Metabolic alkalosis pathophysiology

Revision as of 04:57, 25 February 2021 by Marufa Marium (talk | contribs) (→‎Pathophysiology)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Metabolic alkalosis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Metabolic alkalosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Metabolic alkalosis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Metabolic alkalosis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Metabolic alkalosis pathophysiology

CDC on Metabolic alkalosis pathophysiology

Metabolic alkalosis pathophysiology in the news

Blogs on Metabolic alkalosis pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Metabolic alkalosis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Marufa Marium, M.B.B.S[2]

Overview

The normal physiological pH of blood is 7.35 to 7.45. An increase above this range is known to be Alkalosis. Metabolic Alkalosis is defined as a disease state where blood pH is more than 7.45 due to secondary metabolic processes. The primary pH buffers in maintaining chemical equilibrium of physiological Blood pH are alkaline Bicarbonate ions(HCO3) and acidic carbon dioxide(CO2). When there is increase amount of Bicarbonate(HCO3) in body or decrease amount of carbon dioxide or loss of hydrogen ions it causes alkalosis. Metabolic alkalosis occurs due to trapping of Bicarbonate ions (HCO3) or loss of hydrogen ions in body due to some metabolic causes for example- gastrointestinal loss of hydrogen ions, intracellular shifting of hydrogen ions, renal hydrogen loss, increased bicarbonate ions in extracellular compartment, diuretic induced alkalosis or contraction alkalosis. Patient with normal renal physiology will compensate this increase amount of bicarbonate through excretion. But impaired renal function secondary to chloride depletion, hypokalemia, hyperaldosteronism, reduced glomerular function rate, reduced effective arterial blood volume (EABV)) in heart failure or cirrhosis will lead to metabolic alkalosis. When the physiologic blood pH is above 7.45, it triggers respiratory center to cause hypoventilation, thus decreased PCO2 leading to compensatory respiratory acidosis. The PCO2 elavates from 0.5 to 0.7 mmHg per 1.0 millimole elevation in plasma bicarbonate concentration. In severe Metabolic alkalosis PCO2 can reach 60 mmHg. The mortality rate with metabolic alkalosis is 45% with arterial blood pH 7.55 to 80% with arterial blood pH of 7.65. Supportive Treatment is usually given according to cause of the disease.

Pathophysiology

H+ loss

Gastrointestinal loss

Renal

Elevated HCO3- level in serum

  • Intake of NaCO3, citrate, baking powder, lactate and acetate.

Transport of H+ to IC space

  • Occurs in hypokalemia. Decreased extracellular K+, potassium transports from the cells, and to keep electrical potential in a balanced state, Transport of H+ to IC space.

Contraction Alkalosis

  • Loss of low concerntation of HCO3 mixed H2O in EC space by diuretics. HCO3 is elevated in serum..

Compensatory mechanism of Metabolic Alkalosis

  • hypoventilation (respiratory compensation) elevates pH by restoring carbon dioxide (CO2) through . Carbonic acid is generated by CO2. The acidic medium is created for compensation.
  • The pCO2 elevates from 0.5 to 1 per 1 u serum HCO3 elevation.
  • Body can compensate up tp 55-60 mmHg of partial pressure of CO2.
  • Increased secretion of HCO3- (bicarbonate) by kidney is done.

Genetics

  • Genes involved in the pathogenesis of Metabolic Alkalosis include CFTR, SCNN1A/SCNN1B/SCNN1G[10], NKCC2[11] SLC12A3/CLCNKB[12] and SLC26A3 [13] causing Cystic Fibrosis, Liddle Syndrome, Bartter syndrome, Gitelman syndrome and Congenital Chloride Diarrhhea respectively.

Associated Conditions

Conditions associated with metabolic alkalosis :

Gross Pathology

    • There is no specific gross pathological finding related to metabolic alkalosis. Gross characteristics are dependent on specific cause of metabolic alkalosis.

Microscopic Pathology

    • There is no specific microscopic pathological finding related to metabolic alkalosis. Gross characteristics are dependent on specific cause of metabolic alkalosis.


References

  1. 1.0 1.1 Galla JH, Gifford JD, Luke RG, Rome L (October 1991). "Adaptations to chloride-depletion alkalosis". Am J Physiol. 261 (4 Pt 2): R771–81. doi:10.1152/ajpregu.1991.261.4.R771. PMID 1928424.
  2. 2.0 2.1 Babior BM (October 1966). "Villous adenoma of the colon. Study of a patient with severe fluid and electrolyte disturbances". Am J Med. 41 (4): 615–21. doi:10.1016/0002-9343(66)90223-3. PMID 5927076.
  3. 3.0 3.1 Höglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (November 1996). "Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea". Nat Genet. 14 (3): 316–9. doi:10.1038/ng1196-316. PMID 8896562.
  4. 4.0 4.1 Pedroli G, Liechti-Gallati S, Mauri S, Birrer P, Kraemer R, Foletti-Jäggi C, Bianchetti MG (1995). "Chronic metabolic alkalosis: not uncommon in young children with severe cystic fibrosis". Am J Nephrol. 15 (3): 245–50. doi:10.1159/000168839. PMID 7618650.
  5. 5.0 5.1 Plawker MW, Rabinowitz SS, Etwaru DJ, Glassberg KI (August 1995). "Hypergastrinemia, dysuria-hematuria and metabolic alkalosis: complications associated with gastrocystoplasty". J Urol. 154 (2 Pt 1): 546–9. doi:10.1097/00005392-199508000-00066. PMID 7609133.
  6. 6.0 6.1 Sabatini S (March 1996). "The cellular basis of metabolic alkalosis". Kidney Int. 49 (3): 906–17. doi:10.1038/ki.1996.125. PMID 8648937.
  7. 7.0 7.1 Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM (January 1992). "A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension". Nature. 355 (6357): 262–5. doi:10.1038/355262a0. PMID 1731223.
  8. 8.0 8.1 Warnock DG (January 1998). "Liddle syndrome: an autosomal dominant form of human hypertension". Kidney Int. 53 (1): 18–24. doi:10.1046/j.1523-1755.1998.00728.x. PMID 9452995.
  9. 9.0 9.1 Kurtz I (October 1998). "Molecular pathogenesis of Bartter's and Gitelman's syndromes". Kidney Int. 54 (4): 1396–410. doi:10.1046/j.1523-1755.1998.00124.x. PMID 9767561.
  10. Tetti M, Monticone S, Burrello J, Matarazzo P, Veglio F, Pasini B, Jeunemaitre X, Mulatero P (March 2018). "Liddle Syndrome: Review of the Literature and Description of a New Case". Int J Mol Sci. 19 (3). doi:10.3390/ijms19030812. PMC 5877673. PMID 29534496.
  11. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, Lifton RP (October 1996). "Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK". Nat Genet. 14 (2): 152–6. doi:10.1038/ng1096-152. PMID 8841184.
  12. Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, Grisart B, Bridoux F, Unwin R, Moulin B, Haymann JP, Vantyghem MC, Rigothier C, Dussol B, Godin M, Nivet H, Dubourg L, Tack I, Gimenez-Roqueplo AP, Houillier P, Blanchard A, Devuyst O, Jeunemaitre X (April 2011). "Spectrum of mutations in Gitelman syndrome". J Am Soc Nephrol. 22 (4): 693–703. doi:10.1681/ASN.2010090907. PMC 3065225. PMID 21415153.
  13. Kamal NM, Khan HY, El-Shabrawi M, Sherief LM (May 2019). "Congenital chloride losing diarrhea: A single center experience in a highly consanguineous population". Medicine (Baltimore). 98 (22): e15928. doi:10.1097/MD.0000000000015928. PMC 6709049 Check |pmc= value (help). PMID 31145360. Vancouver style error: initials (help)

Template:WH Template:WS