Sandbox:Javaria

Revision as of 06:57, 25 June 2020 by Javaria Anwer (talk | contribs)
Jump to navigation Jump to search

To go to the COVID-19 project topics list, click here.

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

Sandbox:Javaria On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Sandbox:Javaria

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Sandbox:Javaria

CDC on Sandbox:Javaria

Sandbox:Javaria in the news

Blogs on Sandbox:Javaria

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Sandbox:Javaria

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]


Complications

Anorexia associated with COVID-19

  • According to a recent study by Pan et al, 48.5% presented with digestive symptoms as their chief complaint. Anorexia was the most common (83.8%) of digestive symptoms associated with SARS-Cov2 infection. With COVID-19 primarily being a respiratory disease, surprisingly around 3% cases had just the digestive symptoms but no respiratory symptoms.[1]

Natural history

History of anorexia associated with COVID-19

Diagnosis

Laboratory Findings

Treatment

Oral musical lesions associated with COVID-19

  • Recently, according to Carreras-Presas et al. oral vesiculobullous lesions associated with COVID-19 infection have been reported in three patients.[2]

Pathophysiology

  • An abundant Angiotensin-converting enzyme 2 (ACE2) receptor expression on epithelial cells of the oral cavity plays a pivotal role in allowing COVID-19 virus to enter the epithelial cells and cause infection. There is a strong association between ACE-2 and 2019-nCoV S protein. The presence of coronavirus in human saliva is attributed to the same reason.[3]

Natural history

History of oral musical lesions associated with COVID-19

Diagnosis

Laboratory Findings

Treatment

Dysgeusia associated with COVID-19

Hepatic injury associated with COVID-19

  • Several studies have reported the incidence of liver injury in COVID-19 infected patients.

Pathophysiology

  • The exact mechanism of liver injury is still unclear. There are a few proposed mechanisms by which the SARS-CoV2 virus can infect liver cells causing damage, leading to a rise in hepatic enzymes.
    • Hepatic injury directly caused by the viral infection of the liver as the detection of SARS-CoV-2 RNA in stool gives rise to the notion of viral exposure in the liver. [4]
    • A preliminary study suggested that Angiotensin-converting enzyme 2 (ACE2) receptor expression is enriched in cholangiocytes and not in hepatocytes, indicating that SARS-CoV-2 might directly bind to ACE2-positive cholangiocytes to dysregulate liver function. The studies have not yet answered about the specific mechanisms of cholangiocyte injury, and how hepatocyte injury occurs as it lacks ACE2 receptor.[5][6]

Natural history

  • According to the data available to date, patients with severe disease had increased incidence of abnormal liver function. By Guan et al. of 1099 COVID-19 positive patients, 2.3% had a preexisting liver injury, but elevated levels of AST were observed in 18.2% of the patients with non-severe disease and 39·4% patients with severe disease. Other studies with a lesser sample size had similar findings reported.[4]

Diagnosis

Laboratory Findings

Treatment

References

  1. Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, Li P, Hu B, Wang J, Hu C, Jin Y, Niu X, Ping R, Du Y, Li T, Xu G, Hu Q, Tu L (May 2020). "Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study". Am. J. Gastroenterol. 115 (5): 766–773. doi:10.14309/ajg.0000000000000620. PMC 7172492 Check |pmc= value (help). PMID 32287140 Check |pmid= value (help).
  2. Al-Khatib A (June 2020). "Oral manifestations in COVID-19 patients". Oral Dis. doi:10.1111/odi.13477. PMID 32521067 Check |pmid= value (help).
  3. Baghizadeh Fini M (May 2020). "Oral saliva and COVID-19". Oral Oncol. 108: 104821. doi:10.1016/j.oraloncology.2020.104821. PMC 7250788 Check |pmc= value (help). PMID 32474389 Check |pmid= value (help).
  4. 4.0 4.1 Zhang C, Shi L, Wang FS (May 2020). "Liver injury in COVID-19: management and challenges". Lancet Gastroenterol Hepatol. 5 (5): 428–430. doi:10.1016/S2468-1253(20)30057-1. PMC 7129165 Check |pmc= value (help). PMID 32145190 Check |pmid= value (help).
  5. Lee IC, Huo TI, Huang YH (June 2020). "Gastrointestinal and liver manifestations in patients with COVID-19". J Chin Med Assoc. 83 (6): 521–523. doi:10.1097/JCMA.0000000000000319. PMC 7176263 Check |pmc= value (help). PMID 32243269 Check |pmid= value (help).
  6. Kumar, Pramod; Sharma, Mithun; Kulkarni, Anand; Rao, Padaki N. (2020). "Pathogenesis of Liver Injury in Coronavirus Disease 2019". Journal of Clinical and Experimental Hepatology. doi:10.1016/j.jceh.2020.05.006. ISSN 0973-6883.