Multiple endocrine neoplasia type 2 medical therapy: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
Medical management of multiple endocrine neoplasia type 2 depends on the type of tumor involved.
Medical management of multiple endocrine neoplasia type 2 depends on the type of tumor involved.
===Medullary Thyroid Cancer===
===Medullary Thyroid Cancer===
====Pregnancy Management====
* Patients should be tested for pheochromocytoma prior to a planned pregnancy. If it is a case of unplanned pregnancy, the patient should be tested for pheochromocytoma as early as possible.
====Conventional Therapy====
====Conventional Therapy====
* The treatment of choice for primary MTC, both sporadic or hereditary, is total thyroidectomy with systematic dissection of all lymph nodes of the central compartment. Total thyroidectomy is necessary as MTC is multicentric in 65–90% of patients in MEN 2 and extensive central lymph node dissection has been reported to improve survival and recurrence rates compared to less aggressive procedures. <ref name="pmid17665245">{{cite journal| author=Machens A, Hauptmann S, Dralle H| title=Increased risk of lymph node metastasis in multifocal hereditary and sporadic medullary thyroid cancer. | journal=World J Surg | year= 2007 | volume= 31 | issue= 10 | pages= 1960-5 | pmid=17665245 | doi=10.1007/s00268-007-9185-1 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17665245  }} </ref><ref name="pmid6128962">{{cite journal| author=Russell CF, Van Heerden JA, Sizemore GW, Edis AJ, Taylor WF, ReMine WH et al.| title=The surgical management of medullary thyroid carcinoma. | journal=Ann Surg | year= 1983 | volume= 197 | issue= 1 | pages= 42-8 | pmid=6128962 | doi= | pmc=PMC1352852 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6128962  }} </ref> Lymph node dissection of laterocervical compartments is not performed on principle but only when the neck ultrasound suggests the presence of metastatic nodes.
* The treatment of choice for primary MTC, both sporadic or hereditary, is total thyroidectomy with systematic dissection of all lymph nodes of the central compartment. Total thyroidectomy is necessary as MTC is multicentric in 65–90% of patients in MEN 2 and extensive central lymph node dissection has been reported to improve survival and recurrence rates compared to less aggressive procedures. <ref name="pmid17665245">{{cite journal| author=Machens A, Hauptmann S, Dralle H| title=Increased risk of lymph node metastasis in multifocal hereditary and sporadic medullary thyroid cancer. | journal=World J Surg | year= 2007 | volume= 31 | issue= 10 | pages= 1960-5 | pmid=17665245 | doi=10.1007/s00268-007-9185-1 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=17665245  }} </ref><ref name="pmid6128962">{{cite journal| author=Russell CF, Van Heerden JA, Sizemore GW, Edis AJ, Taylor WF, ReMine WH et al.| title=The surgical management of medullary thyroid carcinoma. | journal=Ann Surg | year= 1983 | volume= 197 | issue= 1 | pages= 42-8 | pmid=6128962 | doi= | pmc=PMC1352852 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6128962  }} </ref> Lymph node dissection of laterocervical compartments is not performed on principle but only when the neck ultrasound suggests the presence of metastatic nodes.

Revision as of 17:22, 23 September 2015

Multiple endocrine neoplasia type 2 Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Multiple endocrine neoplasia type 2 from other Diseases

Epidemiology & Demographics

Risk Factors

Screening

Natural History, Complications & Prognosis

Diagnosis

Diagnostic Criteria

History & Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Multiple endocrine neoplasia type 2 medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Multiple endocrine neoplasia type 2 medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Multiple endocrine neoplasia type 2 medical therapy

CDC on Multiple endocrine neoplasia type 2 medical therapy

Multiple endocrine neoplasia type 2 medical therapy in the news

Blogs on Multiple endocrine neoplasia type 2 medical therapy

Directions to Hospitals Treating Multiple endocrine neoplasia type 2

Risk calculators and risk factors for Multiple endocrine neoplasia type 2 medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ammu Susheela, M.D. [2]

Overview

Medical Therapy

Medical management of multiple endocrine neoplasia type 2 depends on the type of tumor involved.

Medullary Thyroid Cancer

Pregnancy Management

  • Patients should be tested for pheochromocytoma prior to a planned pregnancy. If it is a case of unplanned pregnancy, the patient should be tested for pheochromocytoma as early as possible.

Conventional Therapy

  • The treatment of choice for primary MTC, both sporadic or hereditary, is total thyroidectomy with systematic dissection of all lymph nodes of the central compartment. Total thyroidectomy is necessary as MTC is multicentric in 65–90% of patients in MEN 2 and extensive central lymph node dissection has been reported to improve survival and recurrence rates compared to less aggressive procedures. [1][2] Lymph node dissection of laterocervical compartments is not performed on principle but only when the neck ultrasound suggests the presence of metastatic nodes.
  • Endoscopic adrenal-sparing surgery has become the method of choice for the surgical therapy of PHEO. [3]In cases with an asynchronous development of PHEO, the adrenal gland without PHEO can be preserved, but the patient must be aware that the probability to repeat the surgical treatment in the near future is very high. The advantage of a monolateral adrenal surgery is the possibility to avoid substitutive therapy until the second surgery will be performed.
  • The parathyroid glands are frequently found to be enlarged at the time of the thyroidectomy for MTC and should, therefore, be carefully evaluated. The goal in MEN 2 patients with PHPT is to excise the enlarged glands and to leave at least one apparently normal parathyroid gland intact. If all glands are enlarged, a subtotal parathyroidectomy or total parathyroidectomy with autotransplantation should be performed. In patients with persistent or recurrent PHPT, the long-term oral administration of calcimimetic drugs as cinacalcet to achieve long-term reductions in serum calcium and PTH concentration should be considered.

Target Therapy for Persistent MTC

  • Thirty percent of MTC patients, especially in MEN 2B and 2A, are not cured by surgery. They remain affected and can develop, if not already present at the time of the diagnosis, distant metastasis in the lungs, liver, bone and, more rarely, brain. Several studies demonstrated that conventional therapies, such as chemotherapy and radiotherapy, did not determine any clinical benefit.[4][5] Until few years ago, patients with advanced and progressive MTC were “orphan” of drugs. Recently, developed molecular therapeutics that target the RETpathway have shown very promising activity in clinical trials of patients with advanced MTC.[6] In the majority of cases, the drug is a multityrosine kinase inhibitor (TKI) with the ability to block not only retbutalsoone or more of the vascular endothelial growth factor receptors (VEGF-R) as well as C-MET and/or C-KIT or FLT3 and/or other kinases. Vandetanib has been recently approved both by FDA (Food and Drug Administration) and EMA (European Medical Agency) for the treatment of advanced and progressive MTC. Other TKIs, such as sorafenib, sunitinib, motesanib, lenvatinib, AND cabozantinib, are still under investigation either in official phase II/III clinical trials or in “off-label” studies [99]. Although very promising, further studies and longer followup are needed to better evaluate the clinical benefits in terms of progression-free survival and overall survival as compared to the discomfort determined by the side effects which is not negligible. Among several, the most severe and intolerable side effects are anorexia, weight loss, and fatigue, which are difficult to be controlled. Others, such as hypertension or skin lesions can be managed with standard care procedures.
  • Vandetanib has been recommended for the treatment of advanced metastatic medullary thyroid cancer.

Radiation Therapy

  • External beam radiation therapy
  • Intensity modulated radiation therapy

Contraindicated Medications

  • Dopamine D2 receptor antagonists
  • Beta adrenergic receptor antagonists


Reference

  1. Machens A, Hauptmann S, Dralle H (2007). "Increased risk of lymph node metastasis in multifocal hereditary and sporadic medullary thyroid cancer". World J Surg. 31 (10): 1960–5. doi:10.1007/s00268-007-9185-1. PMID 17665245.
  2. Russell CF, Van Heerden JA, Sizemore GW, Edis AJ, Taylor WF, ReMine WH; et al. (1983). "The surgical management of medullary thyroid carcinoma". Ann Surg. 197 (1): 42–8. PMC 1352852. PMID 6128962.
  3. Walz MK, Alesina PF (2009). "Single access retroperitoneoscopic adrenalectomy (SARA)--one step beyond in endocrine surgery". Langenbecks Arch Surg. 394 (3): 447–50. doi:10.1007/s00423-008-0418-z. PMID 18784938.
  4. Schmoldt A, Benthe HF, Haberland G (1975). "Digitoxin metabolism by rat liver microsomes". Biochem Pharmacol. 24 (17): 1639–41. PMID http://dx.doi.org/10.1210/jc.2008-0923 Check |pmid= value (help).
  5. Schmoldt A, Benthe HF, Haberland G (1975). "Digitoxin metabolism by rat liver microsomes". Biochem Pharmacol. 24 (17): 1639–41. PMID http://dx.doi.org/10.1016/j.clon.2010.03.014 Check |pmid= value (help).
  6. Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M; et al. (2012). "Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial". J Clin Oncol. 30 (2): 134–41. doi:10.1200/JCO.2011.35.5040. PMC 3675689. PMID 22025146.