Duchenne muscular dystrophy pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 45: Line 45:
* In one-third of the cases, the [[disease]] is a result of an unspontaneous or new [[mutation]].
* In one-third of the cases, the [[disease]] is a result of an unspontaneous or new [[mutation]].


* [[Prenatal testing]], such as [[amniocentesis]], for pregnancies at risk is possible if the DMD disease-causing mutation has been identified in a family member or if informative linked markers have been identified.
* [[Prenatal testing]], such as [[amniocentesis]], for [[Pregnancy|pregnancies]] at risk is possible if the DMD disease-causing [[mutation]] has been identified in a family member or if informative linked markers have been identified.


* The dystrophin gene contains 24 regions of 109 amino acids that are similar but not exact, making it susceptible to misalignment at the [[Meiosis|meiotic]] synapse, which can lead to [[Frameshift mutation|frameshift mutations]] and an untranslatable gene.  
* The [[dystrophin]] gene contains 24 regions of 109 [[Amino acid|amino acids]] that are similar but not exact, making it susceptible to misalignment at the [[Meiosis|meiotic]] synapse, which can lead to [[Frameshift mutation|frameshift mutations]] and an untranslatable gene.  
* This can happen with a frequency of about 1 in 10,000.
* This can happen with a frequency of about 1 in 10,000.


* In some female cases, DMD is caused by skewed [[X inactivation]].  
* In some [[female]] cases, DMD is caused by skewed [[X inactivation]].  
* In these cases, two copies of the X chromosome exist, but for reasons currently unknown, the flawed X chromosome manifests instead of the unflawed copy.  
* In these cases, two copies of the [[X chromosome]] exist, but for reasons currently unknown, the flawed [[X chromosome]] manifests instead of the unflawed copy.  
* In these cases, a mosaic form of DMD is seen, in which some muscle cells are completely normal while others exhibit classic DMD findings.  
* In these cases, a [[Mosaic (genetics)|mosaic]] form of DMD is seen, in which some [[muscle cells]] are completely normal while others exhibit classic DMD findings.  
* The effects of a mosaic form of DMD on long-term outlook is not known.
* The effects of a mosaic form of DMD on long-term outlook is not known.
[[File:474px-Ideogram human chromosome X.svg.png|500px|none|thumb|https://en.wikipedia.org/wiki/File:Ideogram_human_chromosome_X.svg]]
[[File:474px-Ideogram human chromosome X.svg.png|500px|none|thumb|https://en.wikipedia.org/wiki/File:Ideogram_human_chromosome_X.svg]]


==Gross Pathology==
==Gross Pathology==
There is no charactristic findings on gross pathology for Duchenne muscular dystrophy.
There is no charactristic findings on gross [[pathology]] for Duchenne [[muscular dystrophy]].


==Microscopic Pathology==
==Microscopic Pathology==
On microscopic histopathological analysis, these findings are characteristic of Duchenne muscular dystrophy:
On microscopic histopathological analysis, these findings are characteristic of Duchenne [[muscular dystrophy]]:
* Replacement of muscle by fat and connective tissue
* Replacement of [[muscle]] by [[fat]] and [[connective tissue]]
* Muscle degeneration
* [[Muscle]] [[degeneration]]
* Muscle regeneration  
* [[Muscle]] [[regeneration]]
* Opaque hypertrophic fibers
* Opaque [[hypertrophic]] fibers
[[File:Duchenne-muscular-dystrophy-2-638.jpg|500px|none|thumb|Histopathology of gastrocnemius muscle from patient who died of pseudohypertrophic muscular dystrophy, Duchenne type. Cross section of muscle shows extensive replacement of muscle fibers by adipose cells|https://commons.wikimedia.org/wiki/File:Duchenne-muscular-dystrophy.jpg]]
[[File:Duchenne-muscular-dystrophy-2-638.jpg|500px|none|thumb|Histopathology of gastrocnemius muscle from patient who died of pseudohypertrophic muscular dystrophy, Duchenne type. Cross section of muscle shows extensive replacement of muscle fibers by adipose cells|https://commons.wikimedia.org/wiki/File:Duchenne-muscular-dystrophy.jpg]]
[[File:Dys1 Dystrophinopathy carrier.jpg|500px|none|thumb|https://librepathology.org/wiki/File:Dys1_Dystrophinopathy_carrier.jpg]]
[[File:Dys1 Dystrophinopathy carrier.jpg|500px|none|thumb|https://librepathology.org/wiki/File:Dys1_Dystrophinopathy_carrier.jpg]]

Revision as of 13:29, 2 May 2019

Duchenne muscular dystrophy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Duchenne muscular dystrophy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Duchenne muscular dystrophy pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Duchenne muscular dystrophy pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Duchenne muscular dystrophy pathophysiology

CDC on Duchenne muscular dystrophy pathophysiology

Duchenne muscular dystrophy pathophysiology in the news

Blogs on Duchenne muscular dystrophy pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Duchenne muscular dystrophy pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Fahimeh Shojaei, M.D.

Overview

It is understood that Duchenne muscular dystrophy is the result of genetic mutation of dystrophin gene located on X-chromosome. Duchenne muscular dystrophy arises from muscle cells, which are involved in muscular contraction. Dystrophin protein is a part of the protein complex named dystrophin-associated protein complex (DAPC) which acts as an anchor that connect the intracellular cytoskeleton proteins such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan to the extracellular matrix. On microscopic histopathological analysis, replacement of muscle by fat and connective tissue, muscle degeneration, muscle regeneration, and opaque hypertrophic fibers are characteristic findings of Duchenne muscular dystrophy.

Pathophysiology

Physiology

The normal physiology of dystrophin protein can be understood as follows:

Pathogenesis

Genetics

  • The dystrophin gene contains 24 regions of 109 amino acids that are similar but not exact, making it susceptible to misalignment at the meiotic synapse, which can lead to frameshift mutations and an untranslatable gene.
  • This can happen with a frequency of about 1 in 10,000.
  • In some female cases, DMD is caused by skewed X inactivation.
  • In these cases, two copies of the X chromosome exist, but for reasons currently unknown, the flawed X chromosome manifests instead of the unflawed copy.
  • In these cases, a mosaic form of DMD is seen, in which some muscle cells are completely normal while others exhibit classic DMD findings.
  • The effects of a mosaic form of DMD on long-term outlook is not known.
https://en.wikipedia.org/wiki/File:Ideogram_human_chromosome_X.svg

Gross Pathology

There is no charactristic findings on gross pathology for Duchenne muscular dystrophy.

Microscopic Pathology

On microscopic histopathological analysis, these findings are characteristic of Duchenne muscular dystrophy:

https://commons.wikimedia.org/wiki/File:Duchenne-muscular-dystrophy.jpg
https://librepathology.org/wiki/File:Dys1_Dystrophinopathy_carrier.jpg

References

Template:WH Template:WS