Adrenal atrophy

Jump to navigation Jump to search

For patient information, click here

Adrenal atrophy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Adrenal atrophy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Adrenal atrophy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Adrenal atrophy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Adrenal atrophy

CDC on Adrenal atrophy

Adrenal atrophy in the news

Blogs on Adrenal atrophy

Directions to Hospitals Treating Adrenal atrophy

Risk calculators and risk factors for Adrenal atrophy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Associate Editor-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]


Overview

Historical Perspective

There is limited information about the historical perspective of adrenal atrophy.

Famous Cases

The following are a few famous cases of adrenal atrophy:

  • President John F. Kennedy was diagnosed with Addison’s disease after his election in 1960, due to an autoimmune disease, attacking the adrenal tissue.
  • The King Henry VIII was known as a domineering, philanderer king, who became bloated and significantly obese after 35 years of being in power. Historian Robert Hutchinson has theorized that he has had Cushing’s Syndrome.

Classification

There is no established system for the classification of adrenal atrophy.

However, adrenal insufficiency may be classified into three subtypes based on its cause:

  • Primary adrenal insufficiency due to impairment of the adrenal glands. Causes:
    • Autoimmune disease in 80% of the cases.
    • Congenital adrenal hyperplasia or an adenoma (tumor) of the adrenal gland.
    • Infections (TB, CMV, histoplasmosis, paracoccidioidomycosis).
    • Vascular (hemorrhage from sepsis, adrenal vein thrombosis, HIT).
    • Deposition disease (hemochromatosis, amyloidosis, sarcoidosis).
    • Drugs (azole anti-fungals, etomidate (even one dose), rifampin, anticonvulsants).
  • Secondary adrenal insufficiency is caused by impairment of the pituitary gland. Causes:
    • Pituitary adenoma (which can suppress production of adrenocorticotropic hormone (ACTH) and lead to adrenal deficiency unless the endogenous hormones are replaced).
    • Sheehan's syndrome.
  • Tertiary adrenal insufficiency is due to hypothalamic disease and a decrease in the release of corticotropin releasing hormone (CRH). Causes:
    • Sudden withdrawal from long-term exogenous steroid use (which is the most common cause overall).
    • Brain tumor.

Adrenal cortical atrophy may be focal or diffuse. Compared with the normal adrenal cortex, the atrophic cortex is characterized by reduced thickness of the one or more of the cortical layers due to a decrease in cell size or a loss of cells. The zonae fasciculata and reticularis are more often affected than the zona glomerulosa. There is variably decreased overall size of the gland, often with distortion of the gland outline. The glandular capsule may be thickened due to fibrosis.

Pathophysiology

Causes

Differentiating Adrenal atrophy from other Diseases

Adrenal atrophy must be differentiated from other diseases that cause salt wasting and nausea or vomiting and yield to the adrenal hormone imbalance. Among the main diseases are:

  • Adrenal Crisis
  • Adrenal Hemorrhage
  • C-17 Hydroxylase Deficiency
  • Eosinophilia
  • Histoplasmosis
  • Hyperkalemia
  • Sarcoidosis
  • Tuberculosis (TB)

In addition, hyponatremia and hyperkalemia may result from chronic renal insufficiency due to inadequate production of renin and consequent aldosterone deficiency.

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms | Physical Examination | Laboratory Findings | Electrocardiogram | X Ray | CT | MRI | Ultrasound | Other Imaging Findings | Other Diagnostic Studies

Treatment

Medical Therapy | Primary Prevention | Secondary Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies

Case Studies

Case #1


Template:WikiDoc Sources