CREB-binding protein

Jump to navigation Jump to search
VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

CREB-binding protein, also known as CREBBP or CBP, is a protein that in humans is encoded by the CREBBP gene.[1][2] The CREB protein carries out its function by activating transcription, where interaction with transcription factors is managed by one or more CREB domains: the nuclear receptor interaction domain (RID), the KIX domain (CREB and MYB interaction domain), the cysteine/histidine regions (TAZ1/CH1 and TAZ2/CH3) and the interferon response binding domain (IBiD). The CREB protein domains, KIX, TAZ1 and TAZ2, each bind tightly to a sequence spanning both transactivation domains 9aaTADs of transcription factor p53.[3][4]

Function

This gene is ubiquitously expressed and is involved in the transcriptional coactivation of many different transcription factors. First isolated as a nuclear protein that binds to cAMP-response element-binding protein (CREB), this gene is now known to play critical roles in embryonic development, growth control, and homeostasis by coupling chromatin remodeling to transcription factor recognition. The protein encoded by this gene has intrinsic histone acetyltransferase activity [5] and also acts as a scaffold to stabilize additional protein interactions with the transcription complex. This protein acetylates both histone and non-histone proteins. This protein shares regions of very high-sequence similarity with protein EP300 in its bromodomain, cysteine-histidine-rich regions, and histone acetyltransferase domain.[6] Recent results suggest that novel CBP-mediated post-translational N-glycosylation activity alters the conformation of CBP-interacting proteins, leading to regulation of gene expression, cell growth and differentiation,[7]

Posttranslational modification

Homeodomain interacting protein kinase 2 (HIPK2) phosphorylates several regions of CBP close to the N-terminal and close to the C-terminal region as well. Out of the described phosphoacceptor sites, serines 2361, 2363, 2371, 2376, and 2381 are responsible for the HIPK2-induced mobility shift of the CBP C-terminal activation domain that is also visible in poly-acrylamide gel electrophoresis (PAGE) experiments. However, activation of CBP by HIPK2 is not mediated by this phosphorylation but rather by counteracting the repressive action of the cell cycle regulatory domain 1 (CRD1) of CBP, located between amino acids 977 and 1076.[8]

Clinical significance

Mutations in this gene cause Rubinstein-Taybi syndrome (RTS).[9] Chromosomal translocations involving this gene have been associated with acute myeloid leukemia.[6][10] Hypothalamic expression of this gene in mice correlates with mouse lifespan, and when CBP is inhibited in C. elegans by RNAi, there is a proportional fold-change decrease in lifespan.

Small molecule inhibition

A small molecule inhibitor (I-CBP112) binding to the bromodomain domain of CBP/p300 has been developed for leukemia therapy.[11]

Interactions

CREB-binding protein has been shown to interact with:

References

  1. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (October 1993). "Phosphorylated CREB binds specifically to the nuclear protein CBP". Nature. 365 (6449): 855–9. Bibcode:1993Natur.365..855C. doi:10.1038/365855a0. PMID 8413673.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. Wydner KL, Bhattacharya S, Eckner R, Lawrence JB, Livingston DM (November 1995). "Localization of human CREB-binding protein gene (CREBBP) to 16p13.2-p13.3 by fluorescence in situ hybridization". Genomics. 30 (2): 395–6. PMID 8586450.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. Teufel DP, Freund SM, Bycroft M, Fersht AR (April 2007). "Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53". Proceedings of the National Academy of Sciences of the United States of America. 104 (17): 7009–14. Bibcode:2007PNAS..104.7009T. doi:10.1073/pnas.0702010104. PMC 1855428. PMID 17438265.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>; Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M (June 2007). "Nine-amino-acid transactivation domain: establishment and prediction utilities". Genomics. 89 (6): 756–68. doi:10.1016/j.ygeno.2007.02.003. PMID 17467953.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>; Piskacek M (2009-11-05). "9aaTAD is a common transactivation domain recruits multiple general coactivators TAF9, MED15, CBP/p300 and GCN5". Nature Precedings. doi:10.1038/npre.2009.3488.2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>; Piskacek M (2009-11-05). "9aaTADs mimic DNA to interact with a pseudo-DNA Binding Domain KIX of Med15 (Molecular Chameleons)". Nature Precedings. doi:10.1038/npre.2009.3939.1.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>; Piskacek M (2009-11-20). "9aaTAD Prediction result (2006)". Nature Precedings. doi:10.1038/npre.2009.3984.1.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. The prediction for 9aaTADs (for both acidic and hydrophilic transactivation domains) is available online from ExPASy http://us.expasy.org/tools/ and EMBnet Spain http://www.es.embnet.org/Services/EMBnetAT/htdoc/9aatad/[permanent dead link]
  5. Ogryzko VV, et al. (1996). "The transcriptional coactivators p300 and CBP are histone acetyltransferases". Cell. 87 (5): 953–9. doi:10.1016/s0092-8674(00)82001-2. PMID 8945521.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. 6.0 6.1 "Entrez Gene: CREBBP (CREB-binding protein)".<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Siddique H, Rao VN, Reddy ES (August 2009). "CBP-mediated post-translational N-glycosylation of BRCA2". International Journal of Oncology. 35 (2): 387–91. doi:10.3892/ijo_00000351. PMID 19578754.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Kovacs KA, Steinmann M, Halfon O, Magistretti PJ, Cardinaux JR (Nov 2015). "Complex regulation of CREB-binding protein by homeodomain-interacting protein kinase 2". Cell Signaling. 27 (11): 2252–60. doi:10.1016/j.cellsig.2015.08.001. PMID 26247811.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ (July 1995). "Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP". Nature. 376 (6538): 348–51. Bibcode:1995Natur.376..348P. doi:10.1038/376348a0. PMID 7630403.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Vizmanos JL, Larráyoz MJ, Lahortiga I, Floristán F, Alvarez C, Odero MD, Novo FJ, Calasanz MJ (April 2003). "t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia". Genes, Chromosomes & Cancer. 36 (4): 402–5. doi:10.1002/gcc.10174. PMID 12619164.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, Olzscha H, Monteiro O, Martin S, Philpott M, Tumber A, Filippakopoulos P, Yapp C, Wells C, Che KH, Bannister A, Robson S, Kumar U, Parr N, Lee K, Lugo D, Jeffrey P, Taylor S, Vecellio ML, Bountra C, Brennan PE, O'Mahony A, Velichko S, Müller S, Hay D, Daniels DL, Urh M, La Thangue NB, Kouzarides T, Prinjha R, Schwaller J, Knapp S (December 2015). "Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy". Cancer Research. 75 (23): 5106–19. doi:10.1158/0008-5472.CAN-15-0236. PMC 4948672. PMID 26552700.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  12. 12.0 12.1 12.2 Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S (October 1998). "CBP alleviates the intramolecular inhibition of ATF-2 function". The Journal of Biological Chemistry. 273 (44): 29098–105. doi:10.1074/jbc.273.44.29098. PMID 9786917.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. 13.0 13.1 Kim J, Jia L, Stallcup MR, Coetzee GA (February 2005). "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". Journal of Molecular Endocrinology. 34 (1): 107–18. doi:10.1677/jme.1.01701. PMID 15691881.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  14. Frønsdal K, Engedal N, Slagsvold T, Saatcioglu F (November 1998). "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". The Journal of Biological Chemistry. 273 (48): 31853–9. doi:10.1074/jbc.273.48.31853. PMID 9822653.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. Ishitani K, Yoshida T, Kitagawa H, Ohta H, Nozawa S, Kato S (July 2003). "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochemical and Biophysical Research Communications. 306 (3): 660–5. doi:10.1016/S0006-291X(03)01021-0. PMID 12810069.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. 16.0 16.1 Aarnisalo P, Palvimo JJ, Jänne OA (March 1998). "CREB-binding protein in androgen receptor-mediated signaling". Proceedings of the National Academy of Sciences of the United States of America. 95 (5): 2122–7. Bibcode:1998PNAS...95.2122A. doi:10.1073/pnas.95.5.2122. PMC 19270. PMID 9482849.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. Pitkänen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vähämurto P, Ollila J, Vihinen M, Scott HS, Antonarakis SE, Kudoh J, Shimizu N, Krohn K, Peterson P (June 2000). "The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein". The Journal of Biological Chemistry. 275 (22): 16802–9. doi:10.1074/jbc.M908944199. PMID 10748110.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  18. Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T (August 2003). "P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain". Journal of Bone and Mineral Research. 18 (8): 1419–29. doi:10.1359/jbmr.2003.18.8.1419. PMID 12929931.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  19. 19.0 19.1 19.2 Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (January 2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Research. 62 (1): 141–51. PMID 11782371.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  20. Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (February 2000). "CBP/p300 interact with and function as transcriptional coactivators of BRCA1". Proceedings of the National Academy of Sciences of the United States of America. 97 (3): 1020–5. Bibcode:2000PNAS...97.1020P. doi:10.1073/pnas.97.3.1020. PMC 15508. PMID 10655477.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN (January 1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene. 18 (1): 263–8. doi:10.1038/sj.onc.1202323. PMID 9926942.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  22. Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD (July 2003). "BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit". The Journal of Biological Chemistry. 278 (29): 26333–41. doi:10.1074/jbc.M303076200. PMID 12700228.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  23. 23.0 23.1 Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD (February 1998). "Factors associated with the mammalian RNA polymerase II holoenzyme". Nucleic Acids Research. 26 (3): 847–53. doi:10.1093/nar/26.3.847. PMC 147327. PMID 9443979.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  24. Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M (April 2000). "Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases". Nature. 404 (6781): 999–1003. doi:10.1038/35010121. PMID 10801129.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  25. Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR (September 2003). "CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation". The Journal of Biological Chemistry. 278 (38): 36959–65. doi:10.1074/jbc.M303147200. PMID 12857754.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  26. Lorentz O, Suh ER, Taylor JK, Boudreau F, Traber PG (March 1999). "CREB-binding [corrected] protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity". The Journal of Biological Chemistry. 274 (11): 7196–9. doi:10.1074/jbc.274.11.7196. PMID 10066780.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  27. Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (April 2004). "Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress". Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 5898–903. Bibcode:2004PNAS..101.5898S. doi:10.1073/pnas.0307718101. PMC 395895. PMID 15073328.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  28. Shimomura A, Ogawa Y, Kitani T, Fujisawa H, Hagiwara M (July 1996). "Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein". The Journal of Biological Chemistry. 271 (30): 17957–60. doi:10.1074/jbc.271.30.17957. PMID 8663317.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  29. Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (December 1997). "Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions". Cell. 91 (6): 741–52. doi:10.1016/S0092-8674(00)80463-8. PMID 9413984.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  30. 30.0 30.1 Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (November 2002). "Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators". The Journal of Biological Chemistry. 277 (44): 42241–8. doi:10.1074/jbc.M207361200. PMID 12196545.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  31. 31.0 31.1 Giebler HA, Lemasson I, Nyborg JK (July 2000). "p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation". Molecular and Cellular Biology. 20 (13): 4849–58. doi:10.1128/MCB.20.13.4849-4858.2000. PMC 85936. PMID 10848610.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. 32.0 32.1 Zhang Q, Vo N, Goodman RH (July 2000). "Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB". Molecular and Cellular Biology. 20 (14): 4970–8. doi:10.1128/MCB.20.14.4970-4978.2000. PMC 85947. PMID 10866654.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  33. 33.0 33.1 Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (April 2001). "MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein". Molecular and Cellular Biology. 21 (7): 2249–58. doi:10.1128/MCB.21.7.2249-2258.2001. PMC 86859. PMID 11259575.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  34. Ledo F, Kremer L, Mellström B, Naranjo JR (September 2002). "Ca2+-dependent block of CREB-CBP transcription by repressor DREAM". The EMBO Journal. 21 (17): 4583–92. doi:10.1093/emboj/cdf440. PMC 126180. PMID 12198160.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  35. 35.0 35.1 Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (August 1998). "Casein kinase II interacts with the bZIP domains of several transcription factors". Nucleic Acids Research. 26 (16): 3854–61. doi:10.1093/nar/26.16.3854. PMC 147779. PMID 9685505.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  36. Li S, Aufiero B, Schiltz RL, Walsh MJ (June 2000). "Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP". Proceedings of the National Academy of Sciences of the United States of America. 97 (13): 7166–71. Bibcode:2000PNAS...97.7166L. doi:10.1073/pnas.130028697. PMC 16517. PMID 10852958.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  37. 37.0 37.1 37.2 37.3 Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (September 1998). "A human RNA polymerase II complex containing factors that modify chromatin structure". Molecular and Cellular Biology. 18 (9): 5355–63. PMC 109120. PMID 9710619.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  38. Zhao F, McCarrick-Walmsley R, Akerblad P, Sigvardsson M, Kadesch T (June 2003). "Inhibition of p300/CBP by early B-cell factor". Molecular and Cellular Biology. 23 (11): 3837–46. doi:10.1128/MCB.23.11.3837-3846.2003. PMC 155219. PMID 12748286.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  39. Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G (November 2001). "Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles". The Journal of Biological Chemistry. 276 (48): 44936–43. doi:10.1074/jbc.M106733200. PMID 11568182.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  40. 40.0 40.1 Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM (January 2001). "Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1". Molecular and Cellular Biology. 21 (1): 39–50. doi:10.1128/MCB.21.1.39-50.2001. PMC 86566. PMID 11113179.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  41. Nasrin N, Ogg S, Cahill CM, Biggs W, Nui S, Dore J, Calvo D, Shi Y, Ruvkun G, Alexander-Bridges MC (September 2000). "DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells". Proceedings of the National Academy of Sciences of the United States of America. 97 (19): 10412–7. Bibcode:2000PNAS...9710412N. doi:10.1073/pnas.190326997. PMC 27038. PMID 10973497.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  42. Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (March 1999). "Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3". The Journal of Biological Chemistry. 274 (12): 8143–52. doi:10.1074/jbc.274.12.8143. PMID 10075717.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  43. 43.0 43.1 43.2 Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (February 2002). "Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription". Molecular Cell. 9 (2): 265–77. doi:10.1016/S1097-2765(02)00453-7. PMID 11864601.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  44. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (April 1999). "Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300". The EMBO Journal. 18 (7): 1905–14. doi:10.1093/emboj/18.7.1905. PMC 1171276. PMID 10202154.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  45. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM (January 1999). "Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1". Genes & Development. 13 (1): 64–75. doi:10.1101/gad.13.1.64. PMC 316375. PMID 9887100.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  46. Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H (July 2008). "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Molecular Pharmacology. 74 (1): 236–45. doi:10.1124/mol.108.045278. PMID 18426857.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  47. Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML (January 2002). "Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2". Nature Cell Biology. 4 (1): 1–10. doi:10.1038/ncb715. PMID 11740489.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  48. Soutoglou E, Papafotiou G, Katrakili N, Talianidis I (April 2000). "Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins". The Journal of Biological Chemistry. 275 (17): 12515–20. doi:10.1074/jbc.275.17.12515. PMID 10777539.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  49. Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V (July 1999). "CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein". Oncogene. 18 (27): 4007–14. doi:10.1038/sj.onc.1202776. PMID 10435624.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  50. Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A (December 1997). "Functional association between CBP and HNF4 in trans-activation". Biochemical and Biophysical Research Communications. 241 (3): 664–9. doi:10.1006/bbrc.1997.7871. PMID 9434765.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  51. Dell H, Hadzopoulou-Cladaras M (March 1999). "CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression". The Journal of Biological Chemistry. 274 (13): 9013–21. doi:10.1074/jbc.274.13.9013. PMID 10085149.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  52. Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P, Pastyryeva S, Meijer M, Johnston RN, Bazett-Jones DP, McMahon S, Cole MD, Young D, Riabowol K (August 2002). "Human ING1 proteins differentially regulate histone acetylation". The Journal of Biological Chemistry. 277 (33): 29832–9. doi:10.1074/jbc.M200197200. PMID 12015309.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  53. Hong W, Resnick RJ, Rakowski C, Shalloway D, Taylor SJ, Blobel GA (November 2002). "Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68". Molecular Cancer Research. 1 (1): 48–55. PMID 12496368.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  54. Song CZ, Keller K, Murata K, Asano H, Stamatoyannopoulos G (March 2002). "Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2". The Journal of Biological Chemistry. 277 (9): 7029–36. doi:10.1074/jbc.M108826200. PMC 2808425. PMID 11748222.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  55. Geiman DE, Ton-That H, Johnson JM, Yang VW (March 2000). "Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction". Nucleic Acids Research. 28 (5): 1106–13. doi:10.1093/nar/28.5.1106. PMC 102607. PMID 10666450.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  56. Barlev NA, Poltoratsky V, Owen-Hughes T, Ying C, Liu L, Workman JL, Berger SL (March 1998). "Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex". Molecular and Cellular Biology. 18 (3): 1349–58. doi:10.1128/mcb.18.3.1349. PMC 108848. PMID 9488450.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  57. Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA (July 2002). "CREB-binding protein/p300 co-activation of crystallin gene expression". The Journal of Biological Chemistry. 277 (27): 24081–9. doi:10.1074/jbc.M201821200. PMID 11943779.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  58. Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (November 2002). "Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain". The Journal of Biological Chemistry. 277 (45): 43168–74. doi:10.1074/jbc.M207660200. PMID 12205094.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  59. Shetty S, Takahashi T, Matsui H, Ayengar R, Raghow R (May 1999). "Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300)". The Biochemical Journal. 339 (3): 751–8. doi:10.1042/0264-6021:3390751. PMC 1220213. PMID 10215616.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  60. 60.0 60.1 Bessa M, Saville MK, Watson RJ (June 2001). "Inhibition of cyclin A/Cdk2 phosphorylation impairs B-Myb transactivation function without affecting interactions with DNA or the CBP coactivator". Oncogene. 20 (26): 3376–86. doi:10.1038/sj.onc.1204439. PMID 11423988.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  61. Polesskaya A, Naguibneva I, Duquet A, Bengal E, Robin P, Harel-Bellan A (August 2001). "Interaction between acetylated MyoD and the bromodomain of CBP and/or p300". Molecular and Cellular Biology. 21 (16): 5312–20. doi:10.1128/MCB.21.16.5312-5320.2001. PMC 87255. PMID 11463815.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  62. Sartorelli V, Huang J, Hamamori Y, Kedes L (February 1997). "Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C". Molecular and Cellular Biology. 17 (2): 1010–26. doi:10.1128/mcb.17.2.1010. PMC 231826. PMID 9001254.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  63. 63.0 63.1 Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW (May 2002). "Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase". Molecular and Cellular Biology. 22 (10): 3549–61. doi:10.1128/MCB.22.10.3549-3561.2002. PMC 133790. PMID 11971985.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  64. Naltner A, Wert S, Whitsett JA, Yan C (December 2000). "Temporal/spatial expression of nuclear receptor coactivators in the mouse lung". American Journal of Physiology. Lung Cellular and Molecular Physiology. 279 (6): L1066–74. doi:10.1152/ajplung.2000.279.6.l1066. PMID 11076796.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  65. Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW (November 1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". The Journal of Biological Chemistry. 274 (48): 34283–93. doi:10.1074/jbc.274.48.34283. PMID 10567404.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  66. Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW (February 2001). "Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2". Molecular Endocrinology. 15 (2): 241–54. doi:10.1210/me.15.2.241. PMID 11158331.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  67. 67.0 67.1 Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (February 2001). "Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms". Cell. 104 (3): 365–76. doi:10.1016/S0092-8674(01)00224-0. PMID 11239394.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  68. Yang T, Davis RJ, Chow CW (October 2001). "Requirement of two NFATc4 transactivation domains for CBP potentiation". The Journal of Biological Chemistry. 276 (43): 39569–76. doi:10.1074/jbc.M102961200. PMID 11514544.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  69. Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (October 2001). "Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription". Genes to Cells. 6 (10): 857–68. doi:10.1046/j.1365-2443.2001.00469.x. PMID 11683914.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  70. Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA (April 2001). "Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation". The Journal of Biological Chemistry. 276 (14): 10715–21. doi:10.1074/jbc.M007846200. PMID 11154691.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  71. Almlöf T, Wallberg AE, Gustafsson JA, Wright AP (June 1998). "Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors". Biochemistry. 37 (26): 9586–94. doi:10.1021/bi973029x. PMID 9649342.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  72. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (January 1999). "CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity". Molecular and Cellular Biology. 19 (1): 764–76. doi:10.1128/mcb.19.1.764. PMC 83933. PMID 9858599.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  73. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (November 2002). "MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation". The EMBO Journal. 21 (22): 6236–45. doi:10.1093/emboj/cdf616. PMC 137207. PMID 12426395.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  74. Livengood JA, Scoggin KE, Van Orden K, McBryant SJ, Edayathumangalam RS, Laybourn PJ, Nyborg JK (March 2002). "p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300". The Journal of Biological Chemistry. 277 (11): 9054–61. doi:10.1074/jbc.M108870200. PMID 11782467.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  75. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (November 1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science. 286 (5443): 1368–71. doi:10.1126/science.286.5443.1368. PMID 10558993.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  76. Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T (April 2002). "Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription". EMBO Reports. 3 (4): 361–6. doi:10.1093/embo-reports/kvf071. PMC 1084059. PMID 11897665.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  77. 77.0 77.1 Matsuzaki K, Minami T, Tojo M, Honda Y, Saitoh N, Nagahiro S, Saya H, Nakao M (March 2003). "PML-nuclear bodies are involved in cellular serum response". Genes to Cells. 8 (3): 275–86. doi:10.1046/j.1365-2443.2003.00632.x. PMID 12622724.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  78. Doucas V, Tini M, Egan DA, Evans RM (March 1999). "Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling". Proceedings of the National Academy of Sciences of the United States of America. 96 (6): 2627–32. Bibcode:1999PNAS...96.2627D. doi:10.1073/pnas.96.6.2627. PMC 15819. PMID 10077561.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  79. Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP (November 1999). "A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins". Nature Genetics. 23 (3): 287–95. doi:10.1038/15463. PMID 10610177.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  80. Jang HD, Yoon K, Shin YJ, Kim J, Lee SY (June 2004). "PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit". The Journal of Biological Chemistry. 279 (23): 24873–80. doi:10.1074/jbc.M313018200. PMID 15140884.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  81. Zhong H, May MJ, Jimi E, Ghosh S (March 2002). "The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1". Molecular Cell. 9 (3): 625–36. doi:10.1016/S1097-2765(02)00477-X. PMID 11931769.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  82. Parry GC, Mackman N (December 1997). "Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription". Journal of Immunology. 159 (11): 5450–6. PMID 9548485.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  83. Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (April 1997). "CREB-binding protein/p300 are transcriptional coactivators of p65". Proceedings of the National Academy of Sciences of the United States of America. 94 (7): 2927–32. Bibcode:1997PNAS...94.2927G. doi:10.1073/pnas.94.7.2927. PMC 20299. PMID 9096323.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  84. Merienne K, Pannetier S, Harel-Bellan A, Sassone-Corsi P (October 2001). "Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities". Molecular and Cellular Biology. 21 (20): 7089–96. doi:10.1128/MCB.21.20.7089-7096.2001. PMC 99884. PMID 11564891.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  85. Hirose T, Fujii R, Nakamura H, Aratani S, Fujita H, Nakazawa M, Nakamura K, Nishioka K, Nakajima T (June 2003). "Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP". International Journal of Molecular Medicine. 11 (6): 705–12. doi:10.3892/ijmm.11.6.705. PMID 12736710.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  86. DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M (October 2000). "BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation". Molecular and Cellular Biology. 20 (20): 7541–9. doi:10.1128/MCB.20.20.7541-7549.2000. PMC 86306. PMID 11003650.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  87. Pearson KL, Hunter T, Janknecht R (December 1999). "Activation of Smad1-mediated transcription by p300/CBP". Biochimica et Biophysica Acta. 1489 (2–3): 354–64. doi:10.1016/S0167-4781(99)00166-9. PMID 10673036.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  88. 88.0 88.1 Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (November 1996). "SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein". Genes & Development. 10 (22): 2903–11. doi:10.1101/gad.10.22.2903. PMID 8918891.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  89. Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (January 2004). "Dendrite development regulated by CREST, a calcium-regulated transcriptional activator". Science. 303 (5655): 197–202. Bibcode:2004Sci...303..197A. doi:10.1126/science.1089845. PMID 14716005.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  90. Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE (December 1996). "Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling". Proceedings of the National Academy of Sciences of the United States of America. 93 (26): 15092–6. Bibcode:1996PNAS...9315092Z. doi:10.1073/pnas.93.26.15092. PMC 26361. PMID 8986769.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  91. Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM (September 1996). "Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha". Nature. 383 (6598): 344–7. Bibcode:1996Natur.383..344B. doi:10.1038/383344a0. PMID 8848048.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  92. Litterst CM, Pfitzner E (December 2001). "Transcriptional activation by STAT6 requires the direct interaction with NCoA-1". The Journal of Biological Chemistry. 276 (49): 45713–21. doi:10.1074/jbc.M108132200. PMID 11574547.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  93. McDonald C, Reich NC (July 1999). "Cooperation of the transcriptional coactivators CBP and p300 with Stat6". Journal of Interferon & Cytokine Research. 19 (7): 711–22. doi:10.1089/107999099313550. PMID 10454341.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  94. Bradney C, Hjelmeland M, Komatsu Y, Yoshida M, Yao TP, Zhuang Y (January 2003). "Regulation of E2A activities by histone acetyltransferases in B lymphocyte development". The Journal of Biological Chemistry. 278 (4): 2370–6. doi:10.1074/jbc.M211464200. PMID 12435739.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  95. Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (May 2002). "Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation". The Journal of Biological Chemistry. 277 (22): 20011–9. doi:10.1074/jbc.M201739200. PMID 11912212.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  96. Gizard F, Lavallée B, DeWitte F, Hum DW (September 2001). "A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression". The Journal of Biological Chemistry. 276 (36): 33881–92. doi:10.1074/jbc.M100113200. PMID 11349124.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  97. Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T (November 1998). "cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1)". The Biochemical Journal. 336 (1): 183–9. doi:10.1042/bj3360183. PMC 1219856. PMID 9806899.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

Further reading

<templatestyles src="Refbegin/styles.css" />

  • Goldman PS, Tran VK, Goodman RH (1997). "The multifunctional role of the co-activator CBP in transcriptional regulation". Recent Progress in Hormone Research. 52: 103–19, discussion 119–20. PMID 9238849.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Marcello A, Zoppé M, Giacca M (March 2001). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator". IUBMB Life. 51 (3): 175–81. doi:10.1080/152165401753544241. PMID 11547919.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Matt T (2002). "Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP)". Acta Medica Austriaca. 29 (3): 77–9. doi:10.1046/j.1563-2571.2002.02010.x. PMID 12168567.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Combes R, Balls M, Bansil L, Barratt M, Bell D, Botham P, Broadhead C, Clothier R, George E, Fentem J, Jackson M, Indans I, Loizu G, Navaratnam V, Pentreath V, Phillips B, Stemplewski H, Stewart J (2002). "An assessment of progress in the use of alternatives in toxicity testing since the publication of the report of the second FRAME Toxicity Committee (1991)". Alternatives to Laboratory Animals. 30 (4): 365–406. PMID 12234245.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Minghetti L, Visentin S, Patrizio M, Franchini L, Ajmone-Cat MA, Levi G (May 2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions". Neurochemical Research. 29 (5): 965–78. doi:10.1023/B:NERE.0000021241.90133.89. PMID 15139295.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Kino T, Pavlakis GN (April 2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1". DNA and Cell Biology. 23 (4): 193–205. doi:10.1089/104454904773819789. PMID 15142377.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Greene WC, Chen LF (2004). "Regulation of NF-kappaB action by reversible acetylation". Novartis Foundation Symposium. 259: 208–17, discussion 218–25. doi:10.1002/0470862637.ch15. PMID 15171256.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Liou LY, Herrmann CH, Rice AP (September 2004). "HIV-1 infection and regulation of Tat function in macrophages". The International Journal of Biochemistry & Cell Biology. 36 (9): 1767–75. doi:10.1016/j.biocel.2004.02.018. PMID 15183343.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Pugliese A, Vidotto V, Beltramo T, Petrini S, Torre D (2005). "A review of HIV-1 Tat protein biological effects". Cell Biochemistry and Function. 23 (4): 223–7. doi:10.1002/cbf.1147. PMID 15473004.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Bannwarth S, Gatignol A (January 2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host". Current HIV Research. 3 (1): 61–71. doi:10.2174/1570162052772924. PMID 15638724.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Le Rouzic E, Benichou S (2006). "The Vpr protein from HIV-1: distinct roles along the viral life cycle". Retrovirology. 2: 11. doi:10.1186/1742-4690-2-11. PMC 554975. PMID 15725353.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Gibellini D, Vitone F, Schiavone P, Re MC (April 2005). "HIV-1 tat protein and cell proliferation and survival: a brief review". The New Microbiologica. 28 (2): 95–109. PMID 16035254.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Hetzer C, Dormeyer W, Schnölzer M, Ott M (October 2005). "Decoding Tat: the biology of HIV Tat posttranslational modifications". Microbes and Infection / Institut Pasteur. 7 (13): 1364–9. doi:10.1016/j.micinf.2005.06.003. PMID 16046164.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis". Frontiers in Bioscience. 11: 708–17. doi:10.2741/1829. PMID 16146763.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.