Delayed puberty pathophysiology: Difference between revisions

Jump to navigation Jump to search
Line 305: Line 305:


==Associated Conditions==
==Associated Conditions==
The associated conditions that are related to delayed puberty, are as following:
==Gross Pathology==
==Gross Pathology==
*On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
*On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Revision as of 13:43, 31 August 2017

Delayed puberty Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Delayed puberty from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Delayed puberty pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Delayed puberty pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Delayed puberty pathophysiology

CDC on Delayed puberty pathophysiology

Delayed puberty pathophysiology in the news

Blogs on Delayed puberty pathophysiology

Directions to Hospitals Treating Delayed puberty

Risk calculators and risk factors for Delayed puberty pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

Pathophysiology

Pathogenesis

Group Form of disease Disease Pathogenesis
Primary hypogonadism Congenital Chromosomal abnormality Lack or disorder of an specific cell line or enzyme that are responsible to produce one of sex-steroids in gonads
Gonadal agenesis Lack of gonads, as main source of sex-steroids
Acquired Any external stress to the gonadal tissues Destruction of gonadal cell line, responsible for producing and secreting sex-steroids
Secondary hypogonadism Congenital GnRH deficiency Lack or disorder of an specific cell line or enzyme that are responsible to produce GnRH in hypothalamus
LH and FSH deficiency Lack or disorder of an specific cell line or enzyme that are responsible to produce LH or FSH in pituitary gonadotropic cells
Acquired Any external stress to the hypothalamus or anterior pituitary Destruction of hypothalamus or anterior pituitary cell line, responsible for producing and secreting GnRH, LH, or FSH

Antimullerian hormone and inhibin B

Genetics

Delayed puberty has found to be on a genetic basis, most of the times. It is assumed that the main factor in determining the puberty timing is genetic elements.[3]

In case of constitutional delay of growth and puberty (CDGP), researchers suggested 50-75% of positive family history of delayed puberty.[4]

It is thought that CDGP is inherited in an autosomal dominant pattern, with or without the effects of complete penetrance. It is not sex oriented inheritance and can be seen in all family members.[5]

The major genes in delayed puberty[6]

Gene Other name(s) OMIM number Chromosome Function Other related disorders
KAL1 KAL1, anosmin-1 308700 Xp22.3
FGFR1 KAL2 136350 8q12
PROKR2 KAL3 607123 20p13
PROK2 KAL4 607002 3p21.1
CHD7 KAL5 608892 8q12.1
FGF8 KAL6 600483 10q24
GPR54 KISS1R 604161 19p13.3
  • Regulation of GnRH secretion
-
KISS1 KISS1, kisspeptin1 603286 1q32 -
HS6ST1 - 604846 2q21 -
TAC3 NKB 162330 12q13–q21
TACR3 NK3R 152332 4q25
GnRH1 - 152760 8p21–8p11.2
  • One of the most important elements in HPG axis
GnRHR - 138850 4q21.2
NELF - 608137 9q34.3 -
EBF2 - 609934 8p21.2
  • Effective role in HPG axis
-

Abbreviations (alphabetic):
CHD7: Chromodomain helicase DNA-binding protein 7 gene, EBF2: Early B-cell factor 2 gene, FGF8: Fibroblast growth factor 8 gene, FGFR1: Fibroblast growth factor receptor 1 gene, FSH: Follicle stimulating hormone, GnRH: Gonadotropin releasing hormone, GnRH1: Gonadotropin releasing hormone 1 gene, GnRHR: Gonadotropin releasing hormone receptor gene, GPR54: G protein-coupled receptor-54 gene, HPG axis: Hypothalamus-pituitary-gonadal axis, HS6ST1: Heparan sulfate 6-O-sulphotransferase 1 gene, KAL1: Kallman syndrome 1 gene, LH: Luteinizing hormone, NELF: Nasal embryonic LH-releasing hormone factor gene, NK3R: Neurokinin 3 receptor gene, NKB: Neurokinin B gene, OMIM: Online Mendelian Inheritance in Man, PROK2 : Prokineticin 2 gene, PROKR2: Prokineticin 2 receptor gene, TAC3: Tachykinin 3 gene,TACR3: Tachykinin 3 receptor gene,

Kisspeptin system (KISS1R and KISS1)

Kallman syndrome 1 (KAL1)

Fibroblast growth factor receptor 1 and fibroblast growth factor 8 (FGFR1 and FGF8)

Heparan sulfate 6-O-sulphotransferase 1 (HS6ST1)

Prokineticin 2 and prokineticin 2 receptor (PROK2 and PROKR2)

Tachykinin 3 and tachykinin 3 receptor (TAC3 and TACR3)

Gonadotropin releasing hormone and its receptor (GnRH1 and GnRHR)

Chromodomain helicase DNA-binding protein 7 (CHD7)

Nasal embryonic LH-releasing hormone factor (NELF)

Early B-cell factor 2 (EBF2)

Makorin RING-finger protein 3 (MKRN3)

Estrogen receptor α (ESR1)

Associated Conditions

The associated conditions that are related to delayed puberty, are as following:

Gross Pathology

  • On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

  • On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Normal timing

Approximate mean ages for onset of various pubertal changes are as follows. Ages in parentheses are the approximate 3rd and 97th percentiles for attainment. For example, less than 3% of girls have not yet achieved thelarche by 13 years of age. Developmental changes during puberty in girls occur over a period of 3 – 5 years, usually between 9 and 14 years of age. They include the occurrence of secondary sex characteristics beginning with breast development, the adolescent growth spurt, the onset of menarche – which does not correspond to the end of puberty – and the acquisition of fertility, as well as profound psychological modifications.

The normal variation in the age at which adolescent changes occur is so wide that puberty cannot be considered to be pathologically delayed until the menarche has failed to occur by the age of 17 or testicular development by the age of 20.

For North American, Indo-Iranian (India, Iran) and European girls

  • Thelarche 10y5m (8y–13y)
  • Pubarche 11y (8.5–13.5y)
  • Growth spurt 10–12.5y
  • Menarche 12.5y (10.5–14.5)
  • Adult height reached 14.5y

For North American, Indo-Iranian (India, Iran) and European boys

  • Testicular enlargement 11.5y (9.5–13.5y)
  • Pubic hair 12y (10–14y)
  • Growth spurt 12.5–15y
  • Completion of growth 17.5

The sources of the data, and a fuller description of normal timing and sequence of pubertal events, as well as the hormonal changes that drive them, are provided in the principal article on puberty.

Evaluation

Obviously anyone who is later than average is late in the ordinary sense. There are three indications that pubertal delay may be due to an abnormal cause. The first is simply degree of lateness: although no recommended age of evaluation cleanly separates pathologic from physiologic delay, a delay of 2-3 years or more warrants evaluation.

  • In girls, no breast development by 13 years, or no menarche by 3 years after breast development (or by 16).
  • In boys, no testicular enlargement by 14 years.

The second indicator is discordance of development. In most children, puberty proceeds as a predictable series of changes in specific order. In children with ordinary constitutional delay, all aspects of physical maturation typically remain concordant but a few years later than average. If some aspects of physical development are delayed, and others are not, there is likely something wrong. For instance, in most girls, the beginning stages of breast development precede pubic hair. If a 12 year old girl were to reach Tanner stage 3 pubic hair for a year or more without breast development, it would be unusual enough to suggest an abnormality such as defective ovaries. Similarly, if a 13 year old boy had reached stage 3 or 4 pubic hair with testes that still remained prepubertal in size, it would be unusual and suggestive of a testicular abnormality.

The third indicator is the presence of clues to specific disorders of the reproductive system. For example, malnutrition or anorexia nervosa severe enough to delay puberty will give other clues as well. Poor growth would suggest the possibility of hypopituitarism or Turner syndrome. Reduced sense of smell (hyposmia) suggests Kallmann syndrome.

Constitutional delay

Children who are healthy but have a slower rate of physical development than average have constitutional delay in growth and adolescence. These children have a history of stature shorter than their age-matched peers throughout childhood, but their height is appropriate for bone age, and skeletal development is delayed more than 2.5 SD. They usually are thin and often have a family history of delayed puberty. Children with a combination of a family tendency toward short stature and constitutional delay are the most likely to seek evaluation. They quite often seek evaluation when classmates or friends undergo pubertal development and growth, thereby accentuating their delay.

References

  1. Palmert, Mark R.; Dunkel, Leo (2012). "Delayed Puberty". New England Journal of Medicine. 366 (5): 443–453. doi:10.1056/NEJMcp1109290. ISSN 0028-4793.
  2. Wei C, Crowne EC (2016). "Recent advances in the understanding and management of delayed puberty". Arch. Dis. Child. 101 (5): 481–8. doi:10.1136/archdischild-2014-307963. PMID 26353794.
  3. Gajdos ZK, Henderson KD, Hirschhorn JN, Palmert MR (2010). "Genetic determinants of pubertal timing in the general population". Mol. Cell. Endocrinol. 324 (1–2): 21–9. doi:10.1016/j.mce.2010.01.038. PMC 2891370. PMID 20144687.
  4. Wehkalampi K, Widén E, Laine T, Palotie A, Dunkel L (2008). "Patterns of inheritance of constitutional delay of growth and puberty in families of adolescent girls and boys referred to specialist pediatric care". J. Clin. Endocrinol. Metab. 93 (3): 723–8. doi:10.1210/jc.2007-1786. PMID 18160460.
  5. Sedlmeyer IL, Hirschhorn JN, Palmert MR (2002). "Pedigree analysis of constitutional delay of growth and maturation: determination of familial aggregation and inheritance patterns". J. Clin. Endocrinol. Metab. 87 (12): 5581–6. doi:10.1210/jc.2002-020862. PMID 12466356.
  6. Bonomi, Marco; Libri, Domenico Vladimiro; Guizzardi, Fabiana; Guarducci, Elena; Maiolo, Elisabetta; Pignatti, Elisa; Asci, Roberta; Persani, Luca (2011). "New understandings of the genetic basis of isolated idiopathic central hypogonadism". Asian Journal of Andrology. 14 (1): 49–56. doi:10.1038/aja.2011.68. ISSN 1008-682X.
  7. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003). "Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54". Proc. Natl. Acad. Sci. U.S.A. 100 (19): 10972–6. doi:10.1073/pnas.1834399100. PMC 196911. PMID 12944565.
  8. Seminara, Stephanie B.; Messager, Sophie; Chatzidaki, Emmanouella E.; Thresher, Rosemary R.; Acierno, James S.; Shagoury, Jenna K.; Bo-Abbas, Yousef; Kuohung, Wendy; Schwinof, Kristine M.; Hendrick, Alan G.; Zahn, Dirk; Dixon, John; Kaiser, Ursula B.; Slaugenhaupt, Susan A.; Gusella, James F.; O'Rahilly, Stephen; Carlton, Mark B.L.; Crowley, William F.; Aparicio, Samuel A.J.R.; Colledge, William H. (2003). "TheGPR54Gene as a Regulator of Puberty". New England Journal of Medicine. 349 (17): 1614–1627. doi:10.1056/NEJMoa035322. ISSN 0028-4793.
  9. Kaur KK, Allahbadia G, Singh M (2012). "Kisspeptins in human reproduction-future therapeutic potential". J Assist Reprod Genet. 29 (10): 999–1011. doi:10.1007/s10815-012-9856-1. PMC 3492584. PMID 23015158.
  10. Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-ichiro (2014). "KNDy neuron as a gatekeeper of puberty onset". Journal of Obstetrics and Gynaecology Research. 40 (6): 1518–1526. doi:10.1111/jog.12398. ISSN 1341-8076.
  11. Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Schwanzel-Fukuda M, Ayer-Le Lievre C, Petit C (1999). "Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome". Dev. Dyn. 215 (1): 26–44. doi:10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D. PMID 10340754.
  12. Schwanzel-Fukuda M, Bick D, Pfaff DW (1989). "Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome". Brain Res. Mol. Brain Res. 6 (4): 311–26. PMID 2687610.
  13. 13.0 13.1 Trarbach EB, Silveira LG, Latronico AC (2007). "Genetic insights into human isolated gonadotropin deficiency". Pituitary. 10 (4): 381–91. doi:10.1007/s11102-007-0061-7. PMID 17624596.
  14. González-Martínez D, Kim SH, Hu Y, Guimond S, Schofield J, Winyard P, Vannelli GB, Turnbull J, Bouloux PM (2004). "Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism". J. Neurosci. 24 (46): 10384–92. doi:10.1523/JNEUROSCI.3400-04.2004. PMID 15548653.
  15. Hébert JM, Lin M, Partanen J, Rossant J, McConnell SK (2003). "FGF signaling through FGFR1 is required for olfactory bulb morphogenesis". Development. 130 (6): 1101–11. PMID 12571102.
  16. Tsai PS, Moenter SM, Postigo HR, El Majdoubi M, Pak TR, Gill JC, Paruthiyil S, Werner S, Weiner RI (2005). "Targeted expression of a dominant-negative fibroblast growth factor (FGF) receptor in gonadotropin-releasing hormone (GnRH) neurons reduces FGF responsiveness and the size of GnRH neuronal population". Mol. Endocrinol. 19 (1): 225–36. doi:10.1210/me.2004-0330. PMID 15459253.
  17. 17.0 17.1 Tornberg J, Sykiotis GP, Keefe K, Plummer L, Hoang X, Hall JE, Quinton R, Seminara SB, Hughes V, Van Vliet G, Van Uum S, Crowley WF, Habuchi H, Kimata K, Pitteloud N, Bülow HE (2011). "Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism". Proc. Natl. Acad. Sci. U.S.A. 108 (28): 11524–9. doi:10.1073/pnas.1102284108. PMC 3136273. PMID 21700882.
  18. Ibrahimi OA, Zhang F, Hrstka SC, Mohammadi M, Linhardt RJ (2004). "Kinetic model for FGF, FGFR, and proteoglycan signal transduction complex assembly". Biochemistry. 43 (16): 4724–30. doi:10.1021/bi0352320. PMID 15096041.
  19. Hudson ML, Kinnunen T, Cinar HN, Chisholm AD (2006). "C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations". Dev. Biol. 294 (2): 352–65. doi:10.1016/j.ydbio.2006.02.036. PMID 16677626.
  20. Matsumoto S, Yamazaki C, Masumoto KH, Nagano M, Naito M, Soga T, Hiyama H, Matsumoto M, Takasaki J, Kamohara M, Matsuo A, Ishii H, Kobori M, Katoh M, Matsushime H, Furuichi K, Shigeyoshi Y (2006). "Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2". Proc. Natl. Acad. Sci. U.S.A. 103 (11): 4140–5. doi:10.1073/pnas.0508881103. PMC 1449660. PMID 16537498.
  21. Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY (2001). "Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle". Mol. Pharmacol. 59 (4): 692–8. PMID 11259612.
  22. Cole LW, Sidis Y, Zhang C, Quinton R, Plummer L, Pignatelli D, Hughes VA, Dwyer AA, Raivio T, Hayes FJ, Seminara SB, Huot C, Alos N, Speiser P, Takeshita A, Van Vliet G, Pearce S, Crowley WF, Zhou QY, Pitteloud N (2008). "Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum". J. Clin. Endocrinol. Metab. 93 (9): 3551–9. doi:10.1210/jc.2007-2654. PMC 2567850. PMID 18559922.
  23. Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Imamoglu S, Akalin NS, Yuksel B, O'Rahilly S, Semple RK (2009). "TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction". Nat. Genet. 41 (3): 354–358. doi:10.1038/ng.306. PMC 4312696. PMID 19079066.
  24. Pinto FM, Almeida TA, Hernandez M, Devillier P, Advenier C, Candenas ML (2004). "mRNA expression of tachykinins and tachykinin receptors in different human tissues". Eur. J. Pharmacol. 494 (2–3): 233–9. doi:10.1016/j.ejphar.2004.05.016. PMID 15212980.
  25. Semple RK, Topaloglu AK (2010). "The recent genetics of hypogonadotrophic hypogonadism - novel insights and new questions". Clin. Endocrinol. (Oxf). 72 (4): 427–35. doi:10.1111/j.1365-2265.2009.03687.x. PMID 19719764.
  26. Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombès M, Millar RP, Guiochon-Mantel A, Young J (2009). "Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation". N. Engl. J. Med. 360 (26): 2742–8. doi:10.1056/NEJMoa0900136. PMID 19535795.
  27. Cattanach BM, Iddon CA, Charlton HM, Chiappa SA, Fink G (1977). "Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism". Nature. 269 (5626): 338–40. PMID 198666.
  28. Wu S, Wilson MD, Busby ER, Isaac ER, Sherwood NM (2010). "Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice". Endocrinology. 151 (3): 1142–52. doi:10.1210/en.2009-0598. PMID 20068010.
  29. Silveira LF, MacColl GS, Bouloux PM (2002). "Hypogonadotropic hypogonadism". Semin. Reprod. Med. 20 (4): 327–38. doi:10.1055/s-2002-36707. PMID 12536356.
  30. Tiong J, Locastro T, Wray S (2007). "Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization". Dev. Dyn. 236 (11): 2980–92. doi:10.1002/dvdy.21332. PMID 17948256.
  31. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, Bick DP, Sherins RJ, Walker SL, Shi Y, Gusella JF, Layman LC (2008). "Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome". Am. J. Hum. Genet. 83 (4): 511–9. doi:10.1016/j.ajhg.2008.09.005. PMC 2561938. PMID 18834967.
  32. Kramer PR, Wray S (2000). "Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons". Genes Dev. 14 (14): 1824–34. PMC 316793. PMID 10898796.
  33. Xu N, Kim HG, Bhagavath B, Cho SG, Lee JH, Ha K, Meliciani I, Wenzel W, Podolsky RH, Chorich LP, Stackhouse KA, Grove AM, Odom LN, Ozata M, Bick DP, Sherins RJ, Kim SH, Cameron RS, Layman LC (2011). "Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome". Fertil. Steril. 95 (5): 1613–20.e1–7. doi:10.1016/j.fertnstert.2011.01.010. PMC 3888818. PMID 21300340.
  34. Corradi A, Croci L, Broccoli V, Zecchini S, Previtali S, Wurst W, Amadio S, Maggi R, Quattrini A, Consalez GG (2003). "Hypogonadotropic hypogonadism and peripheral neuropathy in Ebf2-null mice". Development. 130 (2): 401–10. PMID 12466206.
  35. Trarbach EB, Baptista MT, Garmes HM, Hackel C (2005). "Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients". J. Endocrinol. 187 (3): 361–8. doi:10.1677/joe.1.06103. PMID 16423815.
  36. Hughes, Ieuan A. (2013). "Releasing the Brake on Puberty". New England Journal of Medicine. 368 (26): 2513–2515. doi:10.1056/NEJMe1306743. ISSN 0028-4793.
  37. Quaynor, Samuel D.; Stradtman, Earl W.; Kim, Hyung-Goo; Shen, Yiping; Chorich, Lynn P.; Schreihofer, Derek A.; Layman, Lawrence C. (2013). "Delayed Puberty and Estrogen Resistance in a Woman with Estrogen Receptor α Variant". New England Journal of Medicine. 369 (2): 164–171. doi:10.1056/NEJMoa1303611. ISSN 0028-4793.
  38. Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM (2008). "Classical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing". Endocrinology. 149 (11): 5328–34. doi:10.1210/en.2008-0520. PMC 2584581. PMID 18635656.
  39. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O (1993). "Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene". Proc. Natl. Acad. Sci. U.S.A. 90 (23): 11162–6. PMC 47942. PMID 8248223.

Template:WS Template:WH