Cathepsin G: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS (v470))
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Cathepsin G''' is a [[protein]] that in humans is encoded by the ''CTSG'' [[gene]]. It is one of the three [[serine proteases]] of the [[chymotrypsin]] family that are stored in the [[azurophil]] granules, and also a member of the [[peptidase S1 protein family]], Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.<ref name="pmid5303065">{{cite journal | vauthors = Janoff A, Scherer J | title = Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes | journal = The Journal of Experimental Medicine | volume = 128 | issue = 5 | pages = 1137–55 | date = November 1968 | pmid = 5303065 | doi=10.1084/jem.128.5.1137 | pmc=2138566}}</ref><ref name="pmid3198760">{{cite journal | vauthors = Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR | title = Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters | journal = The Journal of Clinical Investigation | volume = 82 | issue = 6 | pages = 1963–73 | date = December 1988 | pmid = 3198760 | doi = 10.1172/JCI113816 | pmc=442778}}</ref><ref name="pmid399884">{{cite journal | vauthors = Baggiolini M, Schnyder J, Bretz U, Dewald B, Ruch W | title = Cellular mechanisms of proteinase release from inflammatory cells and the degradation of extracellular proteins | journal = Ciba Foundation Symposium | issue = 75 | pages = 105–21 | date = 1979 | pmid = 399884 }}</ref><ref name="pmid6566611">{{cite journal | vauthors = Virca GD, Metz G, Schnebli HP | title = Similarities between human and rat leukocyte elastase and cathepsin G | journal = European Journal of Biochemistry / FEBS | volume = 144 | issue = 1 | pages = 1–9 | date = October 1984 | pmid = 6566611 | doi=10.1111/j.1432-1033.1984.tb08423.x}}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
==Structure==
{{GNF_Protein_box
| image = PBB_Protein_CTSG_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1au8.
| PDB = {{PDB2|1au8}}, {{PDB2|1cgh}}, {{PDB2|1kyn}}, {{PDB2|1t32}}
| Name = Cathepsin G
| HGNCid = 2532
| Symbol = CTSG
| AltSymbols =; CG; MGC23078
| OMIM = 116830
| ECnumber = 
| Homologene = 20450
| MGIid = 88563
| GeneAtlas_image1 = PBB_GE_CTSG_205653_at_tn.png
| Function = {{GNF_GO|id=GO:0004261 |text = cathepsin G activity}} {{GNF_GO|id=GO:0008233 |text = peptidase activity}}
| Component = {{GNF_GO|id=GO:0005626 |text = insoluble fraction}}
| Process = {{GNF_GO|id=GO:0006508 |text = proteolysis}} {{GNF_GO|id=GO:0006955 |text = immune response}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 1511
    | Hs_Ensembl = ENSG00000100448
    | Hs_RefseqProtein = NP_001902
    | Hs_RefseqmRNA = NM_001911
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 14
    | Hs_GenLoc_start = 24112564
    | Hs_GenLoc_end = 24115306
    | Hs_Uniprot = P08311
    | Mm_EntrezGene = 13035
    | Mm_Ensembl = ENSMUSG00000040314
    | Mm_RefseqmRNA = NM_007800
    | Mm_RefseqProtein = NP_031826
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 14
    | Mm_GenLoc_start = 55053952
    | Mm_GenLoc_end = 55056645
    | Mm_Uniprot = Q059V7
  }}
}}
'''Cathepsin G''', also known as '''CTSG''', is a human [[gene]].


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
===Gene===
{{PBB_Summary
The '''CTSG''' gene is located at [[chromosome 14]]q11.2, consisting of 5 [[exons]]. Each residue of the [[catalytic]] triad is located on a separate exon. Five [[Genetic polymorphism|polymorphism]]s have been identified by scanning the entire [[coding region]].<ref name="pmid11557685">{{cite journal | vauthors = Herrmann SM, Funke-Kaiser H, Schmidt-Petersen K, Nicaud V, Gautier-Bertrand M, Evans A, Kee F, Arveiler D, Morrison C, Orzechowski HD, Elbaz A, Amarenco P, Cambien F, Paul M | title = Characterization of polymorphic structure of cathepsin G gene: role in cardiovascular and cerebrovascular diseases | journal = Arteriosclerosis, Thrombosis, and Vascular Biology | volume = 21 | issue = 9 | pages = 1538–43 | date = September 2001 | pmid = 11557685 | doi=10.1161/hq0901.095555}}</ref> Cathepsin G is one of those homologous protease that evolved from a common ancestor by gene duplication.<ref name="pmid1801740">{{cite journal | vauthors = Salvesen G, Enghild JJ | title = Zymogen activation specificity and genomic structures of human neutrophil elastase and cathepsin G reveal a new branch of the chymotrypsinogen superfamily of serine proteinases | journal = Biomedica Biochimica Acta | volume = 50 | issue = 4-6 | pages = 665–71 | date = 1991 | pmid = 1801740 }}</ref>
| section_title =  
| summary_text = The protein encoded by this gene, a member of the peptidase S1 protein family, is found in azurophil granules of neutrophilic polymorphonuclear leukocytes. The encoded protease has a specificity similar to that of chymotrypsin C, and may participate in the killing and digestion of engulfed pathogens, and in connective tissue remodeling at sites of inflammation. Transcript variants utilizing alternative polyadenylation signals exist for this gene.<ref>{{cite web | title = Entrez Gene: CTSG cathepsin G| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1511| accessdate = }}</ref>
}}


==References==
===Protein===
{{reflist|2}}
Cathepsin G is a 255-[[amino-acid]]-residue protein including an 18-residue signal peptide, a two-residue activation peptide at the [[N-terminus]] and a [[carboxy terminal]] extension.<ref name="pmid3304423">{{cite journal | vauthors = Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J | title = Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases | journal = Biochemistry | volume = 26 | issue = 8 | pages = 2289–93 | date = April 1987 | pmid = 3304423 | doi=10.1021/bi00382a032}}</ref> The activity of cathepsin G depends on a catalytic triad composed of [[aspartate]], [[histidine]] and [[serine]] residues which are widely separated in the primary sequence but close to each other at the active site of the enzyme in the [[tertiary structure]].<ref name="pmid18021746">{{cite journal | vauthors = Korkmaz B, Moreau T, Gauthier F | title = Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions | journal = Biochimie | volume = 90 | issue = 2 | pages = 227–42 | date = February 2008 | pmid = 18021746 | doi = 10.1016/j.biochi.2007.10.009 }}</ref>
==Further reading==
 
{{refbegin | 2}}
== Function ==
{{PBB_Further_reading
 
| citations =  
Cathepsin G has a specificity similar to that of [[chymotrypsin C]], but it is most closely related to other immune serine proteases, such as [[neutrophil elastase]] and the [[granzyme]]s.<ref name="Thomas">{{cite journal | vauthors = Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walch M, Lieberman J | title = Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins | journal = Journal of Immunology | volume = 192 | issue = 11 | pages = 5390–7 | date = June 2014 | pmid = 24771851 | pmc = 4041364 | doi = 10.4049/jimmunol.1303296 }}</ref> As a neutrophil serine protease, was first identified as degradative enzyme that acts intracellularly to degrade ingested host pathogens and extracellularly in the breakdown of [[Extracellular matrix|ECM]] components at inflammatory sites.<ref name="pmid16799473">{{cite journal | vauthors = Pham CT | title = Neutrophil serine proteases: specific regulators of inflammation | journal = Nature Reviews. Immunology | volume = 6 | issue = 7 | pages = 541–50 | date = July 2006 | pmid = 16799473 | doi = 10.1038/nri1841 }}</ref> It localizes to [[Neutrophil extracellular traps]] (NETs), via its high affinity for [[DNA]], an unusual property for serine proteases.<ref name="Thomas" /> Transcript variants utilizing alternative polyadenylation signals exist for this gene.<ref>{{cite web | title = Entrez Gene: CTSG cathepsin G| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1511| accessdate = }}</ref> Cathepsin G was also found to exert broad-spectrum antibacterial action against Gram-negative and –positive bacteria independent of the function mentioned above.<ref name="pmid1985886">{{cite journal | vauthors = Shafer WM, Pohl J, Onunka VC, Bangalore N, Travis J | title = Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide | journal = The Journal of Biological Chemistry | volume = 266 | issue = 1 | pages = 112–6 | date = January 1991 | pmid = 1985886 }}</ref> Other functions of cathepsin G have been reported, including cleavage of [[Receptor (biochemistry)|receptor]]s, conversion of [[angiotensin]] Ⅰ to angiotensin Ⅱ, [[platelet]] activation, and induction of airway submucosal gland secretion.<ref name="pmid14688365">{{cite journal | vauthors = Beaufort N, Leduc D, Rousselle JC, Magdolen V, Luther T, Namane A, Chignard M, Pidard D | title = Proteolytic regulation of the urokinase receptor/CD87 on monocytic cells by neutrophil elastase and cathepsin G | journal = Journal of Immunology | volume = 172 | issue = 1 | pages = 540–9 | date = January 2004 | pmid = 14688365 | doi=10.4049/jimmunol.172.1.540}}</ref><ref name="pmid11272269">{{cite journal | vauthors = Bank U, Ansorge S | title = More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control | journal = Journal of Leukocyte Biology | volume = 69 | issue = 2 | pages = 197–206 | date = February 2001 | pmid = 11272269 }}</ref><ref name="pmid6807977">{{cite journal | vauthors = Reilly CF, Tewksbury DA, Schechter NM, Travis J | title = Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases | journal = The Journal of Biological Chemistry | volume = 257 | issue = 15 | pages = 8619–22 | date = August 1982 | pmid = 6807977 }}</ref><ref name="pmid10702240">{{cite journal | vauthors = Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR | title = Cathepsin G activates protease-activated receptor-4 in human platelets | journal = The Journal of Biological Chemistry | volume = 275 | issue = 10 | pages = 6819–23 | date = March 2000 | pmid = 10702240 | doi=10.1074/jbc.275.10.6819}}</ref><ref name="pmid1892327">{{cite journal | vauthors = Nadel JA | title = Role of mast cell and neutrophil proteases in airway secretion | journal = The American Review of Respiratory Disease | volume = 144 | issue = 3 Pt 2 | pages = S48-51 | date = September 1991 | pmid = 1892327 | doi = 10.1164/ajrccm/144.3_pt_2.S48 }}</ref> Potential implications of the enzyme in [[Blood–brain barrier|blood-brain barrier]] breakdown was also found.<ref>{{cite journal | vauthors = Armao D, Kornfeld M, Estrada EY, Grossetete M, Rosenberg GA | title = Neutral proteases and disruption of the blood-brain barrier in rat | journal = Brain Research | volume = 767 | issue = 2 | pages = 259–64 | date = September 1997 | pmid = 9367256 | doi = 10.1016/S0006-8993(97)00567-2 }}</ref>
*{{cite journal  | author=Shafer WM, Katzif S, Bowers S, ''et al.'' |title=Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens. |journal=Curr. Pharm. Des. |volume=8 |issue= 9 |pages= 695-702 |year= 2002 |pmid= 11945165 |doi= }}
 
*{{cite journal | author=Cohen AB, Stevens MD, Miller EJ, ''et al.'' |title=Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated human platelets. |journal=Am. J. Physiol. |volume=263 |issue= 2 Pt 1 |pages= L249-56 |year= 1992 |pmid= 1387511 |doi= }}
== Clinical significance ==
*{{cite journal | author=Sasaki T, Ueno-Matsuda E |title=Immunocytochemical localization of cathepsins B and G in odontoclasts of human deciduous teeth. |journal=J. Dent. Res. |volume=71 |issue= 12 |pages= 1881-4 |year= 1993 |pmid= 1452887 |doi= }}
 
*{{cite journal  | author=Maison CM, Villiers CL, Colomb MG |title=Proteolysis of C3 on U937 cell plasma membranes. Purification of cathepsin G. |journal=J. Immunol. |volume=147 |issue= 3 |pages= 921-6 |year= 1991 |pmid= 1861080 |doi= }}
Cathepsin G has been reported to play an important role in a variety of diseases, including [[rheumatoid arthritis]], [[coronary artery disease]], [[periodontitis]], [[ischemic reperfusion injury]], and bone metastasis.<ref name="pmid17414958">{{cite journal | vauthors = Szekanecz Z, Koch AE | title = Macrophages and their products in rheumatoid arthritis | journal = Current Opinion in Rheumatology | volume = 19 | issue = 3 | pages = 289–95 | date = May 2007 | pmid = 17414958 | doi = 10.1097/BOR.0b013e32805e87ae }}</ref><ref name="pmid17269686">{{cite journal | vauthors = Takei T, Sakai S, Yokonuma T, Ijima H, Kawakami K | title = Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers | journal = Biotechnology Progress | volume = 23 | issue = 1 | pages = 182–6 | date = Jan–Feb 2007 | pmid = 17269686 | doi = 10.1021/bp060152j }}</ref><ref name="pmid26467359">{{cite journal | vauthors = Liu R, Chen L, Wu W, Chen H, Zhang S | title = Neutrophil serine proteases and their endogenous inhibitors in coronary artery ectasia patients | journal = [[Anatolian Journal of Cardiology]] | volume = 16 | issue = 1 | pages = 23–8 | date = January 2016 | pmid = 26467359 | doi = 10.5152/akd.2015.6072 }}</ref><ref name="pmid17030385">{{cite journal | vauthors = Komine K, Kuroishi T, Ozawa A, Komine Y, Minami T, Shimauchi H, Sugawara S | title = Cleaved inflammatory lactoferrin peptides in parotid saliva of periodontitis patients | journal = Molecular Immunology | volume = 44 | issue = 7 | pages = 1498–508 | date = March 2007 | pmid = 17030385 | doi = 10.1016/j.molimm.2006.09.003 }}</ref><ref name="pmid17322378">{{cite journal | vauthors = Shimoda N, Fukazawa N, Nonomura K, Fairchild RL | title = Cathepsin g is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys | journal = The American Journal of Pathology | volume = 170 | issue = 3 | pages = 930–40 | date = March 2007 | pmid = 17322378 | doi = 10.2353/ajpath.2007.060486 | pmc=1864870}}</ref> It is also implicated in a variety of infectious inflammatory diseases, including chronic obstructive pulmonary disease, acute respiratory distress syndrome, and cystic fibrosis.<ref name="pmid12223222">{{cite journal | vauthors = Kawabata K, Hagio T, Matsuoka S | title = The role of neutrophil elastase in acute lung injury | journal = European Journal of Pharmacology | volume = 451 | issue = 1 | pages = 1–10 | date = September 2002 | pmid = 12223222 | doi=10.1016/s0014-2999(02)02182-9}}</ref><ref name="pmid12682439">{{cite journal | vauthors = Moraes TJ, Chow CW, Downey GP | title = Proteases and lung injury | journal = Critical Care Medicine | volume = 31 | issue = 4 Suppl | pages = S189-94 | date = April 2003 | pmid = 12682439 | doi = 10.1097/01.CCM.0000057842.90746.1E }}</ref><ref name="pmid26185359">{{cite journal | vauthors = Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S | title = The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung | journal = Mediators of Inflammation | volume = 2015 | pages = 293053 | date = 2015 | pmid = 26185359 | doi = 10.1155/2015/293053 | pmc=4491392}}</ref> A recent study shows that patients with ''CTSG'' gene polymorphisms have higher risk of chronic postsurgical pain, suggesting cathepsin G may serve as a novel target for pain control and a potential marker to predict chronic postsurgical pain.<ref name="pmid26270939">{{cite journal | vauthors = Liu X, Tian Y, Meng Z, Chen Y, Ho IH, Choy KW, Lichtner P, Wong SH, Yu J, Gin T, Wu WK, Cheng CH, Chan MT | title = Up-regulation of Cathepsin G in the Development of Chronic Postsurgical Pain: An Experimental and Clinical Genetic Study | journal = Anesthesiology | volume = 123 | issue = 4 | pages = 838–50 | date = October 2015 | pmid = 26270939 | doi = 10.1097/ALN.0000000000000828 }}</ref> An upregulation of cathepsin G was reported in studies of [[keratoconus]].<ref name="kerato">{{cite journal | vauthors = Whitelock RB, Fukuchi T, Zhou L, Twining SS, Sugar J, Feder RS, Yue BY | title = Cathepsin G, acid phosphatase, and alpha 1-proteinase inhibitor messenger RNA levels in keratoconus corneas | journal = Investigative Ophthalmology & Visual Science | volume = 38 | issue = 2 | pages = 529–34 | date = February 1997 | pmid = 9040486 }}</ref>
*{{cite journal | author=Brandt E, Van Damme J, Flad HD |title=Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III. |journal=Cytokine |volume=3 |issue= 4 |pages= 311-21 |year= 1991 |pmid= 1873479 |doi=  }}
 
*{{cite journal | author=Kargi HA, Campbell EJ, Kuhn C |title=Elastase and cathepsin G of human monocytes: heterogeneity and subcellular localization to peroxidase-positive granules. |journal=J. Histochem. Cytochem. |volume=38 |issue= 8 |pages= 1179-86 |year= 1990 |pmid= 2164060 |doi= }}
== Interactions ==
*{{cite journal | author=Pratt CW, Tobin RB, Church FC |title=Interaction of heparin cofactor II with neutrophil elastase and cathepsin G. |journal=J. Biol. Chem. |volume=265 |issue= 11 |pages= 6092-7 |year= 1990 |pmid= 2318847 |doi=  }}
 
*{{cite journal | author=Gabay JE, Scott RW, Campanelli D, ''et al.'' |title=Antibiotic proteins of human polymorphonuclear leukocytes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=86 |issue= 14 |pages= 5610-4 |year= 1989 |pmid= 2501794 |doi=  }}
Cathepsin G has been found to [[Protein-protein interaction|interact]]  with:
*{{cite journal | author=Hohn PA, Popescu NC, Hanson RD, ''et al.'' |title=Genomic organization and chromosomal localization of the human cathepsin G gene. |journal=J. Biol. Chem. |volume=264 |issue= 23 |pages= 13412-9 |year= 1989 |pmid= 2569462 |doi= }}
* [[SERPINB1]]<ref name="pmid23532733">{{cite journal | vauthors = Baumann M, Pham CT, Benarafa C | title = SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G | journal = Blood | volume = 121 | issue = 19 | pages = 3900–7, S1-6 | date = May 2013 | pmid = 23532733 | doi = 10.1182/blood-2012-09-455022 | pmc=3650706}}</ref>
*{{cite journal | author=Livesey SA, Buescher ES, Krannig GL, ''et al.'' |title=Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens. |journal=Scanning Microsc. Suppl. |volume=3 |issue= |pages= 231-9; discussion 239-40 |year= 1990 |pmid= 2616953 |doi= }}
Cathepsin G is [[enzyme inhibitor|inhibited]] by:
*{{cite journal | author=Campbell EJ, Silverman EK, Campbell MA |title=Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. |journal=J. Immunol. |volume=143 |issue= 9 |pages= 2961-8 |year= 1989 |pmid= 2681419 |doi= }}
*  [2-[3-[[(1-benzoyl-4-piperidinyl)methylamino]carbonyl]-2-naphthalenyl]-1-(1-naphthalenyl)-2-oxoethyl]-phosphonic acid (KPA) <ref name="pmid22759782">{{cite journal | vauthors = Son ED, Shim JH, Choi H, Kim H, Lim KM, Chung JH, Byun SY, Lee TR | title = Cathepsin G inhibitor prevents ultraviolet B-induced photoaging in hairless mice via inhibition of fibronectin fragmentation | journal = Dermatology | volume = 224 | issue = 4 | pages = 352–60 | date = 2012 | pmid = 22759782 | doi = 10.1159/000339337 }}</ref>
*{{cite journal | author=Salvesen G, Farley D, Shuman J, ''et al.'' |title=Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. |journal=Biochemistry |volume=26 |issue= 8 |pages= 2289-93 |year= 1987 |pmid= 3304423 |doi= }}
* ''[[Caesalpinia echinata]]'' elastase inhibitor<ref name="pmid24140156">{{cite journal | vauthors = Cruz-Silva I, Neuhof C, Gozzo AJ, Nunes VA, Hirata IY, Sampaio MU, Figueiredo-Ribeiro Rde C, Neuhof H, Araújo Mda S | title = Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema | journal = Phytochemistry | volume = 96 | pages = 235–43 | date = December 2013 | pmid = 24140156 | doi = 10.1016/j.phytochem.2013.09.025 }}</ref>
*{{cite journal | author=Heck LW, Rostand KS, Hunter FA, Bhown A |title=Isolation, characterization, and amino-terminal amino acid sequence analysis of human neutrophil cathepsin G from normal donors. |journal=Anal. Biochem. |volume=158 |issue= 1 |pages= 217-27 |year= 1987 |pmid= 3799965 |doi= }}
* [[N-Arylacyl O-sulfonated aminoglycosides]]<ref name="pmid26850997">{{cite journal | vauthors = Craciun I, Fenner AM, Kerns RJ | title = N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3 | journal = Glycobiology | date = February 2016 | pmid = 26850997 | doi = 10.1093/glycob/cww011 | volume=26 | pages=701–9}}</ref>
*{{cite journal | author=Crocker J, Jenkins R, Burnett D |title=Immunohistochemical localization of cathepsin G in human tissues. |journal=Am. J. Surg. Pathol. |volume=9 |issue= 5 |pages= 338-43 |year= 1986 |pmid= 3911778 |doi= }}
Cathepsin G lowers levels of:
*{{cite journal | author=Klickstein LB, Kaempfer CE, Wintroub BU |title=The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G. |journal=J. Biol. Chem. |volume=257 |issue= 24 |pages= 15042-6 |year= 1983 |pmid= 6294088 |doi= }}
* [[Low-density lipoprotein]]<ref name="pmid25092171">{{cite journal | vauthors = Wang J, Sjöberg S, Tang TT, Oörni K, Wu W, Liu C, Secco B, Tia V, Sukhova GK, Fernandes C, Lesner A, Kovanen PT, Libby P, Cheng X, Shi GP | title = Cathepsin G activity lowers plasma LDL and reduces atherosclerosis | journal = Biochimica et Biophysica Acta | volume = 1842 | issue = 11 | pages = 2174–83 | date = November 2014 | pmid = 25092171 | doi = 10.1016/j.bbadis.2014.07.026 | pmc=4188792}}</ref>
*{{cite journal | author=LaRosa CA, Rohrer MJ, Benoit SE, ''et al.'' |title=Neutrophil cathepsin G modulates the platelet surface expression of the glycoprotein (GP) Ib-IX complex by proteolysis of the von Willebrand factor binding site on GPIb alpha and by a cytoskeletal-mediated redistribution of the remainder of the complex. |journal=Blood |volume=84 |issue= 1 |pages= 158-68 |year= 1994 |pmid= 7517206 |doi= }}
 
*{{cite journal | author=Owen CA, Campbell MA, Sannes PL, ''et al.'' |title=Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. |journal=J. Cell Biol. |volume=131 |issue= 3 |pages= 775-89 |year= 1995 |pmid= 7593196 |doi=  }}
== See also ==
*{{cite journal | author=Savage MJ, Iqbal M, Loh T, ''et al.'' |title=Cathepsin G: localization in human cerebral cortex and generation of amyloidogenic fragments from the beta-amyloid precursor protein. |journal=Neuroscience |volume=60 |issue= 3 |pages= 607-19 |year= 1994 |pmid= 7936190 |doi= }}
*[[Cathepsin]]s
*{{cite journal | author=Grisolano JL, Sclar GM, Ley TJ |title=Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=91 |issue= 19 |pages= 8989-93 |year= 1994 |pmid= 8090757 |doi=  }}
 
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
== References ==
}}
{{reflist|33em}}
 
== Further reading ==
{{refbegin|33em}}
* {{cite journal | vauthors = Shafer WM, Katzif S, Bowers S, Fallon M, Hubalek M, Reed MS, Veprek P, Pohl J | title = Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens | journal = Current Pharmaceutical Design | volume = 8 | issue = 9 | pages = 695–702 | year = 2002 | pmid = 11945165 | doi = 10.2174/1381612023395376 }}
* {{cite journal | vauthors = Cohen AB, Stevens MD, Miller EJ, Atkinson MA, Mullenbach G | title = Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated human platelets | journal = The American Journal of Physiology | volume = 263 | issue = 2 Pt 1 | pages = L249-56 | date = August 1992 | pmid = 1387511 | doi =  }}
* {{cite journal | vauthors = Sasaki T, Ueno-Matsuda E | title = Immunocytochemical localization of cathepsins B and G in odontoclasts of human deciduous teeth | journal = Journal of Dental Research | volume = 71 | issue = 12 | pages = 1881–4 | date = December 1992 | pmid = 1452887 | doi = 10.1177/00220345920710120501 }}
* {{cite journal | vauthors = Maison CM, Villiers CL, Colomb MG | title = Proteolysis of C3 on U937 cell plasma membranes. Purification of cathepsin G | journal = Journal of Immunology | volume = 147 | issue = 3 | pages = 921–6 | date = August 1991 | pmid = 1861080 | doi =  }}
* {{cite journal | vauthors = Brandt E, Van Damme J, Flad HD | title = Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III | journal = Cytokine | volume = 3 | issue = 4 | pages = 311–21 | date = July 1991 | pmid = 1873479 | doi = 10.1016/1043-4666(91)90499-4 }}
* {{cite journal | vauthors = Kargi HA, Campbell EJ, Kuhn C | title = Elastase and cathepsin G of human monocytes: heterogeneity and subcellular localization to peroxidase-positive granules | journal = The Journal of Histochemistry and Cytochemistry | volume = 38 | issue = 8 | pages = 1179–86 | date = August 1990 | pmid = 2164060 | doi = 10.1177/38.8.2164060 }}
* {{cite journal | vauthors = Pratt CW, Tobin RB, Church FC | title = Interaction of heparin cofactor II with neutrophil elastase and cathepsin G | journal = The Journal of Biological Chemistry | volume = 265 | issue = 11 | pages = 6092–7 | date = April 1990 | pmid = 2318847 | doi =  }}
* {{cite journal | vauthors = Gabay JE, Scott RW, Campanelli D, Griffith J, Wilde C, Marra MN, Seeger M, Nathan CF | title = Antibiotic proteins of human polymorphonuclear leukocytes | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 86 | issue = 14 | pages = 5610–4 | date = July 1989 | pmid = 2501794 | pmc = 297672 | doi = 10.1073/pnas.86.14.5610 }}
* {{cite journal | vauthors = Hohn PA, Popescu NC, Hanson RD, Salvesen G, Ley TJ | title = Genomic organization and chromosomal localization of the human cathepsin G gene | journal = The Journal of Biological Chemistry | volume = 264 | issue = 23 | pages = 13412–9 | date = August 1989 | pmid = 2569462 | doi =  }}
* {{cite journal | vauthors = Livesey SA, Buescher ES, Krannig GL, Harrison DS, Linner JG, Chiovetti R | title = Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens | journal = Scanning Microscopy. Supplement | volume = 3 | issue =  | pages = 231–9; discussion 239–40 | year = 1989 | pmid = 2616953 | doi =  }}
* {{cite journal | vauthors = Campbell EJ, Silverman EK, Campbell MA | title = Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity | journal = Journal of Immunology | volume = 143 | issue = 9 | pages = 2961–8 | date = November 1989 | pmid = 2681419 | doi =  }}
* {{cite journal | vauthors = Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J | title = Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases | journal = Biochemistry | volume = 26 | issue = 8 | pages = 2289–93 | date = April 1987 | pmid = 3304423 | doi = 10.1021/bi00382a032 }}
* {{cite journal | vauthors = Heck LW, Rostand KS, Hunter FA, Bhown A | title = Isolation, characterization, and amino-terminal amino acid sequence analysis of human neutrophil cathepsin G from normal donors | journal = Analytical Biochemistry | volume = 158 | issue = 1 | pages = 217–27 | date = October 1986 | pmid = 3799965 | doi = 10.1016/0003-2697(86)90612-3 }}
* {{cite journal | vauthors = Crocker J, Jenkins R, Burnett D | title = Immunohistochemical localization of cathepsin G in human tissues | journal = The American Journal of Surgical Pathology | volume = 9 | issue = 5 | pages = 338–43 | date = May 1985 | pmid = 3911778 | doi = 10.1097/00000478-198505000-00003 }}
* {{cite journal | vauthors = Klickstein LB, Kaempfer CE, Wintroub BU | title = The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G | journal = The Journal of Biological Chemistry | volume = 257 | issue = 24 | pages = 15042–6 | date = December 1982 | pmid = 6294088 | doi =  }}
* {{cite journal | vauthors = LaRosa CA, Rohrer MJ, Benoit SE, Barnard MR, Michelson AD | title = Neutrophil cathepsin G modulates the platelet surface expression of the glycoprotein (GP) Ib-IX complex by proteolysis of the von Willebrand factor binding site on GPIb alpha and by a cytoskeletal-mediated redistribution of the remainder of the complex | journal = Blood | volume = 84 | issue = 1 | pages = 158–68 | date = July 1994 | pmid = 7517206 | doi =  }}
* {{cite journal | vauthors = Owen CA, Campbell MA, Sannes PL, Boukedes SS, Campbell EJ | title = Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases | journal = The Journal of Cell Biology | volume = 131 | issue = 3 | pages = 775–89 | date = November 1995 | pmid = 7593196 | pmc = 2120617 | doi = 10.1083/jcb.131.3.775 }}
* {{cite journal | vauthors = Savage MJ, Iqbal M, Loh T, Trusko SP, Scott R, Siman R | title = Cathepsin G: localization in human cerebral cortex and generation of amyloidogenic fragments from the beta-amyloid precursor protein | journal = Neuroscience | volume = 60 | issue = 3 | pages = 607–19 | date = June 1994 | pmid = 7936190 | doi = 10.1016/0306-4522(94)90490-1 }}
* {{cite journal | vauthors = Grisolano JL, Sclar GM, Ley TJ | title = Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 91 | issue = 19 | pages = 8989–93 | date = September 1994 | pmid = 8090757 | pmc = 44732 | doi = 10.1073/pnas.91.19.8989 }}
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1-2 | pages = 171–4 | date = January 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }}
{{refend}}
{{refend}}


{{protein-stub}}
== External links ==
* The [[MEROPS]] online database for peptidases and their inhibitors: [http://merops.sanger.ac.uk/cgi-bin/merops.cgi?id=S01.133 S01.133]
 
{{NLM content}}
{{NLM content}}
{{PDB Gallery|geneid=1511}}
{{Proteases}}
{{Serine endopeptidases}}
{{Enzymes}}
{{Portal bar|Molecular and Cellular Biology|border=no}}
[[Category:Peptidase]]
[[Category:EC 3.4.21]]
[[Category:Extracellular matrix remodeling enzymes]]
[[Category:Cathepsins]]

Revision as of 01:26, 27 October 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family, Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.[1][2][3][4]

Structure

Gene

The CTSG gene is located at chromosome 14q11.2, consisting of 5 exons. Each residue of the catalytic triad is located on a separate exon. Five polymorphisms have been identified by scanning the entire coding region.[5] Cathepsin G is one of those homologous protease that evolved from a common ancestor by gene duplication.[6]

Protein

Cathepsin G is a 255-amino-acid-residue protein including an 18-residue signal peptide, a two-residue activation peptide at the N-terminus and a carboxy terminal extension.[7] The activity of cathepsin G depends on a catalytic triad composed of aspartate, histidine and serine residues which are widely separated in the primary sequence but close to each other at the active site of the enzyme in the tertiary structure.[8]

Function

Cathepsin G has a specificity similar to that of chymotrypsin C, but it is most closely related to other immune serine proteases, such as neutrophil elastase and the granzymes.[9] As a neutrophil serine protease, was first identified as degradative enzyme that acts intracellularly to degrade ingested host pathogens and extracellularly in the breakdown of ECM components at inflammatory sites.[10] It localizes to Neutrophil extracellular traps (NETs), via its high affinity for DNA, an unusual property for serine proteases.[9] Transcript variants utilizing alternative polyadenylation signals exist for this gene.[11] Cathepsin G was also found to exert broad-spectrum antibacterial action against Gram-negative and –positive bacteria independent of the function mentioned above.[12] Other functions of cathepsin G have been reported, including cleavage of receptors, conversion of angiotensin Ⅰ to angiotensin Ⅱ, platelet activation, and induction of airway submucosal gland secretion.[13][14][15][16][17] Potential implications of the enzyme in blood-brain barrier breakdown was also found.[18]

Clinical significance

Cathepsin G has been reported to play an important role in a variety of diseases, including rheumatoid arthritis, coronary artery disease, periodontitis, ischemic reperfusion injury, and bone metastasis.[19][20][21][22][23] It is also implicated in a variety of infectious inflammatory diseases, including chronic obstructive pulmonary disease, acute respiratory distress syndrome, and cystic fibrosis.[24][25][26] A recent study shows that patients with CTSG gene polymorphisms have higher risk of chronic postsurgical pain, suggesting cathepsin G may serve as a novel target for pain control and a potential marker to predict chronic postsurgical pain.[27] An upregulation of cathepsin G was reported in studies of keratoconus.[28]

Interactions

Cathepsin G has been found to interact with:

Cathepsin G is inhibited by:

Cathepsin G lowers levels of:

See also

References

  1. Janoff A, Scherer J (November 1968). "Mediators of inflammation in leukocyte lysosomes. IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes". The Journal of Experimental Medicine. 128 (5): 1137–55. doi:10.1084/jem.128.5.1137. PMC 2138566. PMID 5303065.
  2. Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR (December 1988). "Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters". The Journal of Clinical Investigation. 82 (6): 1963–73. doi:10.1172/JCI113816. PMC 442778. PMID 3198760.
  3. Baggiolini M, Schnyder J, Bretz U, Dewald B, Ruch W (1979). "Cellular mechanisms of proteinase release from inflammatory cells and the degradation of extracellular proteins". Ciba Foundation Symposium (75): 105–21. PMID 399884.
  4. Virca GD, Metz G, Schnebli HP (October 1984). "Similarities between human and rat leukocyte elastase and cathepsin G". European Journal of Biochemistry / FEBS. 144 (1): 1–9. doi:10.1111/j.1432-1033.1984.tb08423.x. PMID 6566611.
  5. Herrmann SM, Funke-Kaiser H, Schmidt-Petersen K, Nicaud V, Gautier-Bertrand M, Evans A, Kee F, Arveiler D, Morrison C, Orzechowski HD, Elbaz A, Amarenco P, Cambien F, Paul M (September 2001). "Characterization of polymorphic structure of cathepsin G gene: role in cardiovascular and cerebrovascular diseases". Arteriosclerosis, Thrombosis, and Vascular Biology. 21 (9): 1538–43. doi:10.1161/hq0901.095555. PMID 11557685.
  6. Salvesen G, Enghild JJ (1991). "Zymogen activation specificity and genomic structures of human neutrophil elastase and cathepsin G reveal a new branch of the chymotrypsinogen superfamily of serine proteinases". Biomedica Biochimica Acta. 50 (4–6): 665–71. PMID 1801740.
  7. Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J (April 1987). "Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases". Biochemistry. 26 (8): 2289–93. doi:10.1021/bi00382a032. PMID 3304423.
  8. Korkmaz B, Moreau T, Gauthier F (February 2008). "Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions". Biochimie. 90 (2): 227–42. doi:10.1016/j.biochi.2007.10.009. PMID 18021746.
  9. 9.0 9.1 Thomas MP, Whangbo J, McCrossan G, Deutsch AJ, Martinod K, Walch M, Lieberman J (June 2014). "Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins". Journal of Immunology. 192 (11): 5390–7. doi:10.4049/jimmunol.1303296. PMC 4041364. PMID 24771851.
  10. Pham CT (July 2006). "Neutrophil serine proteases: specific regulators of inflammation". Nature Reviews. Immunology. 6 (7): 541–50. doi:10.1038/nri1841. PMID 16799473.
  11. "Entrez Gene: CTSG cathepsin G".
  12. Shafer WM, Pohl J, Onunka VC, Bangalore N, Travis J (January 1991). "Human lysosomal cathepsin G and granzyme B share a functionally conserved broad spectrum antibacterial peptide". The Journal of Biological Chemistry. 266 (1): 112–6. PMID 1985886.
  13. Beaufort N, Leduc D, Rousselle JC, Magdolen V, Luther T, Namane A, Chignard M, Pidard D (January 2004). "Proteolytic regulation of the urokinase receptor/CD87 on monocytic cells by neutrophil elastase and cathepsin G". Journal of Immunology. 172 (1): 540–9. doi:10.4049/jimmunol.172.1.540. PMID 14688365.
  14. Bank U, Ansorge S (February 2001). "More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control". Journal of Leukocyte Biology. 69 (2): 197–206. PMID 11272269.
  15. Reilly CF, Tewksbury DA, Schechter NM, Travis J (August 1982). "Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases". The Journal of Biological Chemistry. 257 (15): 8619–22. PMID 6807977.
  16. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (March 2000). "Cathepsin G activates protease-activated receptor-4 in human platelets". The Journal of Biological Chemistry. 275 (10): 6819–23. doi:10.1074/jbc.275.10.6819. PMID 10702240.
  17. Nadel JA (September 1991). "Role of mast cell and neutrophil proteases in airway secretion". The American Review of Respiratory Disease. 144 (3 Pt 2): S48–51. doi:10.1164/ajrccm/144.3_pt_2.S48. PMID 1892327.
  18. Armao D, Kornfeld M, Estrada EY, Grossetete M, Rosenberg GA (September 1997). "Neutral proteases and disruption of the blood-brain barrier in rat". Brain Research. 767 (2): 259–64. doi:10.1016/S0006-8993(97)00567-2. PMID 9367256.
  19. Szekanecz Z, Koch AE (May 2007). "Macrophages and their products in rheumatoid arthritis". Current Opinion in Rheumatology. 19 (3): 289–95. doi:10.1097/BOR.0b013e32805e87ae. PMID 17414958.
  20. Takei T, Sakai S, Yokonuma T, Ijima H, Kawakami K (Jan–Feb 2007). "Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers". Biotechnology Progress. 23 (1): 182–6. doi:10.1021/bp060152j. PMID 17269686.
  21. Liu R, Chen L, Wu W, Chen H, Zhang S (January 2016). "Neutrophil serine proteases and their endogenous inhibitors in coronary artery ectasia patients". Anatolian Journal of Cardiology. 16 (1): 23–8. doi:10.5152/akd.2015.6072. PMID 26467359.
  22. Komine K, Kuroishi T, Ozawa A, Komine Y, Minami T, Shimauchi H, Sugawara S (March 2007). "Cleaved inflammatory lactoferrin peptides in parotid saliva of periodontitis patients". Molecular Immunology. 44 (7): 1498–508. doi:10.1016/j.molimm.2006.09.003. PMID 17030385.
  23. Shimoda N, Fukazawa N, Nonomura K, Fairchild RL (March 2007). "Cathepsin g is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys". The American Journal of Pathology. 170 (3): 930–40. doi:10.2353/ajpath.2007.060486. PMC 1864870. PMID 17322378.
  24. Kawabata K, Hagio T, Matsuoka S (September 2002). "The role of neutrophil elastase in acute lung injury". European Journal of Pharmacology. 451 (1): 1–10. doi:10.1016/s0014-2999(02)02182-9. PMID 12223222.
  25. Moraes TJ, Chow CW, Downey GP (April 2003). "Proteases and lung injury". Critical Care Medicine. 31 (4 Suppl): S189–94. doi:10.1097/01.CCM.0000057842.90746.1E. PMID 12682439.
  26. Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S (2015). "The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung". Mediators of Inflammation. 2015: 293053. doi:10.1155/2015/293053. PMC 4491392. PMID 26185359.
  27. Liu X, Tian Y, Meng Z, Chen Y, Ho IH, Choy KW, Lichtner P, Wong SH, Yu J, Gin T, Wu WK, Cheng CH, Chan MT (October 2015). "Up-regulation of Cathepsin G in the Development of Chronic Postsurgical Pain: An Experimental and Clinical Genetic Study". Anesthesiology. 123 (4): 838–50. doi:10.1097/ALN.0000000000000828. PMID 26270939.
  28. Whitelock RB, Fukuchi T, Zhou L, Twining SS, Sugar J, Feder RS, Yue BY (February 1997). "Cathepsin G, acid phosphatase, and alpha 1-proteinase inhibitor messenger RNA levels in keratoconus corneas". Investigative Ophthalmology & Visual Science. 38 (2): 529–34. PMID 9040486.
  29. Baumann M, Pham CT, Benarafa C (May 2013). "SerpinB1 is critical for neutrophil survival through cell-autonomous inhibition of cathepsin G". Blood. 121 (19): 3900–7, S1–6. doi:10.1182/blood-2012-09-455022. PMC 3650706. PMID 23532733.
  30. Son ED, Shim JH, Choi H, Kim H, Lim KM, Chung JH, Byun SY, Lee TR (2012). "Cathepsin G inhibitor prevents ultraviolet B-induced photoaging in hairless mice via inhibition of fibronectin fragmentation". Dermatology. 224 (4): 352–60. doi:10.1159/000339337. PMID 22759782.
  31. Cruz-Silva I, Neuhof C, Gozzo AJ, Nunes VA, Hirata IY, Sampaio MU, Figueiredo-Ribeiro Rde C, Neuhof H, Araújo Mda S (December 2013). "Using a Caesalpinia echinata Lam. protease inhibitor as a tool for studying the roles of neutrophil elastase, cathepsin G and proteinase 3 in pulmonary edema". Phytochemistry. 96: 235–43. doi:10.1016/j.phytochem.2013.09.025. PMID 24140156.
  32. Craciun I, Fenner AM, Kerns RJ (February 2016). "N-Arylacyl O-sulfonated aminoglycosides as novel inhibitors of human neutrophil elastase, cathepsin G and proteinase 3". Glycobiology. 26: 701–9. doi:10.1093/glycob/cww011. PMID 26850997.
  33. Wang J, Sjöberg S, Tang TT, Oörni K, Wu W, Liu C, Secco B, Tia V, Sukhova GK, Fernandes C, Lesner A, Kovanen PT, Libby P, Cheng X, Shi GP (November 2014). "Cathepsin G activity lowers plasma LDL and reduces atherosclerosis". Biochimica et Biophysica Acta. 1842 (11): 2174–83. doi:10.1016/j.bbadis.2014.07.026. PMC 4188792. PMID 25092171.

Further reading

  • Shafer WM, Katzif S, Bowers S, Fallon M, Hubalek M, Reed MS, Veprek P, Pohl J (2002). "Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens". Current Pharmaceutical Design. 8 (9): 695–702. doi:10.2174/1381612023395376. PMID 11945165.
  • Cohen AB, Stevens MD, Miller EJ, Atkinson MA, Mullenbach G (August 1992). "Generation of the neutrophil-activating peptide-2 by cathepsin G and cathepsin G-treated human platelets". The American Journal of Physiology. 263 (2 Pt 1): L249–56. PMID 1387511.
  • Sasaki T, Ueno-Matsuda E (December 1992). "Immunocytochemical localization of cathepsins B and G in odontoclasts of human deciduous teeth". Journal of Dental Research. 71 (12): 1881–4. doi:10.1177/00220345920710120501. PMID 1452887.
  • Maison CM, Villiers CL, Colomb MG (August 1991). "Proteolysis of C3 on U937 cell plasma membranes. Purification of cathepsin G". Journal of Immunology. 147 (3): 921–6. PMID 1861080.
  • Brandt E, Van Damme J, Flad HD (July 1991). "Neutrophils can generate their activator neutrophil-activating peptide 2 by proteolytic cleavage of platelet-derived connective tissue-activating peptide III". Cytokine. 3 (4): 311–21. doi:10.1016/1043-4666(91)90499-4. PMID 1873479.
  • Kargi HA, Campbell EJ, Kuhn C (August 1990). "Elastase and cathepsin G of human monocytes: heterogeneity and subcellular localization to peroxidase-positive granules". The Journal of Histochemistry and Cytochemistry. 38 (8): 1179–86. doi:10.1177/38.8.2164060. PMID 2164060.
  • Pratt CW, Tobin RB, Church FC (April 1990). "Interaction of heparin cofactor II with neutrophil elastase and cathepsin G". The Journal of Biological Chemistry. 265 (11): 6092–7. PMID 2318847.
  • Gabay JE, Scott RW, Campanelli D, Griffith J, Wilde C, Marra MN, Seeger M, Nathan CF (July 1989). "Antibiotic proteins of human polymorphonuclear leukocytes". Proceedings of the National Academy of Sciences of the United States of America. 86 (14): 5610–4. doi:10.1073/pnas.86.14.5610. PMC 297672. PMID 2501794.
  • Hohn PA, Popescu NC, Hanson RD, Salvesen G, Ley TJ (August 1989). "Genomic organization and chromosomal localization of the human cathepsin G gene". The Journal of Biological Chemistry. 264 (23): 13412–9. PMID 2569462.
  • Livesey SA, Buescher ES, Krannig GL, Harrison DS, Linner JG, Chiovetti R (1989). "Human neutrophil granule heterogeneity: immunolocalization studies using cryofixed, dried and embedded specimens". Scanning Microscopy. Supplement. 3: 231–9, discussion 239–40. PMID 2616953.
  • Campbell EJ, Silverman EK, Campbell MA (November 1989). "Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity". Journal of Immunology. 143 (9): 2961–8. PMID 2681419.
  • Salvesen G, Farley D, Shuman J, Przybyla A, Reilly C, Travis J (April 1987). "Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases". Biochemistry. 26 (8): 2289–93. doi:10.1021/bi00382a032. PMID 3304423.
  • Heck LW, Rostand KS, Hunter FA, Bhown A (October 1986). "Isolation, characterization, and amino-terminal amino acid sequence analysis of human neutrophil cathepsin G from normal donors". Analytical Biochemistry. 158 (1): 217–27. doi:10.1016/0003-2697(86)90612-3. PMID 3799965.
  • Crocker J, Jenkins R, Burnett D (May 1985). "Immunohistochemical localization of cathepsin G in human tissues". The American Journal of Surgical Pathology. 9 (5): 338–43. doi:10.1097/00000478-198505000-00003. PMID 3911778.
  • Klickstein LB, Kaempfer CE, Wintroub BU (December 1982). "The granulocyte-angiotensin system. Angiotensin I-converting activity of cathepsin G". The Journal of Biological Chemistry. 257 (24): 15042–6. PMID 6294088.
  • LaRosa CA, Rohrer MJ, Benoit SE, Barnard MR, Michelson AD (July 1994). "Neutrophil cathepsin G modulates the platelet surface expression of the glycoprotein (GP) Ib-IX complex by proteolysis of the von Willebrand factor binding site on GPIb alpha and by a cytoskeletal-mediated redistribution of the remainder of the complex". Blood. 84 (1): 158–68. PMID 7517206.
  • Owen CA, Campbell MA, Sannes PL, Boukedes SS, Campbell EJ (November 1995). "Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases". The Journal of Cell Biology. 131 (3): 775–89. doi:10.1083/jcb.131.3.775. PMC 2120617. PMID 7593196.
  • Savage MJ, Iqbal M, Loh T, Trusko SP, Scott R, Siman R (June 1994). "Cathepsin G: localization in human cerebral cortex and generation of amyloidogenic fragments from the beta-amyloid precursor protein". Neuroscience. 60 (3): 607–19. doi:10.1016/0306-4522(94)90490-1. PMID 7936190.
  • Grisolano JL, Sclar GM, Ley TJ (September 1994). "Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice". Proceedings of the National Academy of Sciences of the United States of America. 91 (19): 8989–93. doi:10.1073/pnas.91.19.8989. PMC 44732. PMID 8090757.
  • Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.

External links

  • The MEROPS online database for peptidases and their inhibitors: S01.133

This article incorporates text from the United States National Library of Medicine, which is in the public domain.