Propionic acid

Jump to: navigation, search
Template:Chembox E numberTemplate:Chembox SolubilityInWater
Propionic acid
IUPAC name propanoic acid
Other names ethanecarboxylic acid
3D model (JSmol)
ECHA InfoCard Lua error in Module:Wikidata at line 879: attempt to index field 'wikibase' (a nil value). Lua error in Module:Wikidata at line 879: attempt to index field 'wikibase' (a nil value).
RTECS number UE5950000
Molar mass 74.08 g/mol
Appearance colourless liquid
Density 0.99 g/cm³, liquid
Melting point
Boiling point
Acidity (pKa) 4.88
Viscosity 10 mPa·s
Dipole moment 0.63 D
Main hazards Corrosive
R-phrases R34
S-phrases (S1/2), S23, S36, S45
Flash point {{{value}}}
Related compounds
Other anions {{{value}}}
Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)

Infobox disclaimer and references

WikiDoc Resources for Propionic acid


Most recent articles on Propionic acid

Most cited articles on Propionic acid

Review articles on Propionic acid

Articles on Propionic acid in N Eng J Med, Lancet, BMJ


Powerpoint slides on Propionic acid

Images of Propionic acid

Photos of Propionic acid

Podcasts & MP3s on Propionic acid

Videos on Propionic acid

Evidence Based Medicine

Cochrane Collaboration on Propionic acid

Bandolier on Propionic acid

TRIP on Propionic acid

Clinical Trials

Ongoing Trials on Propionic acid at Clinical

Trial results on Propionic acid

Clinical Trials on Propionic acid at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Propionic acid

NICE Guidance on Propionic acid


FDA on Propionic acid

CDC on Propionic acid


Books on Propionic acid


Propionic acid in the news

Be alerted to news on Propionic acid

News trends on Propionic acid


Blogs on Propionic acid


Definitions of Propionic acid

Patient Resources / Community

Patient resources on Propionic acid

Discussion groups on Propionic acid

Patient Handouts on Propionic acid

Directions to Hospitals Treating Propionic acid

Risk calculators and risk factors for Propionic acid

Healthcare Provider Resources

Symptoms of Propionic acid

Causes & Risk Factors for Propionic acid

Diagnostic studies for Propionic acid

Treatment of Propionic acid

Continuing Medical Education (CME)

CME Programs on Propionic acid


Propionic acid en Espanol

Propionic acid en Francais


Propionic acid in the Marketplace

Patents on Propionic acid

Experimental / Informatics

List of terms related to Propionic acid

Please Take Over This Page and Apply to be Editor-In-Chief for this topic: There can be one or more than one Editor-In-Chief. You may also apply to be an Associate Editor-In-Chief of one of the subtopics below. Please mail us [1] to indicate your interest in serving either as an Editor-In-Chief of the entire topic or as an Associate Editor-In-Chief for a subtopic. Please be sure to attach your CV and or biographical sketch.


Propionic acid (systematically named propanoic acid) is a naturally-occurring carboxylic acid with chemical formula CH3CH2COOH. In the pure state, it is a colorless, corrosive liquid with a pungent odor. The anion CH3CH2COO as well as the salts and esters of propionic acid are known as propionates (or propanoates).


Propionic acid was first described in 1844 by Johann Gottlieb, who found it among the degradation products of sugar. Over the next few years, other chemists produced propionic acid in various other ways, none of them realizing they were producing the same substance. In 1847, the French chemist Jean-Baptiste Dumas established that all the acids were the same compound, which he called propionic acid, from the Greek words protos = "first" and pion = "fat," because it was the smallest H(CH2)nCOOH acid that exhibited the properties of the other fatty acids, such as producing an oily layer when salted out of water and having a soapy potassium salt.


Propionic acid has physical properties intermediate between those of the smaller carboxylic acids, formic and acetic acid, and the larger fatty acids. It is miscible with water, but it can be removed from water by adding salt. As with acetic and formic acids, its vapor grossly violates the ideal gas law because it does not consist of individual propionic acid molecules, but instead of hydrogen bonded pairs of molecules. It also undergoes this pairing in the liquid state.

Propionic acid displays the general properties of carboxylic acids, and, like most other carboxylic acids, it can form amide, ester, anhydride, and chloride derivatives. It can undergo alpha-halogenation with bromine in the presence of PBr3 as catalyst (the HVZ reaction) to form CH3CHBrCOOH.


In industry, propionic acid is main produced by the hydrocarboxylation of ethylene using nickel carbonyl as the catalyst:[1]


It is also produced by the aerobic oxidation of propionaldehyde. In the presence of cobalt or manganese ions, this reaction proceeds rapidly at temperatures as mild as 40-50°C:


Large amounts of propionic acid were once produced as a byproduct of acetic acid manufacture. Current world's largest producer is BASF, with approximately 80 ktpa production capacity.

Propionic acid is produced biologically as its coenzyme A ester, propionyl-CoA, from the metabolic breakdown of fatty acids containing odd numbers of carbon atoms, and also it the breakdown of some amino acids. Bacteria of the genus Propionibacterium produce propionic acid as the end product of their anaerobic metabolism. This class of bacteria is commonly found in the stomachs of ruminants and the sweat glands of humans, and their activity is partially responsible for the odor of both Swiss cheese and sweat.


Propionic acid inhibits the growth of mold and some bacteria. As a result, most propionic acid produced is used as a preservative for both animal feed and food for human consumption, and can be used as a preservative for Ballistics Gel. For animal feed, it is used either directly or as its ammonium salt. In human foods, especially bread and other baked goods, it is used as its sodium or calcium salt. Similar usage occurs in some of the older anti-fungal foot powders.

Propionic acid is also useful as a chemical intermediate. It can be used to modify synthetic cellulose fibers. It is also used to make pesticides and pharmaceuticals. The esters of propionic acid are sometimes used as solvents or artificial flavorings.


The chief danger from propionic acid is chemical burns that can result from contact with the concentrated liquid. In studies on laboratory animals, the only adverse health effect associated with long-term exposure to small amounts of propionic acid has been ulceration of the esophagus and stomach from consuming a corrosive substance. No toxic, mutagenic, carcinogenic, or reproductive effects have ever been observed. In the body, propionic acid is readily metabolized, so it does not bioaccumulate.

A recent publication by MacFabe and colleagues found that intraventricular infusions of propionic acid produced reversible behavior that was very similar to that seen in autism. Behaviors included: hyperactivity, dystonia, turning, retropulsion. In addition, the treated rats demonstrated caudate spiking and the progressive development of limbic kindled seizures. The paper concludes that this is an excellent animal model of autism and warrants further study.[2]


The metabolism of propionic acid begins with its conversion to propionyl coenzyme A (propionyl-CoA), the usual first step in the metabolism of carboxylic acids.

Since propionic acid has three carbons, propionyl-CoA can enter neither beta oxidation nor the citric acid cycle

In most vertebrates, propionyl-CoA is carboxylated to D-methylmalonyl-CoA, isomerised to L-methylmalonyl-CoA, and rearranged to yield succinyl-CoA via a vitamin B12-dependent enzyme. Succinyl-CoA is an intermediate of the citric acid cycle and can be readily incorporated there.

In propionic acidemia, propionate acts as a metabolic toxin in liver cells by accumulating in mitochondria as propionyl-CoA and its derivative, methylcitrate, two tricarboxylic acid cycle inhibitors. Propionate is metabolized oxidatively by glia, which suggests astrocytic vulnerability in propionic acidemia when intramitochondrial propionyl-CoA may accumulate. Propionic acidemia may alter both neuronal and glial gene expression by affecting histone acetylation.[2][3]

Human occurrence

The human skin is host to a species of bacteria known as Propionibacterium acnes, which is named after its ability to produce propionic acid. This bacteria lives mainly in the sebaceous glands of the skin and is one of the principle causes of acne.


  1. W. Bertleff, M. Roeper, X. Sava, “Carbonylation” in Ullmann’s Encyclopedia of Chemical Technology Wiley-VCH: Weinheim, 2003. DOI: 10.1002/14356007.a05 217.
  2. 2.0 2.1 D. F. MacFabe, D. P. Cain, K. Rodriguez-Capote, A. E. Franklin, J. E. Hoffman, F. Boon, A. R. Taylor, M. Kavaliers and K.-P. Ossenkopp (2007). "Neurobiological effects of intraventricular propionic acid in rats: Possible role of short-chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders". Behavioral Brain Research. 176 (1): 149–169. doi:10.1016/j.bbr.2006.07.025.
  3. N. H. T. Nguyen, C. Morland, S. Villa Gonzalez, F. Rise, J. Storm-Mathisen, V. Gundersen, B. Hassel (2007). "Propionate increases neuronal histone acetylation, but is metabolized oxidatively by gli. Relevance for propionic acidemia". Journal of Neurochemistry. 101 (3): 806–814. doi:10.1111/j.1471-4159.2006.04397.x.

External links

Cost Effectiveness of Propionic acid

| group5 = Clinical Trials Involving Propionic acid | list5 = Ongoing Trials on Propionic acid at Clinical Trials.govTrial results on Propionic acidClinical Trials on Propionic acid at Google

| group6 = Guidelines / Policies / Government Resources (FDA/CDC) Regarding Propionic acid | list6 = US National Guidelines Clearinghouse on Propionic acidNICE Guidance on Propionic acidNHS PRODIGY GuidanceFDA on Propionic acidCDC on Propionic acid

| group7 = Textbook Information on Propionic acid | list7 = Books and Textbook Information on Propionic acid

| group8 = Pharmacology Resources on Propionic acid | list8 = AND (Dose)}} Dosing of Propionic acidAND (drug interactions)}} Drug interactions with Propionic acidAND (side effects)}} Side effects of Propionic acidAND (Allergy)}} Allergic reactions to Propionic acidAND (overdose)}} Overdose information on Propionic acidAND (carcinogenicity)}} Carcinogenicity information on Propionic acidAND (pregnancy)}} Propionic acid in pregnancyAND (pharmacokinetics)}} Pharmacokinetics of Propionic acid

| group9 = Genetics, Pharmacogenomics, and Proteinomics of Propionic acid | list9 = AND (pharmacogenomics)}} Genetics of Propionic acidAND (pharmacogenomics)}} Pharmacogenomics of Propionic acidAND (proteomics)}} Proteomics of Propionic acid

| group10 = Newstories on Propionic acid | list10 = Propionic acid in the newsBe alerted to news on Propionic acidNews trends on Propionic acid

| group11 = Commentary on Propionic acid | list11 = Blogs on Propionic acid

| group12 = Patient Resources on Propionic acid | list12 = Patient resources on Propionic acidDiscussion groups on Propionic acidPatient Handouts on Propionic acidDirections to Hospitals Treating Propionic acidRisk calculators and risk factors for Propionic acid

| group13 = Healthcare Provider Resources on Propionic acid | list13 = Symptoms of Propionic acidCauses & Risk Factors for Propionic acidDiagnostic studies for Propionic acidTreatment of Propionic acid

| group14 = Continuing Medical Education (CME) Programs on Propionic acid | list14 = CME Programs on Propionic acid

| group15 = International Resources on Propionic acid | list15 = Propionic acid en EspanolPropionic acid en Francais

| group16 = Business Resources on Propionic acid | list16 = Propionic acid in the MarketplacePatents on Propionic acid

| group17 = Informatics Resources on Propionic acid | list17 = List of terms related to Propionic acid

}} de:Propionsäure el:Προπιονικό οξύ it:Acido propionico la:Acidum propionicum lv:Propionskābe nl:Propaanzuur fi:Propionihappo sv:Propansyra