Renal artery stenosis medical therapy: Difference between revisions

Jump to navigation Jump to search
 
(15 intermediate revisions by the same user not shown)
Line 6: Line 6:


==Overview==
==Overview==
Patients with Renal artery stenosis require the widespread use of intensive medical therapy. The drugs responsible for the management of renal artery stenosis are ACE inhibitors or ARB's. These drugs inhibit the sympathetic and renin-angiotensin system resulting in controlling hypertension. In patients with bilateral renal artery stenosis, there is an associated decrease in renal function after using the ACE inhibitors and ARB, but it is neither a sensitive nor specific finding. Aggressive statin use, optimal glycemic regulation, and therapy for smoking abstinence are of vital significance. Other modalities used are renal artery revascularization, Percutaneous transluminal renal angioplasty, Renal artery stenting, brachytherapy and cutting balloon atherotomy, and surgery in complicated and nonresponding cases. Although morbidity and mortality are high in surgery vs stenting.
Patients with [[Renal artery stenosis]] require the widespread use of intensive [[medical therapy]]. The [[drugs]] responsible for the management of [[renal artery stenosis]] are [[ACE inhibitors]] or [[ARB's]]. These drugs inhibit the [[sympathetic]] and [[renin-angiotensin system]] resulting in controlling [[hypertension]]. In patients with bilateral [[renal artery stenosis]], there is an associated decrease in [[renal]] function after using the [[ACE inhibitors]] and [[ARB]], but it is neither a sensitive nor specific finding. Aggressive [[statin]] use, optimal [[glycemic]] regulation, and therapy for [[smoking]] abstinence are of vital significance. Other modalities used are [[renal artery]] [[revascularization]], [[Percutaneous transluminal renal angioplasty]], [[Renal artery stenting]], [[brachytherapy]] and cutting [[balloon atherotomy]], and [[surgery]] in complicated and nonresponding cases. Although [[morbidity]] and [[mortality]] are higher associated with [[surgery]] as compared to stenting.


==Treatment==
==Treatment==


===Medical Therapy===
===Medical Therapy===
The patients with Renal artery stenosis requires the wide spread use of intensive medical therapy. The drugs responsible for the management of renal artery stenosis are ACE inhibitors or ARB's.  These drugs inhibit the sympathetic and renin-angiotensin system resulting in controlling the hypertension. In patients with bilateral renal artery stenosis there is associated decrease in the renal function after using the ACE inhibitors and ARB, but it is neither sensitive nor specific finding. Aggressive statin use, optimal glycemic regulation, and therapy for smoking abstinence are of vital significance.
Patients with [[Renal artery stenosis]] require the widespread use of [[intensive]] [[medical therapy]]. The [[drugs]] responsible for the management of [[renal artery stenosis]] are [[ACE inhibitors]] or [[ARB's]].  These drugs inhibit the [[sympathetic]] and [[renin-angiotensin system]] resulting in controlling [[hypertension]]. In patients with bilateral [[renal artery stenosis]], there is an associated decrease in the [[renal function]] after using the [[ACE inhibitors]] and [[ARB]], but it is neither sensitive nor specific<ref name="pmid6337327">{{cite journal |vauthors=Hricik DE, Browning PJ, Kopelman R, Goorno WE, Madias NE, Dzau VJ |title=Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenoses or renal-artery stenosis in a solitary kidney |journal=N Engl J Med |volume=308 |issue=7 |pages=373–6 |date=February 1983 |pmid=6337327 |doi=10.1056/NEJM198302173080706 |url=}}</ref>. Aggressive [[statin]] use, optimal [[glycemic regulation]], and therapy for [[smoking]] abstinence are of vital significance.


Aggressive use of statins, optimal glycemic control, and smoking cessation counseling are of paramount importance. The results of various medical regimens on the treatment of ARAS-related hypertension were not analyzed in a randomized clinical trial because such patients frequently have refractory hypertension and need multiple antihypertensive medicines. Medical therapy is preferred to revascularization in patients with ARAS and progressive renal disease (i.e. chronic renal dysfunction, proteinuria[>1 g/d]), diffuse intrarenal vascular disease, and renal atrophy.
Aggressive use of [[statins]], optimal [[glycemic control]], and [[smoking]] cessation counseling is of paramount importance. The results of various medical regimens on the treatment of [[ARAS]]-related [[hypertension]] were not analyzed in a [[randomized clinical trial]] because such [[patients]] frequently have [[refractory]] [[hypertension]] and need multiple [[antihypertensive]] [[medicines]]. [[Medical therapy]] is preferred for [[revascularization]] in [[patients]] with [[ARAS]] and progressive [[renal disease]] (i.e. chronic renal dysfunction, proteinuria[>1 g/d]), diffuse [[intrarenal vascular disease]], and [[renal atrophy]]<ref name="pmid15580159">{{cite journal |vauthors=Bokhari SW, Faxon DP |title=Current advances in the diagnosis and treatment of renal artery stenosis |journal=Rev Cardiovasc Med |volume=5 |issue=4 |pages=204–15 |date=2004 |pmid=15580159 |doi= |url=}}</ref>.


===Renal Artery Revascularization===
===Renal Artery Revascularization===
It is less obvious and much more contentious whether patients with ARAS and hypertension would undergo surgical revascularization. According to studies patients with extreme ostial renal artery stenosis  who have been successfully revascularized percutaneously do not necessarily have therapeutic benefits.  
It is less obvious and much more contentious whether [[patients]] with [[ARAS]] and [[hypertension]] would undergo [[surgical revascularization]]. According to studies [[patients]] with extreme [[ostial]] [[renal artery stenosis]] who have been successfully [[revascularized]] [[percutaneously]] do not necessarily have therapeutic benefits.  


The ACC/AHA description of RAS is as follows:
The ACC/AHA description of [[RAS]] is as follows:


(1) visually approximate stenosis of 50 percent to 70 percent diameter with a translational peak gradient of at least 20 mm Hg or a mean gradient of at least 10 mm Hg  
(1) visually approximate [[stenosis]] of 50 percent to 70 percent diameter with a translational peak gradient of at least 20 mm Hg or a mean gradient of at least 10 mm Hg  


(2) angiographic stenosis of at least 70 percent diameter  
(2) [[angiographic stenosis]] of at least 70 percent diameter  


(3) greater than 70% stenosis according to the measurement by intravascular ultrasounds.  
(3) greater than 70% stenosis according to the measurement by [[intravascular ultrasounds]]<ref name="pmid8178389">{{cite journal |vauthors=Olin JW |title=Role of duplex ultrasonography in screening for significant renal artery disease |journal=Urol Clin North Am |volume=21 |issue=2 |pages=215–26 |date=May 1994 |pmid=8178389 |doi= |url=}}</ref>.  


Present ACC/AHA recommendations do not however, include these steps and prescribe revascularization of ARAS only when it is associated with certain medical conditions mentioned as follows:
Present ACC/AHA recommendations do not, however, include these steps and prescribe [[revascularization]] of [[ARAS]] only when it is associated with certain [[medical conditions]] mentioned as follows:


1) Asymptomatic stenosis:  Percutaneous revascularization can be considered for the treatment of:
1) Asymptomatic [[stenosis]][[Percutaneous revascularization]] can be considered for the treatment of:


*An asymptomatic bilateral
*An asymptomatic bilateral


*Solitary viable kidney with hemodynamically significant ARAS (class Jib, degree of proof II.OF.I C),.
*Solitary viable [[kidney]] with [[thermodynamically]] significant [[ARAS]] (class Jib, degree of proof II.OF.I C),.


*The efficacy of percutaneous or asymptomatic unilateral hemodynamically significant ARAS in a viable kidney is not well known and clinically unrecognized (class 11b, LOE C)
*The efficacy of [[percutaneous]] or asymptomatic unilateral hemodynamically significant [[ARAS]] in a viable kidney is not well known and clinically unrecognized (class 11b, LOE C)


2) Hypertension
2) [[Hypertension]]


*Percutaneous revascularization is used for the patients with
*[[Percutaneous revascularization]] is used for patients with
*Hemodynamically significant renal artery stenosis along with accelerated hypertension
*Hemodynamically significant [[renal artery stenosis]] along with accelerated [[hypertension]]
*Malignant hypertension
*[[Malignant hypertension]]
*Resistant hypertension
*[[Resistant hypertension]]
*In cases with hypertension and associated unilateral small kidney.
*In cases with [[hypertension]] and associated [[unilateral small kidney]].




3) Preservation of renal function
3) Preservation of [[renal function]]


*Percutaneous revascularization is helpful in patients with ARAS + Chronic progressive kidney disease with bilateral renal artery stenosis or solitary functioning kidney. (Class IIa, LOE B)
*[[Percutaneous revascularization]] is helpful in patients with [[ARAS]] + [[Chronic progressive kidney disease]] with [[bilateral renal artery stenosis]] or solitary functioning [[kidney]]. (Class IIa, LOE B)


*Also considered significant in patients with RAS and chronic renal insufficiency with unilateral renal artery stenosis. (Class IIb, LOE C)
*Also considered significant in [[patients]] with [[RAS]] and [[chronic renal insufficiency]] with [[unilateral renal artery stenosis]]. (Class IIb, LOE C)




4) Effects of renal artery stenosis on Congestive heart failure and unstable angina: Percutaneous revascularization is considered in patients with  
4) Effects of [[renal artery stenosis]] on [[Congestive heart failure]] and [[unstable angina]]: [[Percutaneous revascularization]] is considered in [[patients]] with  


*RAS + Recurrent congestive heart failure or sudden unexplained pulmonary edema. (Class I, LOE B)
*[[RAS]] + Recurrent [[congestive heart failure]] or sudden unexplained [[pulmonary edema]]. (Class I, LOE B)
*Patients with hemodynamically significant RAS along with unstable angina (Class IIa, LOE B)
*[[Patients]] with hemodynamically significant [[RAS]] along with [[unstable angina]] (Class IIa, LOE B)
 
<br />


===Percutaneous Transluminal Renal Angioplasty===
===Percutaneous Transluminal Renal Angioplasty===
Dutch Renal Artery Stenosis Intervention Cooperative (DRASTIC) did a study to compare the effects of drug treatment and PTRA. Despite the authors' claim that PTRA offered "little benefit" in comparison to pharmacological treatments, patients in the PTRA community were less likely over 12 months of follow-up to experience regression in their blood pressure regulation or renal artery occlusion.
*Dutch [[Renal Artery Stenosis]] Intervention Cooperative (DRASTIC)<ref name="pmid10749962">{{cite journal |vauthors=van Jaarsveld BC, Krijnen P, Pieterman H, Derkx FH, Deinum J, Postma CT, Dees A, Woittiez AJ, Bartelink AK, Man in 't Veld AJ, Schalekamp MA |title=The effect of balloon angioplasty on hypertension in atherosclerotic renal-artery stenosis. Dutch Renal Artery Stenosis Intervention Cooperative Study Group |journal=N Engl J Med |volume=342 |issue=14 |pages=1007–14 |date=April 2000 |pmid=10749962 |doi=10.1056/NEJM200004063421403 |url=}}</ref> did a study to compare the effects of [[drug treatment]] and [[PTRA]].  
 
*Despite the authors' claim that [[PTRA]] offered "little benefit" in comparison to [[pharmacological treatments]], [[patients]] in the [[PTRA]] community were less likely over 12 months of follow-up to experience regression in their [[blood pressure]] regulation or [[renal artery occlusion]].


===Renal Artery Stenting===
===Renal Artery Stenting===


* Renal artery stenting is considered to be the safe and one of the effective procedures involved in the management of renal artery stenosis.  
*[[Renal artery stenting]] is considered to be safe<ref name="pmid9715856">{{cite journal |vauthors=Dorros G, Jaff M, Mathiak L, Dorros II, Lowe A, Murphy K, He T |title=Four-year follow-up of Palmaz-Schatz stent revascularization as treatment for atherosclerotic renal artery stenosis |journal=Circulation |volume=98 |issue=7 |pages=642–7 |date=August 1998 |pmid=9715856 |doi=10.1161/01.cir.98.7.642 |url=}}</ref> and one of the effective<ref name="pmid9017938">{{cite journal |vauthors=Blum U, Krumme B, Flügel P, Gabelmann A, Lehnert T, Buitrago-Tellez C, Schollmeyer P, Langer M |title=Treatment of ostial renal-artery stenoses with vascular endoprostheses after unsuccessful balloon angioplasty |journal=N Engl J Med |volume=336 |issue=7 |pages=459–65 |date=February 1997 |pmid=9017938 |doi=10.1056/NEJM199702133360702 |url=}}</ref> procedures involved in the management of [[renal artery stenosis]].
* In a meta analysis conducted in the past showed promising results with stent placement along with higher success rates (98% vs 77%) and less risk of restenosis (17% vs 26%) as compare to what with PTRA.
*In a meta-analysis conducted in the past showed promising results with [[stent placement]] along with higher [[success rates]] (98% vs 77%) and less risk of [[restenosis]] (17% vs 26%)<ref name="pmid10887230">{{cite journal |vauthors=Leertouwer TC, Gussenhoven EJ, Bosch JL, van Jaarsveld BC, van Dijk LC, Deinum J, Man In 't Veld AJ |title=Stent placement for renal arterial stenosis: where do we stand? A meta-analysis |journal=Radiology |volume=216 |issue=1 |pages=78–85 |date=July 2000 |pmid=10887230 |doi=10.1148/radiology.216.1.r00jl0778 |url=}}</ref> as compared to what with [[PTRA]].
* A randomized analysis revealed the effectiveness of renal stenting versus PTRA for rapid procedural success (88% versus 57%) and lower rates of restenosis (14 percent vs 48 percent , respectively) 70.
*A randomized analysis revealed the effectiveness of [[renal stenting]] versus [[PTRA]] for rapid procedural success (88% versus 57%) and lower rates of [[restenosis]] (14 percent vs 48 percent, respectively) 70.
* In patients with ARAS and progressive renal insufficiency, other studies have indicated recovery or stability of renal function after unilateral or bilateral renal stenting..71,72
*In patients with [[ARAS]] and progressive [[renal insufficiency]], other studies have indicated recovery or stability of [[renal function]] after unilateral or [[bilateral renal stenting]]..71,72
* After therapy with at least 2 antihypertensive drugs, in patients with ARAS and hypertension (blood pressure >140/90 mm Hg), renal stenting resulted in a 20 mm Hg decrease in systolic blood pressure and 1 less antihypertensive drug.73
*After therapy with at least 2 [[antihypertensive drugs]], in patients with [[ARAS]] and [[hypertension]] (blood pressure >140/90 mm Hg), renal stenting resulted in a 20 mm Hg decrease in [[systolic blood pressure]] and 1 less [[antihypertensive drug]].73
* The ASTRAL ( Angioplasty and Stenting for Renal Artery Lesions)  and the STAR (Atherosclerotic Renal Artery Stenosis and Impaired Renal Function) trials, CORAL (Cardiovascular Outcomes in Renal Atherosclerotic Lesions) are the major trials conducted for analyzing the importance of renal artery stenting in the management of renal artery stenosis.
*The [[ASTRAL]]<ref name="pmid19907042">{{cite journal |vauthors=Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, Carr S, Chalmers N, Eadington D, Hamilton G, Lipkin G, Nicholson A, Scoble J |title=Revascularization versus medical therapy for renal-artery stenosis |journal=N Engl J Med |volume=361 |issue=20 |pages=1953–62 |date=November 2009 |pmid=19907042 |doi=10.1056/NEJMoa0905368 |url=}}</ref> ( [[Angioplasty]] and [[Stenting]] for [[Renal Artery Lesions]])  and the [[STAR]]<ref name="pmid19907042">{{cite journal |vauthors=Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, Carr S, Chalmers N, Eadington D, Hamilton G, Lipkin G, Nicholson A, Scoble J |title=Revascularization versus medical therapy for renal-artery stenosis |journal=N Engl J Med |volume=361 |issue=20 |pages=1953–62 |date=November 2009 |pmid=19907042 |doi=10.1056/NEJMoa0905368 |url=}}</ref> (Atherosclerotic Renal Artery Stenosis and Impaired Renal Function) trials, CORAL<ref name="pmid16824832">{{cite journal |vauthors=Cooper CJ, Murphy TP, Matsumoto A, Steffes M, Cohen DJ, Jaff M, Kuntz R, Jamerson K, Reid D, Rosenfield K, Rundback J, D'Agostino R, Henrich W, Dworkin L |title=Stent revascularization for the prevention of cardiovascular and renal events among patients with renal artery stenosis and systolic hypertension: rationale and design of the CORAL trial |journal=Am Heart J |volume=152 |issue=1 |pages=59–66 |date=July 2006 |pmid=16824832 |doi=10.1016/j.ahj.2005.09.011 |url=}}</ref> (Cardiovascular Outcomes in [[Renal]] [[Atherosclerotic]] Lesions) are the major trials conducted for analyzing the importance of [[renal artery stenting]] in the management of [[renal artery stenosis]].


===Additional Interventional Procedures===
===Additional Interventional Procedures===
Although brachytherapy and cutting balloon atherotomy have been used successfully for renal artery in-stent restenosis,77,78 long-term outcomes are unknown. Use of coronary drug-eluting stents has also been described for small renal arteries,79 but well-designed studies to determine the adequate dosing of the eluting drug for this vessel are lacking. The largest drug-eluting stent is only 3.5 mm in diameter, an inadequate size for stenting of a renal artery (with a normal diameter of 4-7 mm). Distal embolic protection devices have also been used to capture atherosclerotic debris and prevent it from distal embolization during renal stenting,80 which may help preserve renal function.
*While [[brachytherapy]] and cutting [[balloon atherotomy]]<ref name="pmid15152154">{{cite journal |vauthors=Jahraus CD, Meigooni AS |title=Vascular brachytherapy: a new approach to renal artery in-stent restenosis |journal=J Invasive Cardiol |volume=16 |issue=4 |pages=224–7; quiz (page following) |date=April 2004 |pmid=15152154 |doi= |url=}}</ref><ref name="pmid15553312">{{cite journal |vauthors=Otah KE, Alhaddad IA |title=Intravascular ultrasound-guided cutting [[balloon angioplasty]] for [[renal artery]] [[stent]] [[restenosis]] |journal=Clin Cardiol |volume=27 |issue=10 |pages=581–3 |date=October 2004 |pmid=15553312 |pmc=6654343 |doi=10.1002/clc.4960271012 |url=}}</ref> for [[renal artery]] in-stent restenosis have been used successfully, long-term findings are uncertain.
 
*[[Coronary]] [[drug-eluting stent]] usage<ref name="pmid15619320">{{cite journal |vauthors=Granillo GA, van Dijk LC, McFadden EP, Serruys PW |title=Percutaneous radial intervention for complex bilateral renal artery stenosis using paclitaxel eluting stents |journal=Catheter Cardiovasc Interv |volume=64 |issue=1 |pages=23–7 |date=January 2005 |pmid=15619320 |doi=10.1002/ccd.20240 |url=}}</ref> has also been identified for narrow [[renal arteries]], but there is a shortage of well-designed trials to evaluate the adequate eluting drug dosage for this vessel
 
*The major [[drug-eluting stent]] is just 3.5 mm in diameter, which is an inappropriate dimension for stenting of a [[renal artery]] (with a normal diameter of 4-7 mm). In order to trap atherosclerotic debris and avoid [[distal embolization]] during [[renal stenting]], 80 distal embolic safety systems have also been used, which may help maintain [[renal function]].


===Surgery===
===Surgery===
Surgical revascularization is effective for treating ARAS; however, morbidity and mortality are higher with surgery vs stenting.59 In one of the few studies that compared surgical to percutaneous revascularization for ostial ARAS, Balzer et al81 found no significant difference in long-term morbidity or mortality, a significant improvement in durability of the result in the surgical arm, and no significant difference in blood pressure reduction (although blood pressure improved significantly from baseline in both study arms). These results suggest that surgical revascularization may be at least equivalent to PTRA for ostial ARAS.
*[[Surgical revascularization]]<ref name="pmid6700670">{{cite journal |vauthors=White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML |title=Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? |journal=N Engl J Med |volume=310 |issue=13 |pages=819–24 |date=March 1984 |pmid=6700670 |doi=10.1056/NEJM198403293101304 |url=}}</ref> is one of the effective modalities involved in the management of [[Renal artery stenosis]]. But the [[morbidity]] and [[mortality]] are higher with [[surgery]] as compared to [[stenting]].  


<br />
*In one of the few trials comparing ostial [[ARAS]] [[surgical]] [[revascularization]] with [[percutaneous revascularization]], Balzer et al81 observed no substantial difference in long-term [[morbidity]] or [[mortality]] and no significant difference in [[blood pressure]] reduction.
 
*These findings show that [[surgical revascularization]] of ostial [[ARAS]] could be at least equal to [[PTRA]].


==References==
==References==

Latest revision as of 20:25, 12 December 2020


Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Shivam Singla, M.D.[2]

Renal artery stenosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Renal artery stenosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Renal artery stenosis medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Renal artery stenosis medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Renal artery stenosis medical therapy

CDC on Renal artery stenosis medical therapy

Renal artery stenosis medical therapy in the news

Blogs on Renal artery stenosis medical therapy

Directions to Hospitals Treating Renal artery stenosis

Risk calculators and risk factors for Renal artery stenosis medical therapy

Overview

Patients with Renal artery stenosis require the widespread use of intensive medical therapy. The drugs responsible for the management of renal artery stenosis are ACE inhibitors or ARB's. These drugs inhibit the sympathetic and renin-angiotensin system resulting in controlling hypertension. In patients with bilateral renal artery stenosis, there is an associated decrease in renal function after using the ACE inhibitors and ARB, but it is neither a sensitive nor specific finding. Aggressive statin use, optimal glycemic regulation, and therapy for smoking abstinence are of vital significance. Other modalities used are renal artery revascularization, Percutaneous transluminal renal angioplasty, Renal artery stenting, brachytherapy and cutting balloon atherotomy, and surgery in complicated and nonresponding cases. Although morbidity and mortality are higher associated with surgery as compared to stenting.

Treatment

Medical Therapy

Patients with Renal artery stenosis require the widespread use of intensive medical therapy. The drugs responsible for the management of renal artery stenosis are ACE inhibitors or ARB's. These drugs inhibit the sympathetic and renin-angiotensin system resulting in controlling hypertension. In patients with bilateral renal artery stenosis, there is an associated decrease in the renal function after using the ACE inhibitors and ARB, but it is neither sensitive nor specific[1]. Aggressive statin use, optimal glycemic regulation, and therapy for smoking abstinence are of vital significance.

Aggressive use of statins, optimal glycemic control, and smoking cessation counseling is of paramount importance. The results of various medical regimens on the treatment of ARAS-related hypertension were not analyzed in a randomized clinical trial because such patients frequently have refractory hypertension and need multiple antihypertensive medicines. Medical therapy is preferred for revascularization in patients with ARAS and progressive renal disease (i.e. chronic renal dysfunction, proteinuria[>1 g/d]), diffuse intrarenal vascular disease, and renal atrophy[2].

Renal Artery Revascularization

It is less obvious and much more contentious whether patients with ARAS and hypertension would undergo surgical revascularization. According to studies patients with extreme ostial renal artery stenosis who have been successfully revascularized percutaneously do not necessarily have therapeutic benefits.

The ACC/AHA description of RAS is as follows:

(1) visually approximate stenosis of 50 percent to 70 percent diameter with a translational peak gradient of at least 20 mm Hg or a mean gradient of at least 10 mm Hg

(2) angiographic stenosis of at least 70 percent diameter

(3) greater than 70% stenosis according to the measurement by intravascular ultrasounds[3].

Present ACC/AHA recommendations do not, however, include these steps and prescribe revascularization of ARAS only when it is associated with certain medical conditions mentioned as follows:

1) Asymptomatic stenosis: Percutaneous revascularization can be considered for the treatment of:

  • An asymptomatic bilateral
  • The efficacy of percutaneous or asymptomatic unilateral hemodynamically significant ARAS in a viable kidney is not well known and clinically unrecognized (class 11b, LOE C)

2) Hypertension


3) Preservation of renal function


4) Effects of renal artery stenosis on Congestive heart failure and unstable angina: Percutaneous revascularization is considered in patients with


Percutaneous Transluminal Renal Angioplasty

Renal Artery Stenting

Additional Interventional Procedures

Surgery

References


  1. Hricik DE, Browning PJ, Kopelman R, Goorno WE, Madias NE, Dzau VJ (February 1983). "Captopril-induced functional renal insufficiency in patients with bilateral renal-artery stenoses or renal-artery stenosis in a solitary kidney". N Engl J Med. 308 (7): 373–6. doi:10.1056/NEJM198302173080706. PMID 6337327.
  2. Bokhari SW, Faxon DP (2004). "Current advances in the diagnosis and treatment of renal artery stenosis". Rev Cardiovasc Med. 5 (4): 204–15. PMID 15580159.
  3. Olin JW (May 1994). "Role of duplex ultrasonography in screening for significant renal artery disease". Urol Clin North Am. 21 (2): 215–26. PMID 8178389.
  4. van Jaarsveld BC, Krijnen P, Pieterman H, Derkx FH, Deinum J, Postma CT, Dees A, Woittiez AJ, Bartelink AK, Man in 't Veld AJ, Schalekamp MA (April 2000). "The effect of balloon angioplasty on hypertension in atherosclerotic renal-artery stenosis. Dutch Renal Artery Stenosis Intervention Cooperative Study Group". N Engl J Med. 342 (14): 1007–14. doi:10.1056/NEJM200004063421403. PMID 10749962.
  5. Dorros G, Jaff M, Mathiak L, Dorros II, Lowe A, Murphy K, He T (August 1998). "Four-year follow-up of Palmaz-Schatz stent revascularization as treatment for atherosclerotic renal artery stenosis". Circulation. 98 (7): 642–7. doi:10.1161/01.cir.98.7.642. PMID 9715856.
  6. Blum U, Krumme B, Flügel P, Gabelmann A, Lehnert T, Buitrago-Tellez C, Schollmeyer P, Langer M (February 1997). "Treatment of ostial renal-artery stenoses with vascular endoprostheses after unsuccessful balloon angioplasty". N Engl J Med. 336 (7): 459–65. doi:10.1056/NEJM199702133360702. PMID 9017938.
  7. Leertouwer TC, Gussenhoven EJ, Bosch JL, van Jaarsveld BC, van Dijk LC, Deinum J, Man In 't Veld AJ (July 2000). "Stent placement for renal arterial stenosis: where do we stand? A meta-analysis". Radiology. 216 (1): 78–85. doi:10.1148/radiology.216.1.r00jl0778. PMID 10887230.
  8. 8.0 8.1 Wheatley K, Ives N, Gray R, Kalra PA, Moss JG, Baigent C, Carr S, Chalmers N, Eadington D, Hamilton G, Lipkin G, Nicholson A, Scoble J (November 2009). "Revascularization versus medical therapy for renal-artery stenosis". N Engl J Med. 361 (20): 1953–62. doi:10.1056/NEJMoa0905368. PMID 19907042.
  9. Cooper CJ, Murphy TP, Matsumoto A, Steffes M, Cohen DJ, Jaff M, Kuntz R, Jamerson K, Reid D, Rosenfield K, Rundback J, D'Agostino R, Henrich W, Dworkin L (July 2006). "Stent revascularization for the prevention of cardiovascular and renal events among patients with renal artery stenosis and systolic hypertension: rationale and design of the CORAL trial". Am Heart J. 152 (1): 59–66. doi:10.1016/j.ahj.2005.09.011. PMID 16824832.
  10. Jahraus CD, Meigooni AS (April 2004). "Vascular brachytherapy: a new approach to renal artery in-stent restenosis". J Invasive Cardiol. 16 (4): 224–7, quiz (page following). PMID 15152154.
  11. Otah KE, Alhaddad IA (October 2004). "Intravascular ultrasound-guided cutting [[balloon angioplasty]] for [[renal artery]] [[stent]] [[restenosis]]". Clin Cardiol. 27 (10): 581–3. doi:10.1002/clc.4960271012. PMC 6654343 Check |pmc= value (help). PMID 15553312. URL–wikilink conflict (help)
  12. Granillo GA, van Dijk LC, McFadden EP, Serruys PW (January 2005). "Percutaneous radial intervention for complex bilateral renal artery stenosis using paclitaxel eluting stents". Catheter Cardiovasc Interv. 64 (1): 23–7. doi:10.1002/ccd.20240. PMID 15619320.
  13. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (March 1984). "Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis?". N Engl J Med. 310 (13): 819–24. doi:10.1056/NEJM198403293101304. PMID 6700670.