Duchenne muscular dystrophy pathophysiology

Jump to navigation Jump to search

Duchenne muscular dystrophy Microchapters


Patient Information


Historical Perspective




Differentiating Duchenne muscular dystrophy from other Diseases

Epidemiology and Demographics

Risk Factors


Natural History, Complications and Prognosis


Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings



Echocardiography and Ultrasound

CT scan


Other Imaging Findings

Other Diagnostic Studies


Medical Therapy



Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Duchenne muscular dystrophy pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Duchenne muscular dystrophy pathophysiology

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Duchenne muscular dystrophy pathophysiology

CDC on Duchenne muscular dystrophy pathophysiology

Duchenne muscular dystrophy pathophysiology in the news

Blogs on Duchenne muscular dystrophy pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Duchenne muscular dystrophy pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Fahimeh Shojaei, M.D.


It is understood that Duchenne muscular dystrophy is the result of genetic mutation of dystrophin gene located on X-chromosome. Duchenne muscular dystrophy arises from muscle cells, which are involved in muscular contraction. Dystrophin protein is a part of the protein complex named dystrophin-associated protein complex (DAPC) which acts as an anchor that connect the intracellular cytoskeleton proteins such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan to the extracellular matrix. On microscopic histopathological analysis, replacement of muscle by fat and connective tissue, muscle degeneration, muscle regeneration, and opaque hypertrophic fibers are characteristic findings of Duchenne muscular dystrophy.



The normal physiology of dystrophin protein can be understood as follows:[1][2]




  • The dystrophin gene contains 24 regions of 109 amino acids that are similar but not exact, making it susceptible to misalignment at the meiotic synapse, which can lead to frameshift mutations and an untranslatable gene.
  • This can happen with a frequency of about 1 in 10,000.
  • In some female cases, DMD is caused by skewed X inactivation.
  • In these cases, two copies of the X chromosome exist, but for reasons currently unknown, the flawed X chromosome manifests instead of the unflawed copy.
  • In these cases, a mosaic form of DMD is seen, in which some muscle cells are completely normal while others exhibit classic DMD findings.
  • The effects of a mosaic form of DMD on long-term outlook is not known.

Gross Pathology

There is no charactristic findings on gross pathology for Duchenne muscular dystrophy.

Microscopic Pathology

On microscopic histopathological analysis, these findings are characteristic of Duchenne muscular dystrophy:[8][9]



  1. Péréon, Y.; Mercier, S.; Magot, A. (2015). "Physiopathologie de la dystrophie musculaire de Duchenne". Archives de Pédiatrie. 22 (12): 12S18–12S23. doi:10.1016/S0929-693X(16)30004-5. ISSN 0929-693X.
  2. Blake, Derek J.; Weir, Andrew; Newey, Sarah E.; Davies, Kay E. (2002). "Function and Genetics of Dystrophin and Dystrophin-Related Proteins in Muscle". Physiological Reviews. 82 (2): 291–329. doi:10.1152/physrev.00028.2001. ISSN 0031-9333.
  3. Towbin, J A; Hejtmancik, J F; Brink, P; Gelb, B; Zhu, X M; Chamberlain, J S; McCabe, E R; Swift, M (1993). "X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus". Circulation. 87 (6): 1854–1865. doi:10.1161/01.CIR.87.6.1854. ISSN 0009-7322.
  4. Bertelson, C J; Bartley, J A; Monaco, A P; Colletti-Feener, C; Fischbeck, K; Kunkel, L M (1986). "Localisation of Xp21 meiotic exchange points in Duchenne muscular dystrophy families". Journal of Medical Genetics. 23 (6): 531–537. doi:10.1136/jmg.23.6.531. ISSN 1468-6244.
  5. Lindenbaum, R H; Clarke, G; Patel, C; Moncrieff, M; Hughes, J T (1979). "Muscular dystrophy in an X; 1 translocation female suggests that Duchenne locus is on X chromosome short arm". Journal of Medical Genetics. 16 (5): 389–392. doi:10.1136/jmg.16.5.389. ISSN 1468-6244.
  6. Moser, H.; Emery, A. E. H. (2008). "The manifesting carrier in Duchenne muscular dystrophy". Clinical Genetics. 5 (4): 271–284. doi:10.1111/j.1399-0004.1974.tb01694.x. ISSN 0009-9163.
  7. Mahoney, Maurice J.; Haseltine, Florence P.; Hobbins, John C.; Banker, Betty Q.; Caskey, C. Thomas; Golbus, Mitchell S. (1977). "Prenatal Diagnosis of Duchenne's Muscular Dystrophy". New England Journal of Medicine. 297 (18): 968–973. doi:10.1056/NEJM197711032971803. ISSN 0028-4793.
  8. Emery, Alan EH (2002). "The muscular dystrophies". The Lancet. 359 (9307): 687–695. doi:10.1016/S0140-6736(02)07815-7. ISSN 0140-6736.
  9. Pearce, PH; Johnsen, RD; Wysocki, SJ; Kakulas, BA (1981). "MUSCLE LIPIDS IN DUCHENNE MUSCULAR DYSTROPHY". Australian Journal of Experimental Biology and Medical Science. 59 (1): 77–90. doi:10.1038/icb.1981.4. ISSN 0004-945X.

Template:WH Template:WS