Percutaneous mitral balloon commissurotomy

Jump to navigation Jump to search

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Mohammed A. Sbeih, M.D. [2]; Joanna J. Wykrzykowska, M.D.

Mitral Stenosis Microchapters

Home

Patient Information

Overview

Pathophysiology

Causes

Differentiating Mitral Stenosis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Stages

History and Symptoms

Physical Examination

Electrocardiogram

Chest X Ray

Echocardiography

Cardiac MRI

Cardiac Catheterization

Treatment

Overview

Medical Therapy

Percutaneous Mitral Balloon Commissurotomy (PMBC)

Surgery

Follow Up

Prevention

Case Studies

Case #1

Percutaneous mitral balloon commissurotomy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Percutaneous mitral balloon commissurotomy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA onPercutaneous mitral balloon commissurotomy

CDC on Percutaneous mitral balloon commissurotomy

Percutaneous mitral balloon commissurotomy in the news

Blogs on Percutaneous mitral balloon commissurotomy

Directions to Hospitals Treating Mitral Stenosis

Risk calculators and risk factors for Percutaneous mitral balloon commissurotomy

Synonyms and keywords: Balloon mitral valvuloplasty, PMBC, percutaneous mitral balloon valvotomy, percutaneous mitral balloon valvuloplasty, PMBV, mitral valvuloplasty, percutaneous mitral valvuloplasty

Overview

The development of this approach was done by Inoue in 1984 and Lock in 1985 for the treatment of mitral stenosis.[1][2] For a long time, surgical commissurotomy and open valve replacement were the only methods by which mitral stenosis could be corrected.[3] PMBV can be performed in chronically symptomatic patients, patients who present emergently with cardiac arrest or pulmonary edema and in asymptomatic patients who plan on childbearing or major noncardiac surgery.[4][5] There is improvement in the mortality rates for mitral stenosis by intervention by percutaneous mitral balloon valvotomy or surgery. Mitral valvuloplasty is a minimally invasive therapeutic procedure to correct an uncomplicated mitral stenosis by dilating the valve using a balloon. Under local anaesthetic, a catheter with a special balloon is passed from the right femoral vein, up the inferior vena cava and into the right atrium. The interatrial septum is punctured and the catheter passed into the left atrium using a "trans-septal technique". The balloon is sub-divided into 3 segments and is dilated in 3 stages. 1st the distal portion (lying in the left ventricle) is inflated and pulled against the valve cusps. Second the proximal portion is dilated, in order to fix the centre segment at the valve orifice. Finally the central section is inflated. This should take no longer than 30 seconds since full inflation obstructs the valve and causes congestion, leading to circulatory arrest and flash pulmonary edema.

Percutaneous Mitral Balloon Valvotomy (PMBV)

Recommendations for percutaneous mitral commissurotomy and mitral valve surgery in moderate or severe mitral stenosis (valve area <1.5 cm2)
(Class I, Level of Evidence B):

PMC is recommended in symptomatic patients with favourable characteristics for PMC

(Class I, Level of Evidence C):

PMC is recommended in any symptomatic patients who are high risk for surgeryMitral valve surgery is recommended in symptomatic patients who are not appropriate for PMC in the absence of futility

(Class IIa, Level of Evidence C):

PMC should be considered as initial treatment in symptomatic patients with favourable clinical and anatomical characteristics for PMC
PMC should be considered in asymptomatic patients with suboptimal valve anatomy favourable clinicalcharacteristicsc for PMC and:

The above table adopted from 2021 ESC Guideline[7]


Abbreviations: PMC: Percutaneous mitral commissurotomy; AF: Atrial fibrillation; LA: Left atrium; MVA:Mitral valve area ;

 
 
 
Management of clinically significant rheumatic mitral stenosis (MVA ≤ 1.5 cm2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Symptoms
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NO
 
 
 
Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
High risk of embolism or hemodynamic decompensation
 
 
 
 
Contraindication to PMC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yes
 
NO
 
 
NO
 
 
Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PMC if favourable characteristics for PMC or contraindication for surgery
 
Exercise test
 
 
Contraindication or high risk for surgery
 
 
Surgery
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Symptoms
 
 
 
Yes
 
NO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NO
 
Yes
 
 
PMC
 
 
Favourable anatomical characteristics
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Follow-up
 
Contraindication to or unfavourable characteristics for PMC
 
 
 
 
 
 
NO
 
 
Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NO
 
Yes
 
 
 
 
Surgery
 
 
PMC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PMC
 
Surgery
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: PMC: Percutaneous mitral commissurotomy; MVA:Mitral valve area

The above algorithm adopted from 2021 ESC Guideline[7]

Indications


Individuals with a score of ≥ 8 tended to have suboptimal results. Superb results with valvotomy are seen in individuals with a crisp opening snap, score < 8, and no calcium in the commissures.

Contraindications for percutaneous mitral commissurotomy in rheumatic mitral stenosis

Technique

The interventional cardiologist gains access to the mitral valve by making a puncture in the interatrial septum during cardiac catheterization. Inflation and rapid deflation of a single balloon or a double-balloon opens the stenotic valve. This mechanism is similar to that of surgical commissurotomy.[10]

  • Transvenous transeptal technique is most commonly used with the Inoue balloon system.
  • Fossa ovalis lies usually at 1-7 o’clock but this orientation can be distorted in the presence of mitral stenosis where the interatrial septum becomes more flat, horizontal and lower.
  • For the femoral vein approach a 70 cm Brockenbrough needle should be used or an 8 Fr Mullins sheath and advanced under fluoroscopic guidance with pressure monitoring.
  • The latter is necessary to monitor for puncture into adjacent structures such as aorta.
  • Further catheter manipulation may be necessary to direct the catheter into the left ventricle through the mitral valve rather than towards one of the pulmonary veins.
  • The Mullins sheath is exchanged for a solid-core coiled 0.025 inch guidewire over which a 14 Fr dilator is placed.
  • This is exchanged for the Inoue balloon (24-30 mm) which inflates in three stages allowing for balloon self-positioning with the last inflation resulting in commissural splitting.

A transthoracic echocardiography should be done to measure the mitral valve area and assess the severity of regurgitation as a complication of the procedure. PMBV should be stopped if adequate valve area has been achieved or if the severity of mitral regurgitation has been increased.

Outcome

  • Long-term follow-up has been shown an initial good result and free of recurrent symptoms in 70% to 80% of patients after PMBC at 10 years, and 30% to 40% are free of recurrent symptoms at 20 years.[11]

Complications

References

  1. Carroll JD, Feldman T (1993). "Percutaneous mitral balloon valvotomy and the new demographics of mitral stenosis". JAMA. 270 (14): 1731–6. PMID 8411505.
  2. Inoue K, Owaki T, Nakamura T, Kitamura F, Miyamoto N (1984). "Clinical application of transvenous mitral commissurotomy by a new balloon catheter". J Thorac Cardiovasc Surg. 87 (3): 394–402. PMID 6700245.
  3. Lock JE, Khalilullah M, Shrivastava S, Bahl V, Keane JF (1985). "Percutaneous catheter commissurotomy in rheumatic mitral stenosis". N Engl J Med. 313 (24): 1515–8. doi:10.1056/NEJM198512123132405. PMID 4069160.
  4. Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD; et al. (2008). "2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Circulation. 118 (15): e523–661. doi:10.1161/CIRCULATIONAHA.108.190748. PMID 18820172.
  5. Lokhandwala YY, Banker D, Vora AM, Kerkar PG, Deshpande JR, Kulkarni HL; et al. (1998). "Emergent balloon mitral valvotomy in patients presenting with cardiac arrest, cardiogenic shock or refractory pulmonary edema". J Am Coll Cardiol. 32 (1): 154–8. PMID 9669264.
  6. Abu Rmilah AA, Tahboub MA, Alkurashi AK, Jaber SA, Yagmour AH, Al-Souri D, Lewis BR, Nkomo VT, Erwin PJ, Reeder GS (April 2021). "Efficacy and safety of percutaneous mitral balloon valvotomy in patients with mitral stenosis: A systematic review and meta-analysis". Int J Cardiol Heart Vasc. 33: 100765. doi:10.1016/j.ijcha.2021.100765. PMC 8050729 Check |pmc= value (help). PMID 33889711 Check |pmid= value (help).
  7. 7.0 7.1 Vahanian A, Beyersdorf F, Praz F, Milojevic M, Baldus S, Bauersachs J, Capodanno D, Conradi L, De Bonis M, De Paulis R, Delgado V, Freemantle N, Gilard M, Haugaa KH, Jeppsson A, Jüni P, Pierard L, Prendergast BD, Sádaba JR, Tribouilloy C, Wojakowski W (February 2022). "2021 ESC/EACTS Guidelines for the management of valvular heart disease". Eur Heart J. 43 (7): 561–632. doi:10.1093/eurheartj/ehab395. PMID 34453165 Check |pmid= value (help).
  8. Badheka AO, Shah N, Ghatak A, Patel NJ, Chothani A, Mehta K, Singh V, Patel N, Grover P, Deshmukh A, Panaich SS, Savani GT, Bhalara V, Arora S, Rathod A, Desai H, Kar S, Alfonso C, Palacios IF, Grines C, Schreiber T, Rihal CS, Makkar R, Cohen MG, O'Neill W, de Marchena E (November 2014). "Balloon mitral valvuloplasty in the United States: a 13-year perspective". Am J Med. 127 (11): 1126.e1–1126.e12. doi:10.1016/j.amjmed.2014.05.015. PMID 24859718.
  9. 9.0 9.1 Aslanabadi N, Toufan M, Salehi R, Alizadehasl A, Ghaffari S, Sohrabi B, Separham A, Manafi A, Mehdizadeh MB, Habibzadeh A (2014). "Mitral regurgitation after percutaneous balloon mitral valvotomy in patients with rheumatic mitral stenosis: a single-center study". J Tehran Heart Cent. 9 (3): 109–14. PMC 4393832. PMID 25870627.
  10. Inoue K, Feldman T (1993). "Percutaneous transvenous mitral commissurotomy using the Inoue balloon catheter". Cathet Cardiovasc Diagn. 28 (2): 119–25. PMID 8448794.
  11. Aviles RJ, Nishimura RA, Pellikka PA, Andreen KM, Holmes DR (July 2001). "Utility of stress Doppler echocardiography in patients undergoing percutaneous mitral balloon valvotomy". J Am Soc Echocardiogr. 14 (7): 676–81. doi:10.1067/mje.2001.112585. PMID 11447412.

Categor:Best pages


Template:WikiDoc Sources