COVID-19 Variants of Concern: Difference between revisions

Jump to navigation Jump to search
Line 7: Line 7:


==Overview==
==Overview==
All [[viruses]] [[mutate]]. [[Mutations]] are mistakes that happen when the [[virus]] replicates. Every single viral [[replication]] is an opportunity to mutate. All viruses, including COVID 19 needs a [[host]] [[cell]] to replicate, because viruses have [[genetic material]] but no [[cytoplasm]] and cellular proteins to replicate on their own. So the longer a virus replicates and circulates in a population of [[hosts]], the higher chance of a [[mutation]]. Not all [[mutations]] are significant enough to change the characteristics of [[virus]]. However, a sequence of [[mutations]] (which is more likely to happen, when the [[viral load]] in a community is very high such as in a [[pandemic]]), can lead to a change in viral characteristics and can lead to difference either in transmissibility and/or [[virulence]]. These [[mutations]] can also change the efficiency of [[vaccines]] and the viral response to [[treatment]]. One of the examples of how viral [[mutations]] can affect the [[Efficacy|efficiency]] of vaccine is why [[Influenza vaccine|annual flu vaccines]] are required. Similar to [[influenza virus]], [[SARS-CoV-2]] (the virus responsible for [[COVID-19]]) also can [[mutate]] and in a [[pandemic]] situation, the likelihood of the [[mutation]] and emergence of variants is high. [[WHO]] is actively tracking and monitoring the emergence of variants in order to alert the nations and public as part of ongoing response to the current [[pandemic]].
All [[viruses]] [[mutate]]<ref>Fleischmann WR Jr. Viral Genetics. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 43. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8439/
</ref>. [[Mutations]] are mistakes that happen when the [[virus]] replicates. Every single viral [[replication]] is an opportunity to mutate. All viruses, including COVID 19 needs a [[host]] [[cell]] to replicate, because viruses have [[genetic material]] but no [[cytoplasm]] and cellular proteins to replicate on their own. So the longer a virus replicates and circulates in a population of [[hosts]], the higher chance of a [[mutation]]. Not all [[mutations]] are significant enough to change the characteristics of [[virus]]. However, a sequence of [[mutations]] (which is more likely to happen, when the [[viral load]] in a community is very high such as in a [[pandemic]]), can lead to a change in viral characteristics and can lead to difference either in transmissibility and/or [[virulence]]. These [[mutations]] can also change the efficiency of [[vaccines]] and the viral response to [[treatment]]. One of the examples of how viral [[mutations]] can affect the [[Efficacy|efficiency]] of vaccine is why [[Influenza vaccine|annual flu vaccines]] are required. Similar to [[influenza virus]], [[SARS-CoV-2]] (the virus responsible for [[COVID-19]]) also can [[mutate]] and in a [[pandemic]] situation, the likelihood of the [[mutation]] and emergence of variants is high. [[WHO]] is actively tracking and monitoring the emergence of variants in order to alert the nations and public as part of ongoing response to the current [[pandemic]].


==Variants of Concern==
==Variants of Concern==

Revision as of 02:12, 31 December 2021

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 Variants of Concern On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 Variants of Concern

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 Variants of Concern

CDC on COVID-19 Variants of Concern

COVID-19 Variants of Concern in the news

Blogs on COVID-19 Variants of Concern

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 Variants of Concern

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Mohamed Riad, M.D.[2] Deekshitha Manney, M. D[3]

Overview

All viruses mutate[1]. Mutations are mistakes that happen when the virus replicates. Every single viral replication is an opportunity to mutate. All viruses, including COVID 19 needs a host cell to replicate, because viruses have genetic material but no cytoplasm and cellular proteins to replicate on their own. So the longer a virus replicates and circulates in a population of hosts, the higher chance of a mutation. Not all mutations are significant enough to change the characteristics of virus. However, a sequence of mutations (which is more likely to happen, when the viral load in a community is very high such as in a pandemic), can lead to a change in viral characteristics and can lead to difference either in transmissibility and/or virulence. These mutations can also change the efficiency of vaccines and the viral response to treatment. One of the examples of how viral mutations can affect the efficiency of vaccine is why annual flu vaccines are required. Similar to influenza virus, SARS-CoV-2 (the virus responsible for COVID-19) also can mutate and in a pandemic situation, the likelihood of the mutation and emergence of variants is high. WHO is actively tracking and monitoring the emergence of variants in order to alert the nations and public as part of ongoing response to the current pandemic.

Variants of Concern

As in all viruses, COVID-19 virus continuously undergo spontaneous mutations followed by emergence of new variants of COVID-19. Some of these variants appear then disappear; however, others persist causing global pandemic. The best way to fight against the appearance of new variants is a commitment to protective measures.

The " variants of concern" refer to those COVID-19 variants with clear evidence of an increased rate of transmission, severe illness, and death, marked decrease in neutralization by antibodies produced as a result of previous infection or vaccination, decreased effectiveness of vaccines or treatments, or failure of diagnostic detection.


1) Omicron - B.1.1.529 :

The variant was first detected in South Africa. It is designated as VoC, meaning that it can pass between people easily and evade vaccines, treatments, or other protective measures. The number of mutations this variant has is concerning, estimated to be more than 30, which could have a big influence on how this virus behaves.

It is not yet clear whether omicron makes symptoms worse or is severe than other variants like delta. It is also not clear yet how Omicron affects people compared to alpha and delta variants. Infection rates have been increasing from the first week of December-2021 and we need to see how the variant affects the world.

2) Delta - B.1.617.2 :

This variant was first identified in India in early 2020. It is twice as contagious as earlier variants and might cause more severe illness. Most affected people are the unvaccinated people for this variant. Vaccinations do provide protection against this variant.


3) Alpha (B.1.1.7) :

References

  1. Fleischmann WR Jr. Viral Genetics. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 43. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8439/