COVID-19-associated cardiogenic shock: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 97: Line 97:
The history of patients presented [[cardiogenic shock]] related to [[COVID-19]], according to a few anecdotal reports were different. Some did not have any [[cardiovascular]] risk factors.
The history of patients presented [[cardiogenic shock]] related to [[COVID-19]], according to a few anecdotal reports were different. Some did not have any [[cardiovascular]] risk factors.


:*A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into [[respiratory distress]] and [[cardiogenic shock]]. <ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref>
A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into [[respiratory distress]] and [[cardiogenic shock]]. <ref name="TavazziPellegrini2020">{{cite journal|last1=Tavazzi|first1=Guido|last2=Pellegrini|first2=Carlo|last3=Maurelli|first3=Marco|last4=Belliato|first4=Mirko|last5=Sciutti|first5=Fabio|last6=Bottazzi|first6=Andrea|last7=Sepe|first7=Paola Alessandra|last8=Resasco|first8=Tullia|last9=Camporotondo|first9=Rita|last10=Bruno|first10=Raffaele|last11=Baldanti|first11=Fausto|last12=Paolucci|first12=Stefania|last13=Pelenghi|first13=Stefano|last14=Iotti|first14=Giorgio Antonio|last15=Mojoli|first15=Francesco|last16=Arbustini|first16=Eloisa|title=Myocardial localization of coronavirus in COVID‐19 cardiogenic shock|journal=European Journal of Heart Failure|volume=22|issue=5|year=2020|pages=911–915|issn=1388-9842|doi=10.1002/ejhf.1828}}</ref>
 
Four patients with [[cardiogenic shock]] complication related to [[COVID-19]] were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:<ref name="Sánchez-RecaldeSolano-López2020">{{cite journal|last1=Sánchez-Recalde|first1=Ángel|last2=Solano-López|first2=Jorge|last3=Miguelena-Hycka|first3=Javier|last4=Martín-Pinacho|first4=Jesús Javier|last5=Sanmartín|first5=Marcelo|last6=Zamorano|first6=José L.|title=COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality|journal=Revista Española de Cardiología (English Edition)|year=2020|issn=18855857|doi=10.1016/j.rec.2020.04.012}}</ref>
Four patients with [[cardiogenic shock]] complication related to [[COVID-19]] were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:<ref name="Sánchez-RecaldeSolano-López2020">{{cite journal|last1=Sánchez-Recalde|first1=Ángel|last2=Solano-López|first2=Jorge|last3=Miguelena-Hycka|first3=Javier|last4=Martín-Pinacho|first4=Jesús Javier|last5=Sanmartín|first5=Marcelo|last6=Zamorano|first6=José L.|title=COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality|journal=Revista Española de Cardiología (English Edition)|year=2020|issn=18855857|doi=10.1016/j.rec.2020.04.012}}</ref>


:*A 42-year-old woman, who had [[dyslipidemia]] as a [[cardiovascular]] risk factor
* A 42-year-old woman, who had [[dyslipidemia]] as a [[cardiovascular]] risk factor
:*A 50-year-old man, without any [[cardiovascular]] risk factors, admitted by severe bilateral [[pneumonia]] related to COVID-19. After a few hours, he developed [[cardiogenic shock]].
* A 50-year-old man, without any [[cardiovascular]] risk factors, admitted by severe bilateral [[pneumonia]] related to COVID-19. After a few hours, he developed [[cardiogenic shock]].
:*A 75-year-old man did not have any [[cardiovascular]] risk factors and was admitted due to [[dyspnea]], [[chest pain]], and bilateral [[SARS-CoV-2]] [[pneumonia]].
* A 75-year-old man did not have any [[cardiovascular]] risk factors and was admitted due to [[dyspnea]], [[chest pain]], and bilateral [[SARS-CoV-2]] [[pneumonia]].
:*A 37-year-old woman, obese with a history of [[deep venous thrombosis]], had symptoms of [[dyspnea]] and chest pain
* A 37-year-old woman, obese with a history of [[deep venous thrombosis]], had symptoms of [[dyspnea]] and chest pain


=== Physical Examination ===
=== Physical Examination ===


*Physical examination may be remarkable for [[Covid-19 associated cardiogenic shock]]:<ref>{{cite book | last = Tse | first = FirstName | title = Oxford Desk Reference : Cardiology | publisher = OUP Oxford | location = Oxford | year = 2011 | isbn = 978-0-19-956809-3 }} </ref>
*Physical examination may be remarkable for [[Covid-19 associated cardiogenic shock]]:<ref>{{cite book | last = Tse | first = FirstName | title = Oxford Desk Reference : Cardiology | publisher = OUP Oxford | location = Oxford | year = 2011 | isbn = 978-0-19-956809-3 }} </ref>
:* Assessment of consciousness level
**Assessment of consciousness level
:* Extremities whether they are warm or cool is helpful for evaluation of [[cardiogenic shock]]
**Extremities whether they are warm or cool is helpful for evaluation of [[cardiogenic shock]]
:* Vital signs ([[tachycardia]] and [[hypotension]] and [[tachypnea]])
**Vital signs ([[tachycardia]] and [[hypotension]] and [[tachypnea]])
:* Evaluation of volume status: [[CVP]] (increased [[JVP]]), [[edema]]  
**Evaluation of volume status: [[CVP]] (increased [[JVP]]), [[edema]]
:* Skin pallor
**Skin pallor


=== Laboratory Findings ===
=== Laboratory Findings ===
*In [[COVID-19]] patients, it is essential to differentiate the shock types. Two tests are more valuable to clarify this, which are elevated in [[cardiogenic shock]] related to [[COVID-19]] : <ref name="LalHayward2020">{{cite journal|last1=Lal|first1=Sean|last2=Hayward|first2=Christopher S.|last3=De Pasquale|first3=Carmine|last4=Kaye|first4=David|last5=Javorsky|first5=George|last6=Bergin|first6=Peter|last7=Atherton|first7=John J.|last8=Ilton|first8=Marcus K.|last9=Weintraub|first9=Robert G.|last10=Nair|first10=Priya|last11=Rudas|first11=Mate|last12=Dembo|first12=Lawrence|last13=Doughty|first13=Robert N.|last14=Kumarasinghe|first14=Gayathri|last15=Juergens|first15=Craig|last16=Bannon|first16=Paul G.|last17=Bart|first17=Nicole K.|last18=Chow|first18=Clara K.|last19=Lattimore|first19=Jo-Dee|last20=Kritharides|first20=Leonard|last21=Totaro|first21=Richard|last22=Macdonald|first22=Peter S.|title=COVID-19 and Acute Heart Failure: Screening the Critically Ill – A Position Statement of the Cardiac Society of Australia and New Zealand (CSANZ)|journal=Heart, Lung and Circulation|year=2020|issn=14439506|doi=10.1016/j.hlc.2020.04.005}}</ref>
*In [[COVID-19]] patients, it is essential to differentiate the shock types. Two tests are more valuable to clarify this, which are elevated in [[cardiogenic shock]] related to [[COVID-19]] : <ref name="LalHayward2020">{{cite journal|last1=Lal|first1=Sean|last2=Hayward|first2=Christopher S.|last3=De Pasquale|first3=Carmine|last4=Kaye|first4=David|last5=Javorsky|first5=George|last6=Bergin|first6=Peter|last7=Atherton|first7=John J.|last8=Ilton|first8=Marcus K.|last9=Weintraub|first9=Robert G.|last10=Nair|first10=Priya|last11=Rudas|first11=Mate|last12=Dembo|first12=Lawrence|last13=Doughty|first13=Robert N.|last14=Kumarasinghe|first14=Gayathri|last15=Juergens|first15=Craig|last16=Bannon|first16=Paul G.|last17=Bart|first17=Nicole K.|last18=Chow|first18=Clara K.|last19=Lattimore|first19=Jo-Dee|last20=Kritharides|first20=Leonard|last21=Totaro|first21=Richard|last22=Macdonald|first22=Peter S.|title=COVID-19 and Acute Heart Failure: Screening the Critically Ill – A Position Statement of the Cardiac Society of Australia and New Zealand (CSANZ)|journal=Heart, Lung and Circulation|year=2020|issn=14439506|doi=10.1016/j.hlc.2020.04.005}}</ref>
 
**serum [[brain natriuretic peptide]] ([[BNP]])
:*serum [[brain natriuretic peptide]] ([[BNP]])
**[[Troponin]]
:*[[Troponin]]


*The increase of some biomarkers demonstrates poor prognosis, increased mortality, and more severe symptoms in [[COVID-19]] patients:<ref name="AboughdirKirwin2020">{{cite journal|last1=Aboughdir|first1=Maryam|last2=Kirwin|first2=Thomas|last3=Abdul Khader|first3=Ashiq|last4=Wang|first4=Brian|title=Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review|journal=Viruses|volume=12|issue=5|year=2020|pages=527|issn=1999-4915|doi=10.3390/v12050527}}</ref>
*The increase of some biomarkers demonstrates poor prognosis, increased mortality, and more severe symptoms in [[COVID-19]] patients:<ref name="AboughdirKirwin2020">{{cite journal|last1=Aboughdir|first1=Maryam|last2=Kirwin|first2=Thomas|last3=Abdul Khader|first3=Ashiq|last4=Wang|first4=Brian|title=Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review|journal=Viruses|volume=12|issue=5|year=2020|pages=527|issn=1999-4915|doi=10.3390/v12050527}}</ref>
 
**[[cTnT]] and [[cTnI]] levels
:*[[cTnT]] and [[cTnI]] levels
**The association of elevated [[CK-MB]] and [[BNP]]
:*The association of elevated [[CK-MB]] and [[BNP]]


===Electrocardiogram===
===Electrocardiogram===
*There is no specific electrocardiographic finding for [[cardiogenic shock]] in [[COVID-19 patients]].  
*There is no specific electrocardiographic finding for [[cardiogenic shock]] in [[COVID-19 patients]].
**The [[ECG]] can help to find previous cardiac abnormalities and triggering factors, such as [[acute myocardial infarction]], and [[arrhythmias]], which could lead to [[cardiogenic shock]] <ref>{{cite book | last = Tse | first = FirstName | title = Oxford Desk Reference : Cardiology | publisher = OUP Oxford | location = Oxford | year = 2011 | isbn = 978-0-19-956809-3 }} </ref>
*The [[ECG]] can help to find previous cardiac abnormalities and triggering factors, such as [[acute myocardial infarction]], and [[arrhythmias]], which could lead to [[cardiogenic shock]] <ref>{{cite book | last = Tse | first = FirstName | title = Oxford Desk Reference : Cardiology | publisher = OUP Oxford | location = Oxford | year = 2011 | isbn = 978-0-19-956809-3 }} </ref>


=== X-ray ===


===X-ray===
*In a patient with [[COVID-19]]-associated [[cardiogenic shock]], [[CXR]] could manifest coexisting acute respiratory illness and also cardiogenic [[pulmonary edema]]. Observing some findings, such as [[cardiomegaly]] and increased vascular markings, can suggest preexisting [[heart failure]]. <ref name="DrigginMadhavan2020">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>
*In a patient with [[COVID-19]]-associated [[cardiogenic shock]], [[CXR]] could manifest coexisting acute respiratory illness and also cardiogenic [[pulmonary edema]]. Observing some findings, such as [[cardiomegaly]] and increased vascular markings, can suggest preexisting [[heart failure]]. <ref name="DrigginMadhavan2020">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>


Line 138: Line 137:
===CT scan===
===CT scan===
*Generally, the [[CT scan]] is  not suggested being a primary imaging study, for evaluating a case with [[cardiogenic shock]] related to [[COVID-19]]. However, it can be suggestive of a coexisting [[ARDS]] by demonstrating a ground-glass opacity.<ref name="DrigginMadhavan2020">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>
*Generally, the [[CT scan]] is  not suggested being a primary imaging study, for evaluating a case with [[cardiogenic shock]] related to [[COVID-19]]. However, it can be suggestive of a coexisting [[ARDS]] by demonstrating a ground-glass opacity.<ref name="DrigginMadhavan2020">{{cite journal|last1=Driggin|first1=Elissa|last2=Madhavan|first2=Mahesh V.|last3=Bikdeli|first3=Behnood|last4=Chuich|first4=Taylor|last5=Laracy|first5=Justin|last6=Biondi-Zoccai|first6=Giuseppe|last7=Brown|first7=Tyler S.|last8=Der Nigoghossian|first8=Caroline|last9=Zidar|first9=David A.|last10=Haythe|first10=Jennifer|last11=Brodie|first11=Daniel|last12=Beckman|first12=Joshua A.|last13=Kirtane|first13=Ajay J.|last14=Stone|first14=Gregg W.|last15=Krumholz|first15=Harlan M.|last16=Parikh|first16=Sahil A.|title=Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic|journal=Journal of the American College of Cardiology|volume=75|issue=18|year=2020|pages=2352–2371|issn=07351097|doi=10.1016/j.jacc.2020.03.031}}</ref>
**To view the CT scan findings on COVID-19, [[COVID-19 CT scan|click here]].
*To view the CT scan findings on COVID-19, [[COVID-19 CT scan|click here]].


===MRI===
===MRI===
*Routinely, in patients with [[COVID-19]]-associated [[cardiogenic shock]], Cardiac [[MRI]] for the assessment of preexisting disorders such as [[myocarditis]] should not be done.<ref name="pmid32601020">{{cite journal| author=Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P| title=SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. | journal=Heart Lung Circ | year= 2020 | volume=  | issue=  | pages=  | pmid=32601020 | doi=10.1016/j.hlc.2020.05.101 | pmc=7274628 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32601020  }} </ref>  
*Routinely, in patients with [[COVID-19]]-associated [[cardiogenic shock]], Cardiac [[MRI]] for the assessment of preexisting disorders such as [[myocarditis]] should not be done.<ref name="pmid32601020">{{cite journal| author=Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P| title=SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. | journal=Heart Lung Circ | year= 2020 | volume=  | issue=  | pages=  | pmid=32601020 | doi=10.1016/j.hlc.2020.05.101 | pmc=7274628 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32601020  }} </ref>
* To view the MRI findings on COVID-19, [[COVID-19 MRI|click here]].<br />
* To view the MRI findings on COVID-19, [[COVID-19 MRI|click here]].<br />


Line 152: Line 151:
== Treatment ==
== Treatment ==


===[[Cardiogenic shock medical therapy]]:===
===Cardiogenic shock medical therapy:===


:*[[Fluid resuscitation]] (crystalloid IV fluids are more efficient than colloid solutions)
* [[Fluid resuscitation]] (crystalloid IV fluids are more efficient than colloid solutions)
:*Administration of [[vasopressors]] and [[inotropes]] to stabilize [[shock]]
* Administration of [[vasopressors]] and [[inotropes]] to stabilize [[shock]]
:*Assess other types of [[shock]] and mixed etiologies of [[shock]] if hemodynamics not refining, specifically, in patients with a previous [[cardiac abnormality]] <ref name="pmid32601020">{{cite journal| author=Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P| title=SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. | journal=Heart Lung Circ | year= 2020 | volume=  | issue=  | pages=  | pmid=32601020 | doi=10.1016/j.hlc.2020.05.101 | pmc=7274628 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32601020  }} </ref>
* Assess other types of [[shock]] and mixed etiologies of [[shock]] if hemodynamics not refining, specifically, in patients with a previous [[cardiac abnormality]] <ref name="pmid32601020">{{cite journal| author=Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P| title=SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart. | journal=Heart Lung Circ | year= 2020 | volume=  | issue=  | pages=  | pmid=32601020 | doi=10.1016/j.hlc.2020.05.101 | pmc=7274628 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32601020  }} </ref>


===Mechanical Support:===
===Mechanical Support:===


*In treating patients with [[cardiogenic shock]] related to [[COVID-19]], the efficacy of [[extracorporeal membrane oxygenation]] ([[ECMO]]) is indistinct. It might be used in most critically ill and highly selective patients. Although specialists utilizing [[ECMO]] and mechanical circulatory support devices, most of the cases have [[cardiogenic shock]] related to [[COVID-19]] die, since it has been reported in a case series from China  that most of these patients had a poor prognosis and did not survive despite implicating [[ECMO]]. <ref name="MacLarenFisher2020">{{cite journal|last1=MacLaren|first1=Graeme|last2=Fisher|first2=Dale|last3=Brodie|first3=Daniel|title=Preparing for the Most Critically Ill Patients With COVID-19|journal=JAMA|volume=323|issue=13|year=2020|pages=1245|issn=0098-7484|doi=10.1001/jama.2020.2342}}</ref> <ref name="pmid32105632">{{cite journal| author=Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H | display-authors=etal| title=Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. | journal=Lancet Respir Med | year= 2020 | volume= 8 | issue= 5 | pages= 475-481 | pmid=32105632 | doi=10.1016/S2213-2600(20)30079-5 | pmc=7102538 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32105632  }} </ref>
*In treating patients with [[cardiogenic shock]] related to [[COVID-19]], the efficacy of [[extracorporeal membrane oxygenation]] ([[ECMO]]) is indistinct.  
*It might be used in most critically ill and highly selective patients. Although specialists utilizing [[ECMO]] and mechanical circulatory support devices, most of the cases have [[cardiogenic shock]] related to [[COVID-19]] die, since it has been reported in a case series from China  that most of these patients had a poor prognosis and did not survive despite implicating [[ECMO]]. <ref name="MacLarenFisher2020">{{cite journal|last1=MacLaren|first1=Graeme|last2=Fisher|first2=Dale|last3=Brodie|first3=Daniel|title=Preparing for the Most Critically Ill Patients With COVID-19|journal=JAMA|volume=323|issue=13|year=2020|pages=1245|issn=0098-7484|doi=10.1001/jama.2020.2342}}</ref> <ref name="pmid32105632">{{cite journal| author=Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H | display-authors=etal| title=Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. | journal=Lancet Respir Med | year= 2020 | volume= 8 | issue= 5 | pages= 475-481 | pmid=32105632 | doi=10.1016/S2213-2600(20)30079-5 | pmc=7102538 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=32105632  }} </ref>


===Surgery===
===Surgery===

Revision as of 23:03, 15 July 2020

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19-associated cardiogenic shock On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19-associated cardiogenic shock

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19-associated cardiogenic shock

CDC on COVID-19-associated cardiogenic shock

COVID-19-associated cardiogenic shock in the news

Blogs on COVID-19-associated cardiogenic shock

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19-associated cardiogenic shock

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: : Alieh Behjat, M.D.[2]

Synonyms and keywords:: Novel coronavirus, COVID-19, Wuhan coronavirus, coronavirus disease-19, coronavirus disease 2019, SARS-CoV-2, COVID-19, 2019-nCoV, 2019 novel coronavirus, cardiovascular finding in COVID-19, cardiogenic shock, COVID-19 associated cardiogenic shock

Overview

In Italy, for the first time in a 69-year-old patient, who was presented with cardiogenic shock due to COVID-19 infection myocardial involvement by viral particles was pathologically proved through biopsy. Two mechanisms are more probable to contribute to cardiogenic shock related to Covid-19 that includes direct invasion and cytokine storm. According to a recent study, one-third of critically ill patients with COVID-19 of an ICU in Washington State had clinical signs of cardiogenic shock and cardiomyopathy. According to an observational study in China, COVID-19 associated cardiogenic shock has a poor prognosis.

Historical Perspective

  • In December 2019, a novel coronavirus named SARS-CoV-2 resulted in Coronavirus disease 2019, which caused respiratory disease outbreak identified firstly in Wuhan, China.[1][2]
  • On March 12, 2020, the WHO declared coronavirus disease 2019(COVID-19) outbreak to be a pandemic.[3]
  • In Italy, for the first time in a 69-year-old patient, who was presented with cardiogenic shock due to COVID-19 infection, myocardial involvement by viral particles was pathologically proved through biopsy. [4]
  • To view the historical perspective of COVID-19, click here.

Classification

Pathophysiology

Two mechanisms are more probable to contribute to cardiogenic shock related to Covid-19:[5] [6]

Causes

The causes of cardiogenic shock related to COVID-19 might include: [7] [8]

Differentiating COVID-19 associated cardiogenic shock from other Diseases

Cardiac Output Pulmonary Capillary Wedge Pressure Systemic Vascular Resistance Pulmonary artery diastolic pressure SVO2
Septic shock
Hypovolemic shock
Cardiogenic shock ↑↔

Epidemiology and Demographics

Age

Gender

Race

Risk Factors

There are no established risk factors for COVID-19-associated cardiogenic shock. To view risk factors for the severe form of COVID-19 disease, click here. Moreover, in order to read more on the risk factors of cardiogenic shock, generally, click here.

Screening

There is insufficient evidence to recommend routine screening for COVID-19-associated cardiogenic shock.

Complications and Prognosis

According to an observational study in China, COVID-19 associated cardiogenic shock has a poor prognosis. In spite of using Extracorporeal membrane oxygenation (ECMO), 83% of patients died. [14] [15]

Diagnosis

Diagnostic Study of Choice

The diagnosis of cardiogenic shock related to COVID-19 is made when Systolic Blood Pressure is lower than 90 mmHg for more than 15 minutes with impaired organ perfusion while Urine output is less than 30 m/hr in a patient with COVID-19 disease.[15] To view cardiogenic shock diagnostic criteria, click here.

History and Symptoms:

The history of patients presented cardiogenic shock related to COVID-19, according to a few anecdotal reports were different. Some did not have any cardiovascular risk factors.

A 69-year-old patient from Italy has been reported by Tavazzi et al., as a cardiogenic shock-associated COVID-19 case. The patient had flu-like symptoms when he was hospitalized and quickly deteriorated into respiratory distress and cardiogenic shock. [4]

Four patients with cardiogenic shock complication related to COVID-19 were reported by Sanchez-Recalde, et al. They were hospitalized between 1 March and 15 April 2020 including:[13]

Physical Examination

Laboratory Findings

  • The increase of some biomarkers demonstrates poor prognosis, increased mortality, and more severe symptoms in COVID-19 patients:[18]

Electrocardiogram

X-ray

Echocardiography or Ultrasound

CT scan

  • Generally, the CT scan is not suggested being a primary imaging study, for evaluating a case with cardiogenic shock related to COVID-19. However, it can be suggestive of a coexisting ARDS by demonstrating a ground-glass opacity.[20]
  • To view the CT scan findings on COVID-19, click here.

MRI

Other Imaging Findings

  • To view other imaging findings on COVID-19, click here.

Other Diagnostic Studies

  • To view other diagnostic studies for COVID-19, click here.

Treatment

Cardiogenic shock medical therapy:

Mechanical Support:

Surgery

Primary Prevention

Secondary Prevention

  • There are no established measures for the secondary prevention of COVID-19-associated myocarditis.
  • For secondary preventive measures of [COVID-19], click here.

References

  1. https://www.cdc.gov/coronavirus/2019-ncov/about/index.html. Missing or empty |title= (help)
  2. Lu, Jian; Cui, Jie; Qian, Zhaohui; Wang, Yirong; Zhang, Hong; Duan, Yuange; Wu, Xinkai; Yao, Xinmin; Song, Yuhe; Li, Xiang; Wu, Changcheng; Tang, Xiaolu (2020). "On the origin and continuing evolution of SARS-CoV-2". National Science Review. doi:10.1093/nsr/nwaa036. ISSN 2095-5138.
  3. "Coronavirus (COVID-19) events as they happen".
  4. 4.0 4.1 4.2 Tavazzi, Guido; Pellegrini, Carlo; Maurelli, Marco; Belliato, Mirko; Sciutti, Fabio; Bottazzi, Andrea; Sepe, Paola Alessandra; Resasco, Tullia; Camporotondo, Rita; Bruno, Raffaele; Baldanti, Fausto; Paolucci, Stefania; Pelenghi, Stefano; Iotti, Giorgio Antonio; Mojoli, Francesco; Arbustini, Eloisa (2020). "Myocardial localization of coronavirus in COVID‐19 cardiogenic shock". European Journal of Heart Failure. 22 (5): 911–915. doi:10.1002/ejhf.1828. ISSN 1388-9842.
  5. Siddiqi, Hasan K.; Mehra, Mandeep R. (2020). "COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal". The Journal of Heart and Lung Transplantation. 39 (5): 405–407. doi:10.1016/j.healun.2020.03.012. ISSN 1053-2498.
  6. Ye, Qing; Wang, Bili; Mao, Jianhua (2020). "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19". Journal of Infection. 80 (6): 607–613. doi:10.1016/j.jinf.2020.03.037. ISSN 0163-4453.
  7. Mahajan, Kunal; Chandra, K.Sarat (2020). "Cardiovascular comorbidities and complications associated with coronavirus disease 2019". Medical Journal Armed Forces India. doi:10.1016/j.mjafi.2020.05.004. ISSN 0377-1237.
  8. Belhadjer, Zahra; Méot, Mathilde; Bajolle, Fanny; Khraiche, Diala; Legendre, Antoine; Abakka, Samya; Auriau, Johanne; Grimaud, Marion; Oualha, Mehdi; Beghetti, Maurice; Wacker, Julie; Ovaert, Caroline; Hascoet, Sebastien; Selegny, Maëlle; Malekzadeh-Milani, Sophie; Maltret, Alice; Bosser, Gilles; Giroux, Nathan; Bonnemains, Laurent; Bordet, Jeanne; Di Filippo, Sylvie; Mauran, Pierre; Falcon-Eicher, Sylvie; Thambo, Jean-Benoît; Lefort, Bruno; Moceri, Pamela; Houyel, Lucile; Renolleau, Sylvain; Bonnet, Damien (2020). "Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic". Circulation. doi:10.1161/CIRCULATIONAHA.120.048360. ISSN 0009-7322.
  9. Boukhris, Marouane; Hillani, Ali; Moroni, Francesco; Annabi, Mohamed Salah; Addad, Faouzi; Ribeiro, Marcelo Harada; Mansour, Samer; Zhao, Xiaohui; Ybarra, Luiz Fernando; Abbate, Antonio; Vilca, Luz Maria; Azzalini, Lorenzo (2020). "Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective". Canadian Journal of Cardiology. doi:10.1016/j.cjca.2020.05.018. ISSN 0828-282X.
  10. Rajagopal, Keshava; Keller, Steven P.; Akkanti, Bindu; Bime, Christian; Loyalka, Pranav; Cheema, Faisal H.; Zwischenberger, Joseph B.; El Banayosy, Aly; Pappalardo, Federico; Slaughter, Mark S.; Slepian, Marvin J. (2020). "Advanced Pulmonary and Cardiac Support of COVID-19 Patients". Circulation: Heart Failure. 13 (5). doi:10.1161/CIRCHEARTFAILURE.120.007175. ISSN 1941-3289.
  11. Jameson, J (2018). Harrison's principles of internal medicine. New York: McGraw-Hill Education. ISBN 1259644030.
  12. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M; et al. (2020). "Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State". JAMA. doi:10.1001/jama.2020.4326. PMC 7082763 Check |pmc= value (help). PMID 32191259 Check |pmid= value (help).
  13. 13.0 13.1 Sánchez-Recalde, Ángel; Solano-López, Jorge; Miguelena-Hycka, Javier; Martín-Pinacho, Jesús Javier; Sanmartín, Marcelo; Zamorano, José L. (2020). "COVID-19 and cardiogenic shock. Different cardiovascular presentations with high mortality". Revista Española de Cardiología (English Edition). doi:10.1016/j.rec.2020.04.012. ISSN 1885-5857.
  14. 14.0 14.1 Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H; et al. (2020). "Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study". Lancet Respir Med. 8 (5): 475–481. doi:10.1016/S2213-2600(20)30079-5. PMC 7102538 Check |pmc= value (help). PMID 32105632 Check |pmid= value (help).
  15. 15.0 15.1 Dhakal, Bishnu P.; Sweitzer, Nancy K.; Indik, Julia H.; Acharya, Deepak; William, Preethi (2020). "SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart". Heart, Lung and Circulation. doi:10.1016/j.hlc.2020.05.101. ISSN 1443-9506.
  16. Tse, FirstName (2011). Oxford Desk Reference : Cardiology. Oxford: OUP Oxford. ISBN 978-0-19-956809-3.
  17. 17.0 17.1 Lal, Sean; Hayward, Christopher S.; De Pasquale, Carmine; Kaye, David; Javorsky, George; Bergin, Peter; Atherton, John J.; Ilton, Marcus K.; Weintraub, Robert G.; Nair, Priya; Rudas, Mate; Dembo, Lawrence; Doughty, Robert N.; Kumarasinghe, Gayathri; Juergens, Craig; Bannon, Paul G.; Bart, Nicole K.; Chow, Clara K.; Lattimore, Jo-Dee; Kritharides, Leonard; Totaro, Richard; Macdonald, Peter S. (2020). "COVID-19 and Acute Heart Failure: Screening the Critically Ill – A Position Statement of the Cardiac Society of Australia and New Zealand (CSANZ)". Heart, Lung and Circulation. doi:10.1016/j.hlc.2020.04.005. ISSN 1443-9506.
  18. Aboughdir, Maryam; Kirwin, Thomas; Abdul Khader, Ashiq; Wang, Brian (2020). "Prognostic Value of Cardiovascular Biomarkers in COVID-19: A Review". Viruses. 12 (5): 527. doi:10.3390/v12050527. ISSN 1999-4915.
  19. Tse, FirstName (2011). Oxford Desk Reference : Cardiology. Oxford: OUP Oxford. ISBN 978-0-19-956809-3.
  20. 20.0 20.1 Driggin, Elissa; Madhavan, Mahesh V.; Bikdeli, Behnood; Chuich, Taylor; Laracy, Justin; Biondi-Zoccai, Giuseppe; Brown, Tyler S.; Der Nigoghossian, Caroline; Zidar, David A.; Haythe, Jennifer; Brodie, Daniel; Beckman, Joshua A.; Kirtane, Ajay J.; Stone, Gregg W.; Krumholz, Harlan M.; Parikh, Sahil A. (2020). "Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic". Journal of the American College of Cardiology. 75 (18): 2352–2371. doi:10.1016/j.jacc.2020.03.031. ISSN 0735-1097.
  21. 21.0 21.1 Dhakal BP, Sweitzer NK, Indik JH, Acharya D, William P (2020). "SARS-CoV-2 Infection and Cardiovascular Disease: COVID-19 Heart". Heart Lung Circ. doi:10.1016/j.hlc.2020.05.101. PMC 7274628 Check |pmc= value (help). PMID 32601020 Check |pmid= value (help).
  22. MacLaren, Graeme; Fisher, Dale; Brodie, Daniel (2020). "Preparing for the Most Critically Ill Patients With COVID-19". JAMA. 323 (13): 1245. doi:10.1001/jama.2020.2342. ISSN 0098-7484.

Template:WS Template:WH