Artificial heart valve

Jump to: navigation, search
Artificial heart valve
Mitral Valve Prosthesis with Perivalvular Leak 1.jpg
Mitral Valve Prosthesis with Perivalvular Leak: Gross, natural color, close-up of valve with arrow to site of leakage, probably infected caged ball prosthesis.
Image courtesy of Professor Peter Anderson DVM PhD and published with permission © PEIR, University of Alabama at Birmingham, Department of Pathology

WikiDoc Resources for Artificial heart valve

Articles

Most recent articles on Artificial heart valve

Most cited articles on Artificial heart valve

Review articles on Artificial heart valve

Articles on Artificial heart valve in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Artificial heart valve

Images of Artificial heart valve

Photos of Artificial heart valve

Podcasts & MP3s on Artificial heart valve

Videos on Artificial heart valve

Evidence Based Medicine

Cochrane Collaboration on Artificial heart valve

Bandolier on Artificial heart valve

TRIP on Artificial heart valve

Clinical Trials

Ongoing Trials on Artificial heart valve at Clinical Trials.gov

Trial results on Artificial heart valve

Clinical Trials on Artificial heart valve at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Artificial heart valve

NICE Guidance on Artificial heart valve

NHS PRODIGY Guidance

FDA on Artificial heart valve

CDC on Artificial heart valve

Books

Books on Artificial heart valve

News

Artificial heart valve in the news

Be alerted to news on Artificial heart valve

News trends on Artificial heart valve

Commentary

Blogs on Artificial heart valve

Definitions

Definitions of Artificial heart valve

Patient Resources / Community

Patient resources on Artificial heart valve

Discussion groups on Artificial heart valve

Patient Handouts on Artificial heart valve

Directions to Hospitals Treating Artificial heart valve

Risk calculators and risk factors for Artificial heart valve

Healthcare Provider Resources

Symptoms of Artificial heart valve

Causes & Risk Factors for Artificial heart valve

Diagnostic studies for Artificial heart valve

Treatment of Artificial heart valve

Continuing Medical Education (CME)

CME Programs on Artificial heart valve

International

Artificial heart valve en Espanol

Artificial heart valve en Francais

Business

Artificial heart valve in the Marketplace

Patents on Artificial heart valve

Experimental / Informatics

List of terms related to Artificial heart valve

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Dima Nimri, M.D. [2]; Arzu Kalayci, M.D. [3]

Overview

An artificial heart valve is a device which is implanted in the heart of patients who suffer from valvular diseases in their heart. When one or two of the four heart valves of the heart have a malfunction, the choice is normally to replace the natural valve with an artificial valve. This requires open-heart surgery.

Valves are integral to the normal physiological functioning of the human heart. Natural heart valves are structures which have evolved a form which meets their functional requirements, which is to induce largely unidirectional flow through themselves. Natural heart valves may become dysfunctional due to a variety of pathological causes. Certain heart valve pathologies may necessitate the complete surgical replacement of the natural heart valves with heart valve prostheses.

Types of heart valve prostheses

There are two main types of artificial heart valves: the mechanical and the biological valves.

Mechanical valves

A mechanical artificial heart valve with a pivoting disc.

Mechanical heart valves are prosthetics designed to replicate the function of the natural valves of the human heart. The human heart contains four valves: tricuspid valve, pulmonic valve, mitral valve and aortic valve. Their main purpose is to maintain unimpeded forward flow through the heart and from the heart into the major blood vessels connected to the heart, the pulmonary artery and the aorta. As a result of a number of disease processes, both acquired and congenital, any one of the four heart valves may malfunction and result in either stenosis (impeded forward flow) and/or backward flow (regurgitation). Either process burdens the heart and may lead to serious problems including heart failure. A mechanical heart valve is intended to replace a diseased heart valve with its prosthetic equivalent.

There are two basic types of valves that can be used for aortic valve replacement, mechanical and tissue valves. Modern mechanical valves can last indefinitely (the equivalent of over 50,000 years in an accelerated valve wear tester). However, current mechanical heart valves all require lifelong treatment with a blood thinner, e.g. warfarin, which requires monthly blood tests to monitor. This process of thinning the blood is called anticoagulation. Tissue heart valves, in contrast, do not require the use of anticoagulant drugs due to the improved blood flow dynamics resulting in less red cell damage and hence less clot formation. Their main weakness however, is their limited lifespan. Traditional tissue valves, made of pig heart valves, will last on average 15 years before they require replacement. (Studies as of November 2006 suggest that they may last longer in recipients under 50, refuting previous understanding)

Types of MHV's

There are three major types of mechanical valves - caged-ball, tilting-disk and bileaflet - with many modifications on these designs.

The first artificial heart valve was the caged-ball, which utilizes a metal cage to house a metal ball. When blood pressure in the chamber of the heart exceeds that of the pressure on the outside of the chamber the ball is pushed against the cage and allows blood to flow. At the completion of the heart's contraction, the pressure inside the chamber drops and is lower than beyond the valve, so the ball moves back against the base of the valve forming a seal. In 1952, Dr. Charles Hufnagel implanted caged-ball heart valves in ten patients (six survived the operation), marking the first long-term success in prosthetic heart valves. A similar valve was invented by Miles "Lowell" Edwards and Albert Starr in 1960 (commonly referred to as the Starr-Edwards Silastic Ball Valve). The first human implant was on Sept 21, 1960. It consisted of a silicone ball enclosed in a cage formed by wires originating from the valve housing. Caged ball valves have a high tendency to forming blood clots, so the patient must have a high degree of anti-coagulation, usually with a target INR of 2.5-3.5. Edwards Lifesciences discontinued production of the Starr-Edwards valve in 2007.

Soon after came tilting-disc valves, which have a single circular occluder controlled by a metal strut. They are made of a metal ring covered by a tissue, into which the suture threads are stitched in order to hold the valve in place. The metal ring holds, by means of two metal supports, a disc which opens and closes as the heart pumps blood through the valve. The disc is usually made of an extremely hard carbon material (pyrolytic carbon), in order to allow the valve to function for years without wearing out. The Medtronic-Hall model is the most common tilting-disc design in the US. In some models of mechanical valves, the disc is divided into two parts, which open and close as a door.

St. Jude Medical is the leader in bileaflet valves, which consist of two semicircular leaflets that rotate about struts attached to the valve housing. This design was introduced in 1979 and while they take care of some of the issues that were seen in the other models, bileaflets are vulnerable to backflow and so it cannot be considered as ideal. Bileaflet valves do, however, provide much more natural blood flow than caged-ball or tilting-disc implants. One of the main advantages of these valves is that they are well tolerated by the body. Only a small amount of blood thinner is needed to be taken by the patient each day in order to prevent clotting of the blood when flowing through the valve.

These bileaflet valves have the advantage that they have a greater effective opening area (2.4-3.2 square cm c.f. 1.5-2.1 for the single-leaflet valves). Also, they are the least thrombogenic of the artificial valves.

Mechanical heart valves are today very reliable and allow the patient to live a normal life. Most mechanical valves last for at least 20 to 30 years.

Durability

Mechanical heart valves are considered to be extremely durable in comparison to their bioprosthetic counterparts. The struts and occluders are made out of either pyrolytic carbon or titanium coated with pyrolytic carbon, and the sewing ring cuff is Teflon, polyester or dacron. The major load arises from transvalvular pressure generated at and after valve closure, and in cases where structural failure does happen, it is usually as a result of occluder impact on the components.

Impact wear and friction wear dictate the loss of material in MHV’s. Impact wear usually occurs in the hinge regions of bileaflets, between the occluder and ring in tilting-discs, and between the ball and cage in caged-ball valves. Friction wear occurs between the occluder and strut in tilting-discs, and between the leaflet pivots and hinge cavities in bileaflets.

MHV’s made out of metal are also susceptible to fatigue failure owing to the polycrystalline characteristic of metals, but this is not an issue with pyrolytic carbon MHV’s because this material is not crystalline in nature.

Cavitation should also be considered when studying degradation of MHV’s.

Fluid mechanics

Many of the complications associated with MHV’s can be explained through fluid mechanics. For example, thrombus formation is a debilitating side effect of high shear stresses created by the design of the valves. An ideal heart valve from an engineering perspective would produce minimal pressure drops, have small regurgitation volumes, minimize turbulence, reduce prevalence of high stresses, and not create flow separations in the vicinity of the valve.

One measure of the quality of a valve is the effective orifice area (EOA), which can be calculated as follows:

where is the root mean square systolic/diastolic flow rate (cm³/s) and is the mean systolic/diastolic pressure drop (mmHg). This is a measure of how much the prosthesis impedes blood flow through the valve. A higher EOA corresponds to a smaller energy loss. The performance index (PI) normalizes the EOA by valve size and is a size-independent measure of the valve’s resistance characteristics. Bileaflet valves typically have higher PI’s than tilted-disc models, which in turn have higher PI’s than caged-ball models.

As blood flows through a prosthetic heart valve, a sudden pressure drop occurs across the valve due to the reduction in cross-sectional area within the valve housing. This can be quantified through the continuity equation and Bernoulli’s equation:

where A represents the cross-sectional area, P is pressure, is density, and V is the velocity. As cross-sectional area decreases in the valve, velocity increases and pressure drops as a result. This effect is more dramatic in caged-ball valves than in tilting-disc and bileaflet valves. A larger systolic pressure is required to drive flow forward in order to compensate for a large pressure drop, so it should be minimized.

Regurgitation is the sum of retrograde flow during the closing motion of the valve and leakage flow after closure. It is directly proportional to valve size and is also dependent on valve type. Typically, caged-ball valves have a low amount of regurgitation as there is very little leakage. Tilting-disc and bileaflet valves are comparable, with the bileaflet valves have a slightly larger regurgitation volume. Bioprosthetics prevail over MHV’s in this case, as they have virtually no regurgitation volume.

Turbulence and high shear stresses are also major issues with MHV’s, as they can fracture the valve housing or components, or induce blood damage. A large flow gradient can lead to these factors, so flow separation and stagnation should be as small as possible. High stresses are created at the edges of the annular jet in caged-ball valves, in narrow regions at the edges of the major orifice jet in tilting-disc valves, and in regions immediately distal to the valve leaflets in bileaflet valves. The implications of blood damage from these stresses are discussed in the next section.

The cavitation phenomenon can also be described using fluid mechanics. This can result from pressure oscillations, flow deceleration, tip cortices, streamline contraction, and squeeze jets [4]. This last cause is the most contributive factor to cavitation. The squeeze jets are formed when the valve is closing and the blood between the occluder and valve housing is “squeezed” out to create a high-speed jet. This in turn creates intense vortices with very low pressures that can lead to cavitation.

Blood damage

One of the major drawbacks of mechanical heart valves is that patients with these implants require consistent anti-coagulation therapy. Clots formed by red blood cell (RBC) and platelet damage can block up blood vessels and lead to very serious consequences. Clotting occurs in one of three basic pathways: tissue factor exposure, platelet activation, or contact activation by foreign materials, and in three steps: initiation, amplification, and propagation.

In the tissue factor exposure path, initiation begins when cells are ruptured and expose tissue factor (TF). Plasma Factor (f) VII binds to TF and sets off a chain reaction which activates fXa and fVa which bind to each other to produce thrombin which in turn activates platelets and fVIII. The platelets activate by binding to the damaged tissue in the initiation phase, and fibrin stabilizes the clot during the propagation phase.

The platelet activation pathway is triggered when stresses reach a level above 6 to 8 Pa (60–80 dyn/cm²). The steps involved with this are less clearly understood, but initiation begins with the binding of vWF from the plasma to GPIb on the platelet. This is followed by a large influx of Ca2+ ions, which activates the platelets. GPIIb-IIIa facilitates platelet-platelet adhesion during amplification. The propagation step is still under study.

Contact activation begins when fXII binds to a negatively charged surface. This in turn activates prekallikrein (PK) and high-molecular-weight kininogen (HK). Eventually, HKa-PK and HKa-fXI complexes form on the surface. In amplification, Hka-FXIa complexes activate fIX to fIXa, which in turn forms thrombin and platelets. Proteins buildup on the surface and facilitate platelet adhesion and tissue growth in the propagation stage.

All MHV models are vulnerable to thrombus formation due to high shear stress, stagnation, and flow separation. The caged-ball designs experience high stresses at the walls that can damage cells, as well as flow separation due to high-velocity reverse flow surrounded by stagnant flow. Tilting-disc valves have flow separation behind the valve struts and disc as a result of a combination of high velocity and stagnant flows. The bileaflet models have high stresses during forward and leakage flows as well as adjacent stagnant flow in the hinge area. As it turns out, the hinge area is the most critical part of bileaflets and is where the thrombus formation is usually prevalent.

In general, blood damage affects valves in both the mitral and aortic positions. High stresses during leakage flow in aortal valves result from higher transvalvular pressures, and high stresses occur during forward flow for mitral valves. Valvular thrombosis is most common in mitral prosthetics. The caged-ball model is better than the other two models in terms of controlling this problem, because it is at a lower risk for thrombosis and it is gradual when it does happen. The bileaflet is more adaptable to this problem than the tilting-disc model because if one leaflet stops working, the other can still function. However, if the hinge is blocked, both leaflets will stop functioning.

Because all models experience high stresses, patients with mechanical heart valve implants require anti-coagulation therapy. Bioprosthetics are less prone to develop blood clotting, but the trade-off concerning durability generally favors their use in patients older than age 55.

Mechanical heart valves can also cause hemolytic anemia with hemolysis of the red blood cells as they pass through the valve.

Contraindicated medications

Mechanical prosthetic heart valve is considered an absolute contraindication to the use of the following medications:

Biological valves

Biological valves are valves of animals, like pigs, which undergo several chemical procedures in order to make them suitable for implantation in the human heart. The porcine (or pig) heart is most similar to the human heart, and therefore represents the best anatomical fit for replacement. Implantation of a porcine valve is a type of Xenotransplantation, or Xenograft, which means a transplant from one species (in this case a pig) to another. There are some risks associated with a Xenograft such as the human body's tendency to reject foreign material. Medication can be used to retard this effect, but is not always successful.

Another type of biological valve utilizes biological tissue to make leaflets that are sewn into a metal frame. This tissue is typically harvested from the Pericardial Sac of either Bovine (cows) or Equine (horses). The pericardial sac is particularly well suited for a valve leaflet due to its extremely durable physical properties. This type of biological valve is extremely effective means of valve replacement. The tissue is sterilized so that the biological markers are removed, eliminating a response from the host's immune system. The leaflets are flexible and durable and do not require the patient to take blood thinners for the rest of their life.

The most used heart valves in the US and EU are those utilizing tissue leaflets. Mechanical valves are more commonly used in Asia and Latin America. The following companies manufacture tissue heart valves: Edwards Lifesciences, Medtronic, St. Jude Medical, Sorin, ATS, 3F, and CryoLife.

Functional requirements of heart valve prostheses

The functioning of natural heart valves is characterised by many advantages:

  • Minimal regurgitation - This means that the amount of blood lost upstream as the valve closes is small. For example, closure regurgitation through the mitral valve would result in some blood loss from the left ventricle to the left atrium as the mitral valve closes. Some degree of valvular regurgitation is inevitable and natural (Fixme: Give indicative value). However, several heart valve pathologies (e.g. rheumatic endocarditis) may lead to clinically significant valvular regurgitation. A desirable characteristic of heart valve prostheses is that regurgitation is minimal over the full range of physiological heart function (i.e. complete functional envelope of cardiac output vs. heart rate).
  • Minimal transvalvular pressure gradient - Whenever a fluid flows through a restriction, such as a valve, a pressure gradient arises over the restriction. This pressure gradient is a result of the increased resistance to flow through the restriction. Natural heart valves have a low transvalvular pressure gradient as they present little obstruction to the flow through themselves (Fixme: Give indicative value). A desirable characteristic of heart valve prostheses is that their transvalvular pressure gradient is as small as possible.
  • Non-thrombogenic - As natural heart valves are lined with an endothelium continuous with the endothelium lining the heart chambers they are not normally thrombogenic. This is important as should thrombus form on the heart valve leaflets and become seeded with bacteria, so called "bacterial vegetations" will form. Such vegetations are difficult for the body to deal with as the normal physiological defense mechanisms are not present within the valve leaflets because they are avascular and largely composed of connective tissue (Fixme: Create article discussing the pathgonesis of leaflet bacterial vegetations.). Should bacterial vegetations form on the valve leafets they may continually seed bacteria into the arterial tree which may lead to bacteremia or septicaemia. Portions of the vegetation may also break off forming septic emboli. Septic emboli can lodge anywhere in the arterial tree (e.g. brain, bowel, lungs) causing local infectious foci. Even dislodged fragments from non-infectious vegetations (Fixme: Is this the correct terminology?) can be hazardous as they can lodge in, and block, downstream arteries (e.g. coronary arteries leading to myocardial infarction, cerebral arteries leading to stroke). A desirable characteristic of heart valve prostheses is that they are non or minimally thrombogenic.
  • Self-repairing - Although of limited extent compared to well vascularised tissue (e.g. muscle), the valve leaflets do retain some capacity for repair due to the presence of regenerative cells (e.g. fibroblasts) in the connective tissue from which the leaflets are composed. As the human heart beats approximately 3.4x109 times during a typical human lifespan this limited but nevertheless present repair capacity is critically important. No heart valve prostheses can currently self-repair but replacement tissues grown using stem cell technology may eventually offer such capabilities. (State that they wear).
  • Rapid dynamic response - STD

Design challenges of heart valve prostheses

  • Thrombogenesis / haemocompatibility
    • Mechanisms:
      • Forward and backward flow shear
      • Static leakage shear
      • Presence of foreign material (i.e. intrinsic coagulation cascade)
      • Cellular maceration
  • Valve-tissue interaction
  • Wear
  • Blockage
  • Getting stuck
  • Dynamic responsiveness
  • Failure safety
  • Valve orifice to anatomical orifice ratio
  • Trans-valvular pressure gradient
  • Minimal leakages

Typical configuration of a heart valve prosthesis

  • Anchor
  • Leaflets

MHV manufacturers

Companies that manufacture MHVs include:

2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease (VHD)

Recommendations for Intervention of Prosthetic Valves

COR LOE RECOMMENDATION COMMENT/RATIONALE
I C-LD The choice of type of prosthetic heart valve should be a shared decision-making process that accounts for the patient’s values and preferences and includes discussion of the indications for and risks of anticoagulant therapy and the potential need for and risk associated with reintervention. MODIFIED: LOE updated from C to C-LD. In choosing the type of prosthetic valve, the potential need for and risk of “reoperation” was updated to risk associated with “reintervention.” The use of a transcatheter valve-in-valve procedure may be considered for decision making on the type of valve, but long-term follow-up is not yet available, and some bioprosthetic valves, particularly the smaller-sized valves, will not be suitable for a valve-in-valve replacement. Multiple other factors to be considered in the choice of type of valve for an individual patient; these factors are outlined in the text. More emphasis has been placed on shared decision making between the caregiver and patient.
I C A bioprosthesis is recommended in patients of any age for whom anticoagulant therapy is contraindicated, cannot be managed appropriately, or is not desired. 2014 recommendation remains current.
IIa B-NR An aortic or mitral mechanical prosthesis is reasonable for patients less than 50 years of age who do not have a contraindication to anticoagulation. MODIFIED: LOE updated from B to B-NR. The age limit for mechanical prosthesis was lowered from 60 to 50 years of age.
IIa B-NR For patients between 50 and 70 years of age, it is reasonable to individualize the choice of either a mechanical or bioprosthetic valve prosthesis on the basis of individual patient factors and preferences, after full discussion of the trade- offs involved. MODIFIED: Uncertainty exists about the optimum type of prosthesis (mechanical or bioprosthetic) for patients 50 to 70 years of age. There are conflicting data on survival benefit of mechanical versus bioprosthetic valves in this age group, with equivalent stroke and thromboembolic outcomes. Patients receiving a mechanical valve incur greater risk of bleeding, and those undergoing bioprosthetic valve replacement more often require repeat valve surgery.
IIa B A bioprosthesis is reasonable for patients more than 70 years of age. 2014 recommendation remains current.
IIb C Replacement of the aortic valve by a pulmonary autograft (the Ross procedure), when performed by an experienced surgeon, may be considered for young patients when VKA anticoagulation is contraindicated or undesirable. 2014 recommendation remains current.

Recommendations for Antithrombotic Therapy for Patients with Prosthetic Heart Valves

COR LOE RECOMMENDATION COMMENT/RATIONALE
I A Anticoagulation with a Vitamin K antagonist (VKA) and INR monitoring is recommended in patients with a mechanical prosthetic valve. 2014 recommendation remains current.
I B Anticoagulation with a VKA to achieve an INR of 2.5 is recommended for patients with a mechanical bileaflet or current-generation single-tilting disc AVR and no risk factors for thromboembolism. 2014 recommendation remains current.
I B Anticoagulation with a VKA is indicated to achieve an INR of 3.0 in patients with a mechanical AVR and additional risk factors for thromboembolic events (AF, previous thromboembolism, LV dysfunction, or hypercoagulable conditions) or an older-generation mechanical AVR (such as ball-in-cage). 2014 recommendation remains current.
I B Anticoagulation with a VKA is indicated to achieve an INR of 3.0 in patients with a mechanical MVR. 2014 recommendation remains current.
I A Aspirin 75 mg to 100 mg daily is recommended in addition to anticoagulation with a VKA in patients with a mechanical valve prosthesis. 2014 recommendation remains current.
IIa B Aspirin 75 mg to 100 mg per day is reasonable in all patients with a bioprosthetic aortic or mitral valve. 2014 recommendation remains current.
IIa B-NR Anticoagulation with a VKA to achieve an INR of 2.5 is reasonable for at least 3 months and for as long as 6 months after surgical bioprosthetic MVR or AVR in patients at low risk of bleeding. MODIFIED: LOE updated from C to B-NR. Anticoagulation for all surgical tissue prostheses was combined into 1 recommendation, with extension of the duration of anticoagulation up to 6 months. Stroke risk and mortality rate are lower in patients who receive anticoagulation for up to 6 months after implantation of a tissue prosthesis than in those who have do not have anticoagulation. Anticoagulation for a tissue prosthesis is also supported by reports of valve thrombosis for patients undergoing bioprosthetic surgical AVR or MVR, a phenomenon that may be warfarin responsive.
IIb B-R A lower target INR of 1.5 to 2.0 may be reasonable in patients with mechanical On-X AVR and no thromboembolic risk factors. NEW: A lower target INR was added for patients with a mechanical On-X AVR and no thromboembolic risk factors treated with warfarin and low-dose aspirin. A single RCT of lower- versus standard-intensity anticoagulation in patients undergoing On-X AVR showed equivalent outcomes, but the bleeding rate in the control group was unusually high.
IIb B-NR Anticoagulation with a VKA to achieve an INR of 2.5 may be reasonable for at least 3 months after TAVR in patients at low risk of bleeding NEW: Studies have shown that valve thrombosis may develop in patients after TAVR, as assessed by multidetector computerized tomographic scanning. This valve thrombosis occurs in patients who received antiplatelet therapy alone but not in patients who were treated with VKA.
IIb C Clopidogrel 75 mg daily may be reasonable for the first 6 months after TAVR in addition to life-long aspirin 75 mg to 100 mg daily. 2014 recommendation remains current.
III:Harm B Anticoagulant therapy with oral direct thrombin inhibitors or anti-Xa agents should not be used in patients with mechanical valve prostheses. 2014 recommendation remains current.

Recommendations for Bridging Therapy for Prosthetic Valves

COR LOE RECOMMENDATION COMMENT/RATIONALE
I C Continuation of Vitamin K antagonists (VKA) anticoagulation with a therapeutic INR is recommended in patients with mechanical heart valves undergoing minor procedures (such as dental extractions or cataract removal) where bleeding is easily controlled. 2014 recommendation remains current.
I C Temporary interruption of VKA anticoagulation, without bridging agents while the INR is subtherapeutic, is recommended in patients with a bileaflet mechanical AVR and no other risk factors for thrombosis who are undergoing invasive or surgical procedures. 2014 recommendation remains current.
IIa C-LD Bridging anticoagulation therapy during the time interval when the INR is subtherapeutic preoperatively is reasonable on an individualized basis, with the risks of bleeding weighed against the benefits of thromboembolism prevention, for patients who are undergoing invasive or surgical procedures with a;

1) Mechanical AVR and any thromboembolic risk factor,

2) Older-generation mechanical AVR, or

3) Mechanical MVR.

MODIFIED: COR updated from I to IIa, LOE updated from C to C-LD. RCTs of bridging anticoagulant therapy versus no bridging therapy for patients with AF who do not have a mechanical heart valve have shown higher risk of bleeding without a change in incidence of thromboembolic events. This may have implications for bridging anticoagulation therapy for patients with prosthetic valves.
IIa C Administration of fresh frozen plasma or prothrombin complex concentrate is reasonable in patients with mechanical valves receiving VKA therapy who require emergency noncardiac surgery or invasive procedures 2014 recommendation remains current.

2017 ESC/EACTS Guidelines for the management of valvular heart disease

Indications for Antithrombotic Therapy for Mechanical Prosthesis

New Recommendations

Class Level Recommendation
I B INR self-management is recommended provided appropriate training and quality control are performed.
IIb C The addition of low-dose aspirin (75-100 mg/day) to VKA may be considered in the case of concomitant atherosclerotic disease.
IIa B In patients treated with coronary stent implantation, triple therapy with aspirin (75-100 mg/day), clopidogrel (75 mg/day), and VKA should be considered for 1 month, irrespective of the type of stent used and the clinical presentation (i.e. ACS or stable CAD).
IIa B Triple therapy comprising aspirin (75-100 mg/day), clopidogrel (75 mg/day), and VKA for longer than 1 month and up to 6 months should be considered in patients with high ischaemic risk due to ACS or other anatomical/procedural characteristics that outweigh the bleeding risk.
IIa A Dual therapy comprising VKA and clopidogrel (75 mg/day) should be considered as an alternative to 1-month triple antithrombotic therapy in patients in whom the bleeding risk outweighs the ischaemic risk.
IIa B In patients who have undergone PCI, discontinuation of antiplatelet treatment should be considered at 12 months.
IIa B In patients requiring aspirin and/or clopidogrel in addition to VKA, the dose intensity of VKA should be carefully regulated with a target INR in the lower part of the recommended target range and a time in therapeutic range > 65-70%.
III B The use of NOACs is contra-indicated.

Indications for Antithrombotic Therapy for Bioprostheses

New Recommendations

Class Level Recommendation
IIa C Dual antiplatelet therapy should be considered for the first 3-6 months after TAVI, followed by lifelong single antiplatelet therapy in patients who do not need oral anticoagulation for other reasons.
IIb C Single antiplatelet therapy may be considered after TAVI in the case of high bleeding risk.

Management of Prosthetic Valve Dysfunction

New Recommendations

Class Level Recommendations
I C Anticoagulation using a VKA and/or UFH is recommended in bioprosthetic valve thrombosis before considering reintervention.
IIa B-NR Transcatheter closure may be considered for paravalvular leaks with clinically significant regurgitation in surgical high- risk patients (Heart Team decision).
IIa C Transcatheter valve-in-valve implantation in aortic position should be considered by the Heart Team depending on the risk of reoperation and the type and size of prosthesis.

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary[1]

Evaluation and Selection of Prosthetic Valves

Recommendations for Diagnosis and Follow up

Class I
"1.An initial TTE study is recommended in patients after prosthetic valve implantation for evaluation of valve hemodynamics. (Level of Evidence: B)"
"2.Repeat TTE is recommended in patients with prosthetic heart valves if there is a change in clinical symptoms or signs suggesting valve dysfunction. (Level of Evidence: C)"
"3.TEE is recommended when clinical symptoms or signs suggest prosthetic valve dysfunction. (Level of Evidence: C)"
Class IIa
"1. Annual TTE is reasonable in patients with a bioprosthetic valve after the first 10 years, even in the absence of a change in clinical status. (Level of Evidence: C)"

Recommendations for Intervention

Class I
"1.The choice of valve intervention, that is, repair or replacement, as well as type of prosthetic heart valve, should be a shared decision-making process that accounts for the patient’s values and preferences, with full disclosure of the indications for and risks of anticoagulant therapy and the potential need for and risk of reoperation. (Level of Evidence: C)"
"2.A bioprosthesis is recommended in patients of any age for whom anticoagulant therapy is contraindicated, cannot be managed appropriately, or is not desired. (Level of Evidence: C)"

Antithrombotic Therapy for Prosthetic Heart Valves (DO NOT EDIT) [2]

Class I
"1.Anticoagulation with a VKA and international normalized ratio (INR) monitoring is recommended in patients with a mechanical prosthetic valve.(Level of Evidence: A)"
"2. Anticoagulation with a VKA to achieve an INR of 2.5 is recommended in patients with a mechanical AVR (bileaflet or current-generation single tilting disc) and no risk factors for thromboembolism.(Level of Evidence: B)"
"3. Anticoagulation with a VKA is indicated to achieve an INR of 3.0 in patients with a mechanical AVR and additional risk factors for thromboembolic events (AF, previous thromboembolism, LV dys- function, or hypercoagulable conditions) or an older-generation mechanical AVR (such as ball-in-cage).(Level of Evidence: B)"
"4. Anticoagulation with a VKA is indicated to achieve an INR of 3.0in patients with a mechanical MVR.(Level of Evidence: B)"
"5. Aspirin 75 mg to 100 mg daily is recommended in addition to anticoagulation with a VKA in patients with a mechanical valve prosthesis.(Level of Evidence: A)"
Class IIa
"1. Aspirin 75 mg to 100 mg per day is reasonable in all patients with a bioprosthetic aortic or mitral valve. (Level of Evidence: B)"
"2. Anticoagulation with a VKA is reasonable for the first 3 months after bioprosthetic MVR or repair to achieve an INR of 2.5. (Level of Evidence: C)"
Class IIb
"1. Anticoagulation, with a VKA, to achieve an INR of 2.5 may be reasonable for the first 3 months after bioprosthetic AVR.(Level of Evidence: B)"
"2. Clopidogrel 75 mg daily may be reasonable for the first 6 months after TAVR in addition to life-long aspirin 75 mg to 100 mg daily. (Level of Evidence: C)"
Class III (Harm)
"1. Anticoagulant therapy with oral direct thrombin inhibitors or anti-Xa agents should not be used in patients with mechanical valve prostheses (Level of Evidence: B)"

Bridging Therapy in Patients With Mechanical Valves (DO NOT EDIT) [2]

Class I
"1. Continuation of VKA anticoagulation with a therapeutic INR is recommended in patients with mechanical heart valves undergoing minor procedures (such as dental extractions or cataract removal) where bleeding is easily controlled.(Level of Evidence: C)"
"2.Temporary interruption of VKA anticoagulation, without bridging agents while the INR is subtherapeutic, is recommended in patients with a bileaflet mechanical AVR and no other risk factors for thrombosis who are undergoing invasive or surgical procedures(Level of Evidence: C)"
"3.Bridging anticoagulation with either intravenous unfractio- nated heparin (UFH) or subcutaneous low-molecular-weight heparin (LMWH) is recommended during the time interval when the INR is subtherapeutic preoperatively in patients who are undergoing invasive or surgical procedures with a 1) mechanical AVR and any thromboembolic risk factor, 2) older- generation mechanical AVR, or 3) mechanical MVR. (Level of Evidence: C)"
Class IIa
"1. Administration of fresh frozen plasma or prothrombin complex concentrate is reasonable in patients with mechanical valves receiving VKA therapy who require emergency noncardiac sur- gery or invasive procedures (Level of Evidence: C)"

Excessive Anticoagulation and Serious Bleeding With Prosthetic Valves[2]

Class IIa
"1. Administration of fresh frozen plasma or prothrombin complex concentrate is reasonable in patients with mechanical valves and uncontrollable bleeding who require reversal of anticoagulation (Level of Evidence: B)"

Prosthetic Valve Thrombosis[2]

Diagnosis and Follow-up

Class I
"1. TTE is indicated in patients with suspected prosthetic valve thrombosis to assess hemodynamic severity and follow resolution of valve dysfunction.(Level of Evidence: B)"
"2. TEE is indicated in patients with suspected prosthetic valve thrombosis to assess thrombus size and valve motion(Level of Evidence: B)"
Class IIa
"1. Fluoroscopy or CT is reasonable in patients with suspected valve thrombosis to assess valve motion. (Level of Evidence: C)"

Medical Therapy

Class IIa
"1. Fibrinolytic therapy is reasonable for patients with a throm- bosed left-sided prosthetic heart valve, recent onset (<14 days) of NYHA class I to II symptoms, and a small thrombus (<0.8 cm2) (Level of Evidence: B)"
"2. Fibrinolytic therapy is reasonable for thrombosed right-sided prosthetic heart valves (Level of Evidence: B)"

Intervention

Class I
"1. Emergency surgery is recommended for patients with a throm- bosed left-sided prosthetic heart valve with NYHA class III to IV symptoms(Level of Evidence: B)"
Class IIa
"1. Emergency surgery is reasonable for patients with a thrombosed left-sided prosthetic heart valve with a mobile or large thrombus (>0.8 cm2) (Level of Evidence: C)"

Prosthetic Valve Stenosis[2]

Class I
"1. Repeat valve replacement is indicated for severe symptomatic prosthetic valve stenosis.(Level of Evidence: C)"

Prosthetic Valve Regurgitation[2]

Class I
"1. Surgery is recommended for operable patients with mechanical heart valves with intractable hemolysis or HF due to severe prosthetic or paraprosthetic regurgitation(Level of Evidence: B)"
Class IIa
"1. Surgery is reasonable for operable patients with severe symptomatic or asymptomatic bioprosthetic regurgitation. (Level of Evidence: C)"
"2. Percutaneous repair of paravalvular regurgitation is reasonable in patients with prosthetic heart valves and intractable hemo- lysis or NYHA class III/IV HF who are at high risk for surgery and have anatomic features suitable for catheter-based therapy when performed in centers with expertise in the procedure (Level of Evidence: B)"

Sources

  • 2008 Focused Update Incorporated Into the ACC/AHA 2006 Guidelines for the Management of Patients With Valvular Heart Disease [3]

References

  1. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA; et al. (2014). "2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". Circulation. doi:10.1161/CIR.0000000000000029. PMID 24589852.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O'Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM, Thomas JD (2014). "2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines". J. Am. Coll. Cardiol. 63 (22): 2438–88. doi:10.1016/j.jacc.2014.02.537. PMID 24603192.
  3. Bonow RO, Carabello BA, Chatterjee K; et al. (2008). "2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Circulation. 118 (15): e523–661. doi:10.1161/CIRCULATIONAHA.108.190748. PMID 18820172. Unknown parameter |month= ignored (help)
  • American College of Obstetricians and Gynecologists. ACOG Committee Opinion: safety of Lovenox in pregnancy. Obstet Gynecol. Oct 2002;100(4):845-6.
  • Baddour LM, Wilson WR, Bayer AS. Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications. Circulation. Jun 14 2005;111(23):e394-434.
  • Bettadapur MS. Caring for patients with prosthetic heart valves. Cleveland Clinic Journal of Medicine 69 (1), 75-87.
  • Bloomfield P (2002). Choice of heart valve prosthesis. Heart,87, 583-589.
  • Bonow et al (1998). Management of patients with prosthetic heart valves. JACC 32(5), 1555-1565.
  • Bussey HI. An overview of anticoagulants, antiplatelet agents, and the combination in patients with mechanical heart valves. J Heart Valve Dis. May 2004;13(3):319-24.
  • Butany J, Ahluwalia MS, Munroe C, et al. prostheses: identification and evaluation (erratum). Cardiovasc Pathol. Nov-Dec 2003;12(6):322-44.
  • Butany J, Fayet C, Ahluwalia MS, et al. Biological replacement heart valves. Identification and evaluation. Cardiovasc Pathol. May-Jun 2003;12(3):119-39.
  • Cannegieter SC, Rosendaal FR, Briet E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation. Feb 1994;89(2):635-41.
  • Crawford MH (2002). The patient with prosthetic heart valves. In: Evaluation of the patient with heart disease. Integrating the physical exam & echocardiography. Eds: Roldan CA, Abrams J. Lippincott Williams & Wilkins, Philadelphia,USA, pp 251-262.
  • Dajani AS, Taubert KA, Wilson W, et al. Prevention of bacterial endocarditis. Recommendations by the American Heart Association. Circulation. Jul 1 1997;96(1):358-66.
  • David TE, Puschmann R, Ivanov J, et al (1998). Aortic valve replacement with stentless and stented porcine valves: a case-match study. J Thorac Cardiovasc Surg, 116, 236-41.
  • Garcia MJ (2002). Prosthetic valve disease. In: Textbook of Cardiovascular Medicine. 2nd Ed. Topol EJ. Lippincott-Raven, Philadelphia, USA, pp 549-68.
  • Goldman ME. Echocardiographic doppler evaluation of prosthetic valve function and dysfunction. Adv Cardiol. 2004;41:179-84.
  • Grunkemeier GL, Starr A, Rahimtoola SH (2001). Clinical performance of prosthethic heart valves. In: Hurst's The Heart. 10th ed. Eds: Fuster V, Alexander RW, O'Rourke RA. The McGraw-Hill Companies, USA, pp 1759-1782.
  • Hung L, Rahimtoola SH (2003). Prosthetic heart valves and pregnancy. Circulation, 107, 1240-1246.
  • Jamieson WR, Marchand MA, Pelletier CL, et al (1999). Structural valve deterioration in mitral replacement surgery: Comparison of carpentier-Edwards supra-anular porcine and perimount pericardial bioprostheses. J Thorac Cardiovasc Surg, 118, 297-304.
  • Kahn S. Long-term outcomes with mechanical and tissue valves. J Heart Valve Dis. 2002;11, Suppl 1:S8-S14.
  • Lengyel M, Fuster V, Keltai M, et al. Guidelines for management of left-sided prosthetic valve thrombosis: a role for thrombolytic therapy. Consensus Conference on Prosthetic Valve Thrombosis. J Am Coll Cardiol. Nov 15 1997; 30(6): 1521-6.
  • MacKenzie GS, Heinle SK. Echocardiography and Doppler assessment of prosthetic heart valves with transesophageal echocardiography. Crit Care Clin. Apr 1996;12(2):383-409.
  • Mehlman DJ. A pictorial and radiographic guide for identification of prosthetic heart valve devices. Prog Cardiovasc Dis. May-Jun 1988;30(6):441-64.
  • Piper C, Kprfer R, Horstkotte D. Prosthetic valve endocarditis. Heart. May 2001;85(5):590-3.
  • Roudaut R, Lafitte S, Roudaut MF, et al. Fibrinolysis of mechanical prosthetic valve thrombosis: a single-center study of 127 cases. J Am Coll Cardiol. Feb 19 2003;41(4):653-8.
  • Stein PD, Alpert JS, Bussey HI, et al. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest. Jan 2001;119(1 Suppl):220S-227S.
  • Vongpatanasin W, Hillis LD, Lange RA. Prosthetic heart valves. N Engl J Med. Aug 8 1996;335(6):407-16.

External links

de:Künstliche Herzklappe


Cardiology


Linked-in.jpg