Airway management

Jump to navigation Jump to search

WikiDoc Resources for Airway management


Most recent articles on Airway management

Most cited articles on Airway management

Review articles on Airway management

Articles on Airway management in N Eng J Med, Lancet, BMJ


Powerpoint slides on Airway management

Images of Airway management

Photos of Airway management

Podcasts & MP3s on Airway management

Videos on Airway management

Evidence Based Medicine

Cochrane Collaboration on Airway management

Bandolier on Airway management

TRIP on Airway management

Clinical Trials

Ongoing Trials on Airway management at Clinical

Trial results on Airway management

Clinical Trials on Airway management at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Airway management

NICE Guidance on Airway management


FDA on Airway management

CDC on Airway management


Books on Airway management


Airway management in the news

Be alerted to news on Airway management

News trends on Airway management


Blogs on Airway management


Definitions of Airway management

Patient Resources / Community

Patient resources on Airway management

Discussion groups on Airway management

Patient Handouts on Airway management

Directions to Hospitals Treating Airway management

Risk calculators and risk factors for Airway management

Healthcare Provider Resources

Symptoms of Airway management

Causes & Risk Factors for Airway management

Diagnostic studies for Airway management

Treatment of Airway management

Continuing Medical Education (CME)

CME Programs on Airway management


Airway management en Espanol

Airway management en Francais


Airway management in the Marketplace

Patents on Airway management

Experimental / Informatics

List of terms related to Airway management

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Nima Nasiri, M.D.[2]


Airway management is the process of ensuring that there is an open pathway between a patient’s lungs and the outside world, and the lungs are safe from aspiration. Airway loss is a major cause of preventable prehospital death in trauma patients. Airway management complications are common, especially in trauma patients because of associated pathology, lack of complete evaluation before intubation, unanticipated difficulty during ventilation and intubation. Additionally, trauma patients are at increased risk of airway obstruction, aspiration, hypoxia and hypotension, and other unstable vital The providers must have skillset related to working with a variety of tools and techniques used in airway management and knowledge of the important anatomical, physiological, and pathological features related to the airway. They also should know the differences between the adult versus pediatric and neonatal airways as these anatomical and physiological differences are critical, impactful on patients lives and knowing these leads to effective control and management of the airway. Some of the indications for managing the airway in patients include respiratory failure, altered sensorium(Glasgow Coma Scale less than or equal to 8), rapid deterioration of mental status, airway injury or compromise, injuries causing a high risk for aspiration-which includes all penetrating injuries to the abdomen or chest wall. Inadequate airway management may lead to cardiovascular arrest and compromise life-saving interventions in a trauma patient. Several airway control devices and techniques are available to assist healthcare providers in order to maintain the airway by ventilation and oxygenation. These include bag valve mask (BVM) ventilation, direct laryngoscopy with endotracheal intubation (ETI) and adjunct supraglottic airway devices such as the laryngeal mask airway.

Functional anatomy of the upper airway

For a successful approach to airway management, health care providers must have knowledge of important anatomical, physiological, and pathological features related to the airway as well as knowledge of the various equipment and methods that can be utilized for this purpose. Also, the difference between airway management in adults, pediatrics, and neonates is very critical.[1]

upper airway systemstaff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436.

Recommendations for evaluation of airway

The basic approach in airway management in the emergency setting includes:[2]

Following are steps that must be considered prior to conducting airway management, these include:

  • History: An airway history should be conducted whenever it is possible before airway management in all patients to detect medical, surgical, and anesthetic factors that may indicate the presence of a difficult airway. A detailed review of previous anesthetic records, if available, may provide useful information about airway management.
  • Physical Examination: An airway physical examination should be conducted before the initiation of airway management. The goal of physical examination is to detect physical characteristics that may indicate the presence of a difficult airway because an unsuccessful airway management is associated with increase in mortality and morbidity.
  • Additional Evaluation: Additional evaluation may be indicated in some patients to characterize the likelihood or nature of the anticipated difficult airway. Certain diagnostic tests (e.g., radiography, computed tomography scans, fluoroscopy) can identify a variety of acquired or congenital features in patients with difficult airways

Techniques for airway management

The decision about whether an airway intervention is required or not is crucial for patient's survival and depends on first responders skills and quick assessment and decision. These crucial steps requires techniques which are used universally in order to manage patient's airway. Following are initial evaluation methods which had been developed to assist patient's ventilation and keep the airway patent, these techniques include:[3][4][5][6][7]

  • Spontaneous breathing: When a provider is confronted with an awake patient having a patent airway. Spontaneous ventilation can be assisted through the placement of a nasal or oral airway. Oxygenation can be improved by giving oxygen via nasal cannula, simple face mask, or nonrebreather face mask. Unfortunately, the maximally achieved FiO2 is often overestimated by care providers and hypoventilation resulting in hypercapnia cannot be normalized with increase in oxygen supply.
  • Mouth-to-Mouth ventilation: Mouth-to-mouth or mouth-to-nose ventilation is a useful management technique, however, because of the risk of infection transmission it is recommended by American heart association that health care providers do "Hands-only" CPR. Proper face masks should be utilized if they are available.
  • Bag-mask ventilation: It is a standard initial approach to airway management in the prehospital and hospital settings.
  • Oropharyngeal and nasopharyngeal airways:
  • Supraglottic airway devices: Supraglottic airway (SGA) device placement is very useful to keep the airways open, it has advantages in comparison with endotracheal tube intubation, or other methods, these advantages include:[8]

  • Rapid sequence intubation:
Photograph of an anesthesiologist using the Glidescope video laryngoscope to intubate the trachea of a morbidly obese elderly person with challenging airway anatomy(DiverDave (talk)) created this work entirely by myself. (Original uploaded on en.wikipedia)

Management of the Airway in Patients with Trauma

Difficult airway

Suspected Spinal Cord Injury

  • Neck Maneuvers During Airway Management:
    • Immobilizing patient's neck by using sandbag-collar-tape on hardboard in a pre-hospital care setting.
    • Applying pressure on cricoid with anterior half of hard cervical collar removed and another hand behind the posterior cervical collar.
    • Manual in-line stabilization is the technique of choice in any suspected cervical spine injury, during endotracheal intubation. In this technique, head grasped firmly at the mastoid process and the occiput.
  • Traction should be avoided as it may distract the cervical spine and cause more neurological damage, even after manual in-line stabilization.

Approach to airway management of a patient with Maxillo-Facial Injury

Airway management of patients with maxillofacial trauma is challenging and vital because it's directly affecting the patient's survival. Endotracheal intubation is the gold standard procedure to secure the airway in trauma patients, however, in these patients passage of endotracheal tube may not be possible because the oral cavity, pharynx, and larynx may be filled with blood, secretions, soft tissue, and bone fragments. Another reason for this is that the risk of aspiration and regurgitation is high in these patients.[14][15][16][17]

Complications of airway management

Airway management complications are common, these complications usually occur in intensive care units and emergency departments, summary of airway management related complactions include:[19]


Related Chapters


  1. Morris IR (November 1988). "Functional anatomy of the upper airway". Emerg. Med. Clin. North Am. 6 (4): 639–69. PMID 3056703.
  2. Rosenberg, M. B; Phero, J. C; Becker, D. E (2014). "Essentials of Airway Management, Oxygenation, and Ventilation: Part 2: Advanced Airway Devices: Supraglottic Airways". Anesthesia Progress. 61 (3): 113–118. doi:10.2344/0003-3006-61.3.113. ISSN 0003-3006.
  3. Roychoudhury, Ajoy; Jose, Anson; Nagori, ShakilAhmed; Agarwal, Bhaskar; Bhutia, Ongkila (2016). "Management of maxillofacial trauma in emergency: An update of challenges and controversies". Journal of Emergencies, Trauma, and Shock. 9 (2): 73. doi:10.4103/0974-2700.179456. ISSN 0974-2700.
  4. Agrò FE, Cataldo R, Mattei A (March 2009). "New devices and techniques for airway management". Minerva Anestesiol. 75 (3): 141–9. PMID 18946431.
  5. Gleason JM, Christian BR, Barton ED (March 2018). "Nasal Cannula Apneic Oxygenation Prevents Desaturation During Endotracheal Intubation: An Integrative Literature Review". West J Emerg Med. 19 (2): 403–411. doi:10.5811/westjem.2017.12.34699. PMC 5851518. PMID 29560073.
  6. Law, J. Adam; Broemling, Natasha; Cooper, Richard M.; Drolet, Pierre; Duggan, Laura V.; Griesdale, Donald E.; Hung, Orlando R.; Jones, Philip M.; Kovacs, George; Massey, Simon; Morris, Ian R.; Mullen, Timothy; Murphy, Michael F.; Preston, Roanne; Naik, Viren N.; Scott, Jeanette; Stacey, Shean; Turkstra, Timothy P.; Wong, David T. (2013). "The difficult airway with recommendations for management – Part 1 – Difficult tracheal intubation encountered in an unconscious/induced patient". Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 60 (11): 1089–1118. doi:10.1007/s12630-013-0019-3. ISSN 0832-610X.
  7. Okubo, Masashi; Gibo, Koichiro; Hagiwara, Yusuke; Nakayama, Yukiko; Hasegawa, Kohei (2017). "The effectiveness of rapid sequence intubation (RSI) versus non-RSI in emergency department: an analysis of multicenter prospective observational study". International Journal of Emergency Medicine. 10 (1). doi:10.1186/s12245-017-0129-8. ISSN 1865-1372.
  8. Park SK, Ko G, Choi GJ, Ahn EJ, Kang H (August 2016). "Comparison between supraglottic airway devices and endotracheal tubes in patients undergoing laparoscopic surgery: A systematic review and meta-analysis". Medicine (Baltimore). 95 (33): e4598. doi:10.1097/MD.0000000000004598. PMID 27537593.
  9. Thiboutot, François; Nicole, Pierre C.; Trépanier, Claude A.; Turgeon, Alexis F.; Lessard, Martin R. (2009). "Effect of manual in-line stabilization of the cervical spine in adults on the rate of difficult orotracheal intubation by direct laryngoscopy: a randomized controlled trial". Canadian Journal of Anesthesia/Journal Canadien d'anesthésie. 56 (6): 412–418. doi:10.1007/s12630-009-9089-7. ISSN 0832-610X.
  10. . doi:10.1016/j.jclinane.2005.04.003 [Indexed for MEDLINE] Check |doi= value (help). Missing or empty |title= (help)
  11. Krishnamoorthy, Vijay; Dagal, Arman; Austin, Naola (2014). "Airway management in cervical spine injury". International Journal of Critical Illness and Injury Science. 4 (1): 50. doi:10.4103/2229-5151.128013. ISSN 2229-5151.
  12. Ghafoor, Abid U.; Martin, Timothy W.; Gopalakrishnan, Senthil; Viswamitra, Sanjaya (2005). "Caring for the patients with cervical spine injuries: what have we learned?". Journal of Clinical Anesthesia. 17 (8): 640–649. doi:10.1016/j.jclinane.2005.04.003. ISSN 0952-8180.
  13. Sriganesh, Kamath; Busse, JasonW; Shanthanna, Harsha; Ramesh, VenkatapuraJ (2018). "Airway management in the presence of cervical spine instability: A cross-sectional survey of the members of the Indian Society of Neuroanaesthesiology and Critical Care". Indian Journal of Anaesthesia. 62 (2): 115. doi:10.4103/ija.IJA_671_17. ISSN 0019-5049.
  14. 14.0 14.1 Barak, Michal; Bahouth, Hany; Leiser, Yoav; Abu El-Naaj, Imad (2015). "Airway Management of the Patient with Maxillofacial Trauma: Review of the Literature and Suggested Clinical Approach". BioMed Research International. 2015: 1–9. doi:10.1155/2015/724032. ISSN 2314-6133.
  15. Raval CB, Rashiduddin M (January 2011). "Airway management in patients with maxillofacial trauma - A retrospective study of 177 cases". Saudi J Anaesth. 5 (1): 9–14. doi:10.4103/1658-354X.76476. PMC 3101764. PMID 21655009.
  16. Brimacombe J, Tucker P, Simons S (July 1995). "The laryngeal mask airway for awake diagnostic bronchoscopy. A retrospective study of 200 consecutive patients". Eur J Anaesthesiol. 12 (4): 357–61. PMID 7588664.
  17. Hsiao, James; Pacheco-Fowler, Victor (2008). "Cricothyroidotomy". New England Journal of Medicine. 358 (22): e25. doi:10.1056/NEJMvcm0706755. ISSN 0028-4793.
  18. Meyer, TanyaK; Patel, SapnaA (2014). "Surgical Airway". International Journal of Critical Illness and Injury Science. 4 (1): 71. doi:10.4103/2229-5151.128016. ISSN 2229-5151.
  19. Cook, T.M.; MacDougall-Davis, S.R. (2012). "Complications and failure of airway management". British Journal of Anaesthesia. 109: i68–i85. doi:10.1093/bja/aes393. ISSN 0007-0912.

Template:WikiDoc Sources