MTA2

Revision as of 19:21, 4 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Metastasis associated 1 family, member 2
Identifiers
Symbols MTA2 ; DKFZp686F2281; MTA1L1; PID
External IDs Template:OMIM5 Template:MGI HomoloGene3480
RNA expression pattern
File:PBB GE MTA2 203443 at tn.png
File:PBB GE MTA2 203444 s at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Metastasis associated 1 family, member 2, also known as MTA2, is a human gene.[1]

This gene encodes a protein that has been identified as a component of NuRD, a nucleosome remodeling deacetylase complex identified in the nucleus of human cells. It shows a very broad expression pattern and is strongly expressed in many tissues. It may represent one member of a small gene family that encode different but related proteins involved either directly or indirectly in transcriptional regulation. Their indirect effects on transcriptional regulation may include chromatin remodeling. It is closely related to another member of this family, a protein that has been correlated with the metastatic potential of certain carcinomas. These two proteins are so closely related that they share the same types of domains. These domains include two DNA binding domains, a dimerization domain, and a domain commonly found in proteins that methylate DNA. One of the proteins known to be a target protein for this gene product is p53. Deacteylation of p53 is correlated with a loss of growth inhibition in transformed cells supporting a connection between these gene family members and metastasis.[1]

References

  1. 1.0 1.1 "Entrez Gene: MTA2 metastasis associated 1 family, member 2".

Further reading

  • Zhang Y, LeRoy G, Seelig HP; et al. (1998). "The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities". Cell. 95 (2): 279–89. PMID 9790534.
  • Tong JK, Hassig CA, Schnitzler GR; et al. (1998). "Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex". Nature. 395 (6705): 917–21. doi:10.1038/27699. PMID 9804427.
  • Xue Y, Wong J, Moreno GT; et al. (1999). "NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities". Mol. Cell. 2 (6): 851–61. PMID 9885572.
  • Futamura M, Nishimori H, Shiratsuchi T; et al. (1999). "Molecular cloning, mapping, and characterization of a novel human gene, MTA1-L1, showing homology to a metastasis-associated gene, MTA1". J. Hum. Genet. 44 (1): 52–6. PMID 9929979.
  • Zhang Y, Ng HH, Erdjument-Bromage H; et al. (1999). "Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation". Genes Dev. 13 (15): 1924–35. PMID 10444591.
  • Wade PA, Gegonne A, Jones PL; et al. (1999). "Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation". Nat. Genet. 23 (1): 62–6. doi:10.1038/12664. PMID 10471500.
  • Luo J, Su F, Chen D; et al. (2000). "Deacetylation of p53 modulates its effect on cell growth and apoptosis". Nature. 408 (6810): 377–81. doi:10.1038/35042612. PMID 11099047.
  • Humphrey GW, Wang Y, Russanova VR; et al. (2001). "Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1". J. Biol. Chem. 276 (9): 6817–24. doi:10.1074/jbc.M007372200. PMID 11102443.
  • Feng Q, Zhang Y (2001). "The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes". Genes Dev. 15 (7): 827–32. doi:10.1101/gad.876201. PMID 11297506.
  • Shi Y, Downes M, Xie W; et al. (2001). "Sharp, an inducible cofactor that integrates nuclear receptor repression and activation". Genes Dev. 15 (9): 1140–51. doi:10.1101/gad.871201. PMID 11331609.
  • Saito M, Ishikawa F (2002). "The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2". J. Biol. Chem. 277 (38): 35434–9. doi:10.1074/jbc.M203455200. PMID 12124384.
  • Yasui D, Miyano M, Cai S; et al. (2002). "SATB1 targets chromatin remodelling to regulate genes over long distances". Nature. 419 (6907): 641–5. doi:10.1038/nature01084. PMID 12374985.
  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMID 12477932.
  • Hakimi MA, Dong Y, Lane WS; et al. (2003). "A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes". J. Biol. Chem. 278 (9): 7234–9. doi:10.1074/jbc.M208992200. PMID 12493763.
  • Fujita N, Jaye DL, Kajita M; et al. (2003). "MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer". Cell. 113 (2): 207–19. PMID 12705869.
  • Yao YL, Yang WM (2004). "The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity". J. Biol. Chem. 278 (43): 42560–8. doi:10.1074/jbc.M302955200. PMID 12920132.
  • Zoltewicz JS, Stewart NJ, Leung R, Peterson AS (2004). "Atrophin 2 recruits histone deacetylase and is required for the function of multiple signaling centers during mouse embryogenesis". Development. 131 (1): 3–14. doi:10.1242/dev.00908. PMID 14645126.
  • Miaczynska M, Christoforidis S, Giner A; et al. (2004). "APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment". Cell. 116 (3): 445–56. PMID 15016378.
  • Jiang CL, Jin SG, Pfeifer GP (2005). "MBD3L1 is a transcriptional repressor that interacts with methyl-CpG-binding protein 2 (MBD2) and components of the NuRD complex". J. Biol. Chem. 279 (50): 52456–64. doi:10.1074/jbc.M409149200. PMID 15456747.
  • Gerhard DS, Wagner L, Feingold EA; et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMID 15489334.

External links


This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Template:WikiDoc Sources