Pulmonic regurgitation overview

Jump to navigation Jump to search

Pulmonic regurgitation Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differential diagnosis

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Electrocardiogram

Chest X-Ray

Echocardiography

Cardiac MRI

Severity Assessment

Treatment

Medical Therapy

Surgical therapy

Follow up

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2], Aysha Anwar, M.B.B.S[3]

Overview

Pulmonary valve regurgitation is a condition where the pulmonary valve is not strong enough to prevent backflow into the right ventricle. Nearly all individuals have physiologic (trace-to-mild) pulmonic regurgitation, and the incidence increases with advancing age. Hence, there is a backward flow of blood from the pulmonary artery, through the pulmonary valve, and into the right ventricle of the heart during diastole.

Historical perspective

The pulmonary valve and its function of allowing blood to the lungs for nourishment was first described by Hippocrates. Erasistratus, mentioned the involvement of the pulmonary valve in the unidirectional flow. Realdo Colombo described the pulmonary circulation for the first time.[1]

Classification

Pulmonary valve regurgitation may be classified according to pulmonary valve morphology and severity of the disease. According to the pulmonary valve morphology, it may be classified into primary and secondary or functional regurgitation. Severity of disease may classify into mild, moderate and severe disease.[2][3][4]

Pathophysiology

Pathophysiologic mechanism of pulmonic regurgitation include right ventricular overload resulting in right ventricular remodelling and progressive decline in function. The rate of decline in right ventricular systolic function is affected by associated conditions such as peripheral pulmonary artery stenosis and pulmonary hypertension which further increase the severity of pulmonary regurgitation.[5]

Causes

A small percentage of pulmonic regurgitation is normal and occasionally can be heard in thin subjects. The most common causes of pulmonary regurgitation are following repair of tetralogy of Fallot and pulmonary stenosis.[6][7][8][9]

Differential Diagnosis

Epidemiology and demograpics

Risk factors

Screening

Natural history, complications and prognosis

Diagnosis

History and symptoms

Physical examination

Electrocardiogram

Chest x ray

Echocardiography

Cardiac MRI

Pulmonary angiography

Treatment

Medical therapy

Surgical therapy

Follow up

References

  1. Paraskevas, G.; Koutsouflianiotis, K.; Iliou, K. (2017). "The first descriptions of various anatomical structures and embryological remnants of the heart: A systematic overview". International Journal of Cardiology. 227: 674–690. doi:10.1016/j.ijcard.2016.10.077. ISSN 0167-5273.
  2. Chaturvedi RR, Redington AN (2007). "Pulmonary regurgitation in congenital heart disease". Heart. 93 (7): 880–9. doi:10.1136/hrt.2005.075234. PMC 1994453. PMID 17569817.
  3. Di Lullo L, Floccari F, Rivera R, Barbera V, Granata A, Otranto G; et al. (2013). "Pulmonary Hypertension and Right Heart Failure in Chronic Kidney Disease: New Challenge for 21st-Century Cardionephrologists". Cardiorenal Med. 3 (2): 96–103. doi:10.1159/000350952. PMC 3721135. PMID 23922549.
  4. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K; et al. (2010). "Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography". J Am Soc Echocardiogr. 23 (7): 685–713, quiz 786-8. doi:10.1016/j.echo.2010.05.010. PMID 20620859.
  5. Bigdelian H, Mardani D, Sedighi M (2015). "The Effect of Pulmonary Valve Replacement (PVR) Surgery on Hemodynamics of Patients Who Underwent Repair of Tetralogy of Fallot (TOF)". J Cardiovasc Thorac Res. 7 (3): 122–5. doi:10.15171/jcvtr.2015.26. PMC 4586599. PMID 26430501.
  6. Bacha EA, Scheule AM, Zurakowski D, Erickson LC, Hung J, Lang P; et al. (2001). "Long-term results after early primary repair of tetralogy of Fallot". J Thorac Cardiovasc Surg. 122 (1): 154–61. doi:10.1067/mtc.2001.115156. PMID 11436049.
  7. Jonas SN, Kligerman SJ, Burke AP, Frazier AA, White CS (2016). "Pulmonary Valve Anatomy and Abnormalities: A Pictorial Essay of Radiography, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI)". J Thorac Imaging. 31 (1): W4–12. doi:10.1097/RTI.0000000000000182. PMID 26656195.
  8. Ansari MM, Cardoso R, Garcia D, Sandhu S, Horlick E, Brinster D; et al. (2015). "Percutaneous Pulmonary Valve Implantation: Present Status and Evolving Future". J Am Coll Cardiol. 66 (20): 2246–55. doi:10.1016/j.jacc.2015.09.055. PMID 26564602.
  9. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA; et al. (2008). "ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease)". Circulation. 118 (23): 2395–451. doi:10.1161/CIRCULATIONAHA.108.190811. PMID 18997168.

Template:WikiDoc Sources