Synonyms and Keywords: SARS Cov2 interventions, Interventions in covid19, Novel coronavirus interventions

Overview

The feasibility of the strategy utilized for the management of a patient with COVID-19 depends on the patient's condition at the time of presentation. Continuous evaluation and titration of ongoing interventions ensure optimal results. The respiratory manifestations of COVID-19 may require some oxygen supplementation to ventilatory support. Autopsy findings of patients with COVID-19-associated acute respiratory distress syndrome (CARDS) demonstrated small airway occlusion due to necrosis and inflammation. The finding advocates the use of positive pressure ventilation to restore the collapsed airways. A balanced approach is required as a high end-inspiratory pressure increases the risk of lung alveolar injury. Interventions posing a risk of aerosol transmissions should be carried out following using all the required precautions such as the use of PPE and AIIR room with minimal healthcare personnel in the room.

Ventilatory support in COVID-19

Supplemental Oxygen

Non-Invasive ventilation (NIV)

  • NIV methods are easier and comfortable to use and work by inducing PEEP thus decreased the respiratory workload. Based on the COVID-19 experience of the Chinese experts , both HFNC and NIPPV methods should probably be utilized among patients with PaO2/FiO2 > 150 mmHg.[1]
  • Close monitoring for a deteriorating respiratory status and early intubation when indicated in a controlled setting, can help minimize the infection of health personnel and promise better patient health outcomes.[2]
  • Inspiratory pressures should be 10 cmH2O and expiratory pressures be 5 cmH2O with 1.0 FiO2.[4]

High Flow Nasal Cannula (HFNC)

  • Also known as high flow nasal oxygen (HFNO) or Heated humidified high-flow (HHHF) therapy is a non-invasive technique. It is a technique of delivering heated and humidified high-flow oxygen via soft and flexible nasal prongs. Humidification prevents the drying of epithelium and facilitates the removal of mucosal secretions. Other advantages include pharyngeal dead space washout and PEEP effect.[5] A hypercapnic patient should not be administered HFNC.
  • Sufficient evidence to prove the superiority of one of the methods (HFNC or NIPPV) is lacking. But HFNC is preferred over Non-invasive positive pressure ventilation (NIPPV). It is possibly due to reduced mortality and decreased intubation risk, as proved by a RCT and a meta-analysis respectively. Patient comfort better oxygenation with HFNC than NIPPV is also one of the considering factors.[1][6]
  • In acute hypoxemic respiratory failure despite supplemental oxygen therapy, SSC suggests using HFNC over conventional oxygen therapy (weak recommendation). A systematic review and meta-analysis of 9 RCTs showed that High Flow Nasal Cannula (HFNC) reduces the need for intubation.[2]
  • Target SpO2 should be 88% -94% with minimal flow rates under 30L/min. Low flow rates help minimize aerosolization. PEEP ranges from 5-15 and peak airway pressure ranges from 8-10 cmH2O.[4]

Non-Invasive Positive Pressure Ventilation (NIPPV)

Invasive Mechanical Ventilation (IMV)

Intubation

According to American Heart Association (AHA), intubation is indicated in:

  • Gas exchange abnormality: Respiratory failure (usually hypoxic in COVID-19), PaO2/FiO2 <150 (corrected for altitude), NIV with FiO2 >0.6 and inability to maintain SpO2 >90%, unresponsiveness to HFNC therapy, hypercapnia (PaCO2 > 45 mm Hg) with acidosis (PH< 7.3), increased work of breathing with deteriorating respiratory function.
  • Airway protection: Altered mental status and neurological dysfunctions.
  • Pulmonary toilet: To remove excessive pulmonary secretions.

Ventilator settings

The following ventilator setting should be utilized:[10][11][12]

Extracorporeal membrane oxygenation (ECMO)

Summary of SSC recommendations regarding initial management of hypoxic COVID-19 patients.[2]

Strategies to improve oxygenation

Prone position ventilation

Special considerations

  • Lung recruitment maneuvers[10][24][25]: Lung recruitment maneuver is the application of very high (up to 40 cm H2O) positive airway pressure during mechanical ventilation. It opens the collapsed alveoli, decreasing ventilation/perfusion (V/Q) mismatching thus improving the gas exchange. For ARDS patients, the maneuvers may help improve oxygenation and decrease the length of hospital stay with no positive effect on reducing mortality. The decision varies on a case by case basis depending upon lung condition and patient hemodynamics. On the trouble side, the maneuver may generate aerosols. High-quality evidence is lacking to support the use in ARDS patients.
  • Paralytics:[26][27] The paralytics may be administered with analgesics (fentanyl, hydromorphone) and sedatives (benzodiazepines, propofol). Among CARDS patients, Richmond Agitation Sedation Scale (RASS) score of (+2 to +4) even following optimal ventilatory settings may indicate the use of deep sedation with paralytics. If administered, short-term (24– 48 hours) and intermittent muscle relaxation is recommended. Prone position ventilation may also require muscle relaxation along with sedation. Paralytics are not recommended unless PaO2/FiO2 < 150 mmHg. The paralytics that are being administered among CARDS patients include: Succinylcholine chloride injection USP 200 mg/10 mL and cisatracurium besylate injection USP 20 mg/10 mL.
  • Aerosol Generation Risk Factors and Protective Measures: Concerns have been raised for a possible risk for transmission of COVID-19 to health care personnel due to aerosol transmission.[28] With the judicious use of the standard precautions and protective measures, the results for the mentioned interventions have been promising.
Source of aerosol generation Protective Measures
Coughing
  • Utilize full Personal protective equipment (PPE) prior to entering the intubation room.[29]
  • Due to the risk of aerosol spread of the SARS-CoV-2 virus (coronavirus), CDC recommends that protective eyewear (such as goggles or a face shield) should cover the front and sides of the face with no gaps between glasses and the face.[30]
  • Minimize period between removal of patient's PPE and application of face mask with viral filter.
  • Ensure sealing of the face mask.
  • Use of local lidocaine via ETT or during procedures such as bronchoscopy and opoids in minimum dose.[31]
Face Mask Seal Leak
  • Optimum fitting of the face mask.[29]
  • Vice (V-E) grip
  • Use manual ventilation Ambu bag
  • ETO2 monitoring
Non-Invasive ventilation, bronchoscopy, CPR
extubation, and manual ventilation
  • WHO recommends the use of PPE that includes respirators, eye protection, gloves and gowns; aprons if gowns are not fluid resistant.[29]
  • Due to the risk of aerosol spread of the SARS-CoV-2 virus, CDC recommends that protective eyewear (such as goggles or a face shield) should cover the front and sides of the face with no gaps between glasses and the face.[30]
  • In addition to regular precautions such as the use of PPE followed during COVID-19 pandemic following precautions as advised by CDC to prevent airborne transmission should be taken:[32][30]
    • Ideally the use of Airborne infection isolation room (AIIR) for the procedure.
    • Using a fit-tested NIOSH-approved N95 or higher level respirator and PPE mentioned above by healthcare personnel (HCP).
    • Restricting the number of HCP to only those essential for patient care and procedure support. Visitors should not be present for the procedure.
    • Limiting transport and movement of the patient.
    • The staff who are expected to help during the procedure should be informed and ready with PPEs.
    • Cleaning and disninfecting procedure room surfaces promptly.
Intubation
Tracheostomy
  • Above mentioned precautions such as the use of PPE, eye protection and AIIR with minimal personnel in the room should be followed.
  • During the procedure, minimal use of diathermy, and maintenance of bloodless fields should be ensured.
  • Post-procedure, reduce the frequency of changing an inner cannula and cuff pressure checks to a possible minimum for the patient.
  • Post tracheostomy, humidification can be provided via heat and moisture exchange filter or a water-based humidification such as hypertonic saline nebulizers.
  • Patients should use facemasks and tracheostomy shields during trials of tracheostomy cuff deflation.[33]


Bronchoscopy

  • Very limited studies are available on the use of bronchoscopy among COVID-19 patients due to a very high risk of aerosol transmission. Bronchoscopy as a well-tolerated therapeutic intervention, performed among mechanically ventilated patients with COVID-19 have been reported in an observational study. FiO2 was increased to SpO2 95%–98% before the intervention. Precautions such as the use of a negative-pressure room, PPE, and duration of the procedure never greater than 10 minutes were observed. The study showed that patients can benefit from therapeutic bronchoscopy for the removal of thick hyper-secretions in the airway (most common complication observed). Guided mini-BAL can also help confirm the clinical suspicion of superinfection. [34]
  • In addition to the above-mentioned precautions (table) recommended by CDC and WHO for the use of PPE, eye protection and AIIR room for the procedure, using disposable bronchoscope if possible is also advised. It is important to clean the suction channels with the cleaning solutions utilized for highly infectious materials.[30]

Tracheostomy

  • Standard decision making for tracheostomy in a COVID patient is practiced. But owing to the potential of aerosol spread of the infection certain considerations should be kept in mind, such as the safety of other the patient's family, other patients, healthcare personnel, and the resources available.[35]
  • Tracheostomy should be delayed until at least the 10th day of mechanical ventilation. It should be considered only when the patient is clinically improving. The decision of extubation should be limited to the patients who have a high chance of success.[33]

Cardiopulmonary resuscitation (CPR)

American Heart Association's (AHA) interim BLS Healthcare Provider Adult Cardiac Arrest Algorithm for Suspected or Confirmed COVID-19 Patients can be accessed by clicking here.[36]


References

  1. 1.0 1.1 1.2 1.3 1.4 Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D (June 2020). "Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China". Ann Intensive Care. 10 (1): 73. doi:10.1186/s13613-020-00689-1. PMC 7275657 Check |pmc= value (help). PMID 32506258 Check |pmid= value (help).
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Alhazzani, Waleed; Møller, Morten Hylander; Arabi, Yaseen M.; Loeb, Mark; Gong, Michelle Ng; Fan, Eddy; Oczkowski, Simon; Levy, Mitchell M.; Derde, Lennie; Dzierba, Amy; Du, Bin; Aboodi, Michael; Wunsch, Hannah; Cecconi, Maurizio; Koh, Younsuck; Chertow, Daniel S.; Maitland, Kathryn; Alshamsi, Fayez; Belley-Cote, Emilie; Greco, Massimiliano; Laundy, Matthew; Morgan, Jill S.; Kesecioglu, Jozef; McGeer, Allison; Mermel, Leonard; Mammen, Manoj J.; Alexander, Paul E.; Arrington, Amy; Centofanti, John E.; Citerio, Giuseppe; Baw, Bandar; Memish, Ziad A.; Hammond, Naomi; Hayden, Frederick G.; Evans, Laura; Rhodes, Andrew (2020). "Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)". Critical Care Medicine. 48 (6): e440–e469. doi:10.1097/CCM.0000000000004363. ISSN 0090-3493.
  3. 3.0 3.1 3.2 3.3 3.4 Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L (June 2020). "COVID-19 pneumonia: different respiratory treatments for different phenotypes?". Intensive Care Med. 46 (6): 1099–1102. doi:10.1007/s00134-020-06033-2. PMC 7154064 Check |pmc= value (help). PMID 32291463 Check |pmid= value (help).
  4. 4.0 4.1 "Oxygenation and Ventilation of COVID 19 Patients | American Heart Association CPR & First Aid".
  5. Zhang J, Lin L, Pan K, Zhou J, Huang X (December 2016). "High-flow nasal cannula therapy for adult patients". J. Int. Med. Res. 44 (6): 1200–1211. doi:10.1177/0300060516664621. PMC 5536739. PMID 27698207.
  6. Frat, Jean-Pierre; Thille, Arnaud W.; Mercat, Alain; Girault, Christophe; Ragot, Stéphanie; Perbet, Sébastien; Prat, Gwénael; Boulain, Thierry; Morawiec, Elise; Cottereau, Alice; Devaquet, Jérôme; Nseir, Saad; Razazi, Keyvan; Mira, Jean-Paul; Argaud, Laurent; Chakarian, Jean-Charles; Ricard, Jean-Damien; Wittebole, Xavier; Chevalier, Stéphanie; Herbland, Alexandre; Fartoukh, Muriel; Constantin, Jean-Michel; Tonnelier, Jean-Marie; Pierrot, Marc; Mathonnet, Armelle; Béduneau, Gaëtan; Delétage-Métreau, Céline; Richard, Jean-Christophe M.; Brochard, Laurent; Robert, René (2015). "High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure". New England Journal of Medicine. 372 (23): 2185–2196. doi:10.1056/NEJMoa1503326. ISSN 0028-4793.
  7. Cabrini L, Landoni G, Zangrillo A (February 2020). "Minimise nosocomial spread of 2019-nCoV when treating acute respiratory failure". Lancet. 395 (10225): 685. doi:10.1016/S0140-6736(20)30359-7. PMC 7137083 Check |pmc= value (help). PMID 32059800 Check |pmid= value (help).
  8. Wu, Zunyou; McGoogan, Jennifer M. (2020). "Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China". JAMA. 323 (13): 1239. doi:10.1001/jama.2020.2648. ISSN 0098-7484.
  9. "Strategies for health care response to COVID-19 shared by Chinese anesthesiologists".
  10. 10.0 10.1 10.2 10.3 10.4 Meng, Lingzhong; Qiu, Haibo; Wan, Li; Ai, Yuhang; Xue, Zhanggang; Guo, Qulian; Deshpande, Ranjit; Zhang, Lina; Meng, Jie; Tong, Chuanyao; Liu, Hong; Xiong, Lize (2020). "Intubation and Ventilation amid the COVID-19 Outbreak". Anesthesiology. 132 (6): 1317–1332. doi:10.1097/ALN.0000000000003296. ISSN 0003-3022.
  11. "NHLBI ARDS Network | Tools".
  12. 12.0 12.1 12.2 12.3 12.4 Fan, Eddy; Del Sorbo, Lorenzo; Goligher, Ewan C.; Hodgson, Carol L.; Munshi, Laveena; Walkey, Allan J.; Adhikari, Neill K. J.; Amato, Marcelo B. P.; Branson, Richard; Brower, Roy G.; Ferguson, Niall D.; Gajic, Ognjen; Gattinoni, Luciano; Hess, Dean; Mancebo, Jordi; Meade, Maureen O.; McAuley, Daniel F.; Pesenti, Antonio; Ranieri, V. Marco; Rubenfeld, Gordon D.; Rubin, Eileen; Seckel, Maureen; Slutsky, Arthur S.; Talmor, Daniel; Thompson, B. Taylor; Wunsch, Hannah; Uleryk, Elizabeth; Brozek, Jan; Brochard, Laurent J. (2017). "An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome". American Journal of Respiratory and Critical Care Medicine. 195 (9): 1253–1263. doi:10.1164/rccm.201703-0548ST. ISSN 1073-449X.
  13. Marini, John J.; Gattinoni, Luciano (2020). "Management of COVID-19 Respiratory Distress". JAMA. 323 (22): 2329. doi:10.1001/jama.2020.6825. ISSN 0098-7484.
  14. 14.0 14.1 Fan E, Beitler JR, Brochard L, Calfee CS, Ferguson ND, Slutsky AS, Brodie D (July 2020). "COVID-19-associated acute respiratory distress syndrome: is a different approach to management warranted?". Lancet Respir Med. doi:10.1016/S2213-2600(20)30304-0. PMC 7338016 Check |pmc= value (help). PMID 32645311 Check |pmid= value (help).
  15. "Clinical management of COVID-19".
  16. Zeng, Yingchun; Cai, Zhongxiang; Xianyu, Yunyan; Yang, Bing Xiang; Song, Ting; Yan, Qiaoyuan (2020). "Prognosis when using extracorporeal membrane oxygenation (ECMO) for critically ill COVID-19 patients in China: a retrospective case series". Critical Care. 24 (1). doi:10.1186/s13054-020-2840-8. ISSN 1364-8535.
  17. Li, Chenglong; Hou, Xiaotong; Tong, Zhaohui; Qiu, Haibo; Li, Yimin; Li, Ang (2020). "Extracorporeal membrane oxygenation programs for COVID-19 in China". Critical Care. 24 (1). doi:10.1186/s13054-020-03047-6. ISSN 1364-8535.
  18. Xie H, Zhou ZG, Jin W, Yuan CB, Du J, Lu J, Wang RL (2018). "Ventilator management for acute respiratory distress syndrome associated with avian influenza A (H7N9) virus infection: A case series". World J Emerg Med. 9 (2): 118–124. doi:10.5847/wjem.j.1920-8642.2018.02.006. PMC 5847497. PMID 29576824.
  19. 19.0 19.1 Telias, Irene; Katira, Bhushan H.; Brochard, Laurent (2020). "Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19?". JAMA. 323 (22): 2265. doi:10.1001/jama.2020.8539. ISSN 0098-7484.
  20. Ding L, Wang L, Ma W, He H (January 2020). "Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study". Crit Care. 24 (1): 28. doi:10.1186/s13054-020-2738-5. PMC 6993481 Check |pmc= value (help). PMID 32000806 Check |pmid= value (help).
  21. Sartini, Chiara; Tresoldi, Moreno; Scarpellini, Paolo; Tettamanti, Andrea; Carcò, Francesco; Landoni, Giovanni; Zangrillo, Alberto (2020). "Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit". JAMA. 323 (22): 2338. doi:10.1001/jama.2020.7861. ISSN 0098-7484.
  22. Thompson, Alison E.; Ranard, Benjamin L.; Wei, Ying; Jelic, Sanja (2020). "Prone Positioning in Awake, Nonintubated Patients With COVID-19 Hypoxemic Respiratory Failure". JAMA Internal Medicine. doi:10.1001/jamainternmed.2020.3030. ISSN 2168-6106.
  23. Rhodes, Andrew; Evans, Laura E.; Alhazzani, Waleed; Levy, Mitchell M.; Antonelli, Massimo; Ferrer, Ricard; Kumar, Anand; Sevransky, Jonathan E.; Sprung, Charles L.; Nunnally, Mark E.; Rochwerg, Bram; Rubenfeld, Gordon D.; Angus, Derek C.; Annane, Djillali; Beale, Richard J.; Bellinghan, Geoffrey J.; Bernard, Gordon R.; Chiche, Jean-Daniel; Coopersmith, Craig; De Backer, Daniel P.; French, Craig J.; Fujishima, Seitaro; Gerlach, Herwig; Hidalgo, Jorge Luis; Hollenberg, Steven M.; Jones, Alan E.; Karnad, Dilip R.; Kleinpell, Ruth M.; Koh, Younsuk; Lisboa, Thiago Costa; Machado, Flavia R.; Marini, John J.; Marshall, John C.; Mazuski, John E.; McIntyre, Lauralyn A.; McLean, Anthony S.; Mehta, Sangeeta; Moreno, Rui P.; Myburgh, John; Navalesi, Paolo; Nishida, Osamu; Osborn, Tiffany M.; Perner, Anders; Plunkett, Colleen M.; Ranieri, Marco; Schorr, Christa A.; Seckel, Maureen A.; Seymour, Christopher W.; Shieh, Lisa; Shukri, Khalid A.; Simpson, Steven Q.; Singer, Mervyn; Thompson, B. Taylor; Townsend, Sean R.; Van der Poll, Thomas; Vincent, Jean-Louis; Wiersinga, W. Joost; Zimmerman, Janice L.; Dellinger, R. Phillip (2017). "Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016". Intensive Care Medicine. 43 (3): 304–377. doi:10.1007/s00134-017-4683-6. ISSN 0342-4642.
  24. Cui, Yu; Cao, Rong; Wang, Yu; Li, Gen (2020). "Lung Recruitment Maneuvers for ARDS Patients: A Systematic Review and Meta-Analysis". Respiration. 99 (3): 264–276. doi:10.1159/000501045. ISSN 0025-7931.
  25. Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D (November 2016). "Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation". Cochrane Database Syst Rev. 11: CD006667. doi:10.1002/14651858.CD006667.pub3. PMC 6464835. PMID 27855477.
  26. Payen JF, Chanques G, Futier E, Velly L, Jaber S, Constantin JM (June 2020). "Sedation for critically ill patients with COVID-19: Which specificities? One size does not fit all". Anaesth Crit Care Pain Med. 39 (3): 341–343. doi:10.1016/j.accpm.2020.04.010. PMC 7189860 Check |pmc= value (help). PMID 32360979 Check |pmid= value (help).
  27. "Coronavirus (COVID-19) Update: Daily Roundup May 5, 2020 | FDA".
  28. Schünemann HJ, Khabsa J, Solo K, Khamis AM, Brignardello-Petersen R, El-Harakeh A, Darzi A, Hajizadeh A, Bognanni A, Bak A, Izcovich A, Cuello-Garcia CA, Chen C, Borowiack E, Chamseddine F, Schünemann F, Morgano GP, Muti-Schünemann G, Chen G, Zhao H, Neumann I, Brozek J, Schmidt J, Hneiny L, Harrison L, Reinap M, Junek M, Santesso N, El-Khoury R, Thomas R, Nieuwlaat R, Stalteri R, Yaacoub S, Lotfi T, Baldeh T, Piggott T, Zhang Y, Saad Z, Rochwerg B, Perri D, Fan E, Stehling F, Akl IB, Loeb M, Garner P, Aston S, Alhazzani W, Szczeklik W, Chu DK, Akl EA (May 2020). "Ventilation Techniques and Risk for Transmission of Coronavirus Disease, Including COVID-19: A Living Systematic Review of Multiple Streams of Evidence". Ann. Intern. Med. doi:10.7326/M20-2306. PMC 7281716 Check |pmc= value (help). PMID 32442035 Check |pmid= value (help). Vancouver style error: initials (help)
  29. 29.0 29.1 29.2 "apps.who.int" (PDF).
  30. 30.0 30.1 30.2 30.3 "Infection Control: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) | CDC".
  31. Hatipoglu Z, Turktan M, Avci A (November 2016). "The anesthesia of trachea and bronchus surgery". J Thorac Dis. 8 (11): 3442–3451. doi:10.21037/jtd.2016.11.35. PMC 5179431. PMID 28066625.
  32. "Transmission-Based Precautions | Basics | Infection Control | CDC"".
  33. 33.0 33.1 McGrath, Brendan A; Brenner, Michael J; Warrillow, Stephen J; Pandian, Vinciya; Arora, Asit; Cameron, Tanis S; Añon, José Manuel; Hernández Martínez, Gonzalo; Truog, Robert D; Block, Susan D; Lui, Grace C Y; McDonald, Christine; Rassekh, Christopher H; Atkins, Joshua; Qiang, Li; Vergez, Sébastien; Dulguerov, Pavel; Zenk, Johannes; Antonelli, Massimo; Pelosi, Paolo; Walsh, Brian K; Ward, Erin; Shang, You; Gasparini, Stefano; Donati, Abele; Singer, Mervyn; Openshaw, Peter J M; Tolley, Neil; Markel, Howard; Feller-Kopman, David J (2020). "Tracheostomy in the COVID-19 era: global and multidisciplinary guidance". The Lancet Respiratory Medicine. 8 (7): 717–725. doi:10.1016/S2213-2600(20)30230-7. ISSN 2213-2600.
  34. Torrego A, Pajares V, Fernández-Arias C, Vera P, Mancebo J (July 2020). "Bronchoscopy in Patients with COVID-19 with Invasive Mechanical Ventilation: A Single-Center Experience". Am. J. Respir. Crit. Care Med. 202 (2): 284–287. doi:10.1164/rccm.202004-0945LE. PMC 7365381 Check |pmc= value (help). PMID 32412787 Check |pmid= value (help).
  35. Zhang, Xiaomeng; Huang, Qiling; Niu, Xun; Zhou, Tao; Xie, Zhen; Zhong, Yi; Xiao, Hongjun (2020). "Safe and effective management of tracheostomy in COVID ‐19 patients". Head & Neck. 42 (7): 1374–1381. doi:10.1002/hed.26261. ISSN 1043-3074. line feed character in |title= at position 49 (help)
  36. "Coronavirus (COVID-19) Resources for CPR Training | American Heart Association CPR & First Aid".