Jump to navigation Jump to search
External IDsGeneCards: [1]
RefSeq (mRNA)



RefSeq (protein)



Location (UCSC)n/an/a
PubMed searchn/an/a
View/Edit Human

Ankyrin 1, erythrocytic, also known as ANK1, is a protein that in humans is encoded by the ANK1 gene.[1][2]

Tissue distribution

The protein encoded by this gene, Ankyrin 1, is the prototype of the ankyrin family, was first discovered in erythrocytes, but since has also been found in brain and muscles.[2]


Complex patterns of alternative splicing in the regulatory domain, giving rise to different isoforms of ankyrin 1 have been described, however, the precise functions of the various isoforms are not known. Alternative polyadenylation accounting for the different sized erythrocytic ankyrin 1 mRNAs, has also been reported. Truncated muscle-specific isoforms of ankyrin 1 resulting from usage of an alternate promoter have also been identified.[2]

Disease linkage

Mutations in erythrocytic ankyrin 1 have been associated in approximately half of all patients with hereditary spherocytosis.[2]

ANK1 shows altered methylation and expression in Alzheimer's disease.[3][4] A gene expression study of postmortem brains has suggested ANK1 interacts with interferon-γ signalling.[5]


The ANK1 protein belongs to the ankyrin family that are believed to link the integral membrane proteins to the underlying spectrin-actin cytoskeleton and play key roles in activities such as cell motility, activation, proliferation, contact, and maintenance of specialized membrane domains. Multiple isoforms of ankyrin with different affinities for various target proteins are expressed in a tissue-specific, developmentally regulated manner. Most ankyrins are typically composed of three structural domains: an amino-terminal domain containing multiple ankyrin repeats; a central region with a highly conserved spectrin-binding domain; and a carboxy-terminal regulatory domain, which is the least conserved and subject to variation.[2]

The small ANK1 (sAnk1) protein splice variants makes contacts with obscurin, a giant protein surrounding the contractile apparatus in striated muscle.[6]


ANK1 has been shown to interact with T-cell lymphoma invasion and metastasis-inducing protein 1,[7] Titin,[8] RHAG[9] and OBSCN.[10]

See also


  1. Lambert S, Yu H, Prchal JT, et al. (March 1990). "cDNA sequence for human erythrocyte ankyrin". Proc. Natl. Acad. Sci. U.S.A. 87 (5): 1730–4. Bibcode:1990PNAS...87.1730L. doi:10.1073/pnas.87.5.1730. PMC 53556. PMID 1689849.
  2. 2.0 2.1 2.2 2.3 2.4 "Entrez Gene: ANK1 ankyrin 1, erythrocytic".
  3. De Jager, P. L.; Srivastava, G; Lunnon, K; Burgess, J; Schalkwyk, L. C.; Yu, L; Eaton, M. L.; Keenan, B. T.; Ernst, J; McCabe, C; Tang, A; Raj, T; Replogle, J; Brodeur, W; Gabriel, S; Chai, H. S.; Younkin, C; Younkin, S. G.; Zou, F; Szyf, M; Epstein, C. B.; Schneider, J. A.; Bernstein, B. E.; Meissner, A; Ertekin-Taner, N; Chibnik, L. B.; Kellis, M; Mill, J; Bennett, D. A. (2014). "Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci". Nature Neuroscience. 17 (9): 1156–63. doi:10.1038/nn.3786. PMC 4292795. PMID 25129075.
  4. Lunnon, K; Smith, R; Hannon, E; De Jager, P. L.; Srivastava, G; Volta, M; Troakes, C; Al-Sarraj, S; Burrage, J; MacDonald, R; Condliffe, D; Harries, L. W.; Katsel, P; Haroutunian, V; Kaminsky, Z; Joachim, C; Powell, J; Lovestone, S; Bennett, D. A.; Schalkwyk, L. C.; Mill, J (2014). "Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease". Nature Neuroscience. 17 (9): 1164–70. doi:10.1038/nn.3782. PMC 4410018. PMID 25129077.
  5. Liscovitch, N; French, L (2014). "Differential Co-Expression between α-Synuclein and IFN-γ Signaling Genes across Development and in Parkinson's Disease". PLoS ONE. 9 (12): e115029. Bibcode:2014PLoSO...9k5029L. doi:10.1371/journal.pone.0115029. PMC 4262449. PMID 25493648.
  6. Borzok MA, Catino DH, Nicholson JD, Kontrogianni-Konstantopoulos A, Bloch RJ (November 2007). "Mapping the binding site on small ankyrin 1 for obscurin". J. Biol. Chem. 282 (44): 32384–96. doi:10.1074/jbc.M704089200. PMID 17720975.
  7. Bourguignon, L Y; Zhu H; Shao L; Chen Y W (July 2000). "Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration". J. Cell Biol. UNITED STATES. 150 (1): 177–91. doi:10.1083/jcb.150.1.177. ISSN 0021-9525. PMC 2185563. PMID 10893266.
  8. Kontrogianni-Konstantopoulos, Aikaterini; Bloch Robert J (February 2003). "The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin". J. Biol. Chem. United States. 278 (6): 3985–91. doi:10.1074/jbc.M209012200. ISSN 0021-9258. PMID 12444090.
  9. Nicolas, Virginie; Le Van Kim, Caroline; Gane, Pierre; Birkenmeier, Connie; Cartron, Jean-Pierre; Colin, Yves; Mouro-Chanteloup, Isabelle (July 2003). "Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation". J. Biol. Chem. United States. 278 (28): 25526–33. doi:10.1074/jbc.M302816200. ISSN 0021-9258. PMID 12719424.
  10. Kontrogianni-Konstantopoulos, Aikaterini; Jones Ellene M; Van Rossum Damian B; Bloch Robert J (March 2003). "Obscurin is a ligand for small ankyrin 1 in skeletal muscle". Mol. Biol. Cell. United States. 14 (3): 1138–48. doi:10.1091/mbc.E02-07-0411. ISSN 1059-1524. PMC 151585. PMID 12631729.

Further reading

  • Bennett V, Baines AJ (2001). "Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues". Physiol. Rev. 81 (3): 1353–92. PMID 11427698.
  • Bennett V (1979). "Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues". Nature. 281 (5732): 597–9. Bibcode:1979Natur.281..597B. doi:10.1038/281597a0. PMID 492324.
  • Lambert S, Yu H, Prchal JT, et al. (1990). "cDNA sequence for human erythrocyte ankyrin". Proc. Natl. Acad. Sci. U.S.A. 87 (5): 1730–4. Bibcode:1990PNAS...87.1730L. doi:10.1073/pnas.87.5.1730. PMC 53556. PMID 1689849.
  • Fujimoto T, Lee K, Miwa S, Ogawa K (1991). "Immunocytochemical localization of fodrin and ankyrin in bovine chromaffin cells in vitro". J. Histochem. Cytochem. 39 (11): 1485–93. doi:10.1177/39.11.1833445. PMID 1833445.
  • Lux SE, John KM, Bennett V (1990). "Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins". Nature. 344 (6261): 36–42. doi:10.1038/344036a0. PMID 2137557.
  • Davis LH, Bennett V (1990). "Mapping the binding sites of human erythrocyte ankyrin for the anion exchanger and spectrin". J. Biol. Chem. 265 (18): 10589–96. PMID 2141335.
  • Korsgren C, Cohen CM (1988). "Associations of human erythrocyte band 4.2. Binding to ankyrin and to the cytoplasmic domain of band 3". J. Biol. Chem. 263 (21): 10212–8. PMID 2968981.
  • Cianci CD, Giorgi M, Morrow JS (1988). "Phosphorylation of ankyrin down-regulates its cooperative interaction with spectrin and protein 3". J. Cell. Biochem. 37 (3): 301–15. doi:10.1002/jcb.240370305. PMID 2970468.
  • Steiner JP, Bennett V (1988). "Ankyrin-independent membrane protein-binding sites for brain and erythrocyte spectrin". J. Biol. Chem. 263 (28): 14417–25. PMID 2971657.
  • Hargreaves WR, Giedd KN, Verkleij A, Branton D (1981). "Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles". J. Biol. Chem. 255 (24): 11965–72. PMID 6449514.
  • Bourguignon LY, Lokeshwar VB, Chen X, Kerrick WG (1994). "Hyaluronic acid-induced lymphocyte signal transduction and HA receptor (GP85/CD44)-cytoskeleton interaction". J. Immunol. 151 (12): 6634–44. PMID 7505012.
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Morgans CW, Kopito RR (1993). "Association of the brain anion exchanger, AE3, with the repeat domain of ankyrin". J. Cell Sci. 105. ( Pt 4): 1137–42. PMID 8227202.
  • Bourguignon LY, Jin H, Iida N, et al. (1993). "The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells". J. Biol. Chem. 268 (10): 7290–7. PMID 8385102.
  • Eber SW, Gonzalez JM, Lux ML, et al. (1996). "Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis". Nat. Genet. 13 (2): 214–8. doi:10.1038/ng0696-214. PMID 8640229.
  • Lanfranchi G, Muraro T, Caldara F, et al. (1996). "Identification of 4370 expressed sequence tags from a 3'-end-specific cDNA library of human skeletal muscle by DNA sequencing and filter hybridization". Genome Res. 6 (1): 35–42. doi:10.1101/gr.6.1.35. PMID 8681137.
  • del Giudice EM, Hayette S, Bozon M, et al. (1996). "Ankyrin Napoli: a de novo deletional frameshift mutation in exon 16 ankyrin gene (ANK1) associated with spherocytosis". Br. J. Haematol. 93 (4): 828–34. doi:10.1046/j.1365-2141.1996.d01-1746.x. PMID 8703812.
  • Zhou D, Birkenmeier CS, Williams MW, et al. (1997). "Small, membrane-bound, alternatively spliced forms of ankyrin 1 associated with the sarcoplasmic reticulum of mammalian skeletal muscle". J. Cell Biol. 136 (3): 621–31. doi:10.1083/jcb.136.3.621. PMC 2134284. PMID 9024692.
  • Gallagher PG, Tse WT, Scarpa AL, et al. (1997). "Structure and organization of the human ankyrin-1 gene. Basis for complexity of pre-mRNA processing". J. Biol. Chem. 272 (31): 19220–8. doi:10.1074/jbc.272.31.19220. PMID 9235914.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.