Thorium

Jump to navigation Jump to search

Template:Elementbox header Template:Elementbox series Template:Elementbox periodblock Template:Elementbox appearance Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmmat0 Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmkat25 Template:Elementbox speedofsound rodmpsat20 Template:Elementbox youngsmodulus gpa Template:Elementbox shearmodulus gpa Template:Elementbox bulkmodulus gpa Template:Elementbox poissonratio Template:Elementbox mohshardness Template:Elementbox vickershardness mpa Template:Elementbox brinellhardness mpa Template:Elementbox cas number |- ! colspan="2" style="background:#ff99cc; color:black" | Selected isotopes |- | colspan="2" |

iso NA half-life DM DE (MeV) DP

Template:Elementbox isotopes decay Template:Elementbox isotopes decay Template:Elementbox isotopes decay Template:Elementbox isotopes decay Template:Elementbox isotopes decay Template:Elementbox isotopes decay Template:Elementbox isotopes end Template:Elementbox footer

WikiDoc Resources for Thorium

Articles

Most recent articles on Thorium

Most cited articles on Thorium

Review articles on Thorium

Articles on Thorium in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Thorium

Images of Thorium

Photos of Thorium

Podcasts & MP3s on Thorium

Videos on Thorium

Evidence Based Medicine

Cochrane Collaboration on Thorium

Bandolier on Thorium

TRIP on Thorium

Clinical Trials

Ongoing Trials on Thorium at Clinical Trials.gov

Trial results on Thorium

Clinical Trials on Thorium at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Thorium

NICE Guidance on Thorium

NHS PRODIGY Guidance

FDA on Thorium

CDC on Thorium

Books

Books on Thorium

News

Thorium in the news

Be alerted to news on Thorium

News trends on Thorium

Commentary

Blogs on Thorium

Definitions

Definitions of Thorium

Patient Resources / Community

Patient resources on Thorium

Discussion groups on Thorium

Patient Handouts on Thorium

Directions to Hospitals Treating Thorium

Risk calculators and risk factors for Thorium

Healthcare Provider Resources

Symptoms of Thorium

Causes & Risk Factors for Thorium

Diagnostic studies for Thorium

Treatment of Thorium

Continuing Medical Education (CME)

CME Programs on Thorium

International

Thorium en Espanol

Thorium en Francais

Business

Thorium in the Marketplace

Patents on Thorium

Experimental / Informatics

List of terms related to Thorium


Overview

Thorium (Template:PronEng) is a chemical element with the symbol Th and atomic number 90. As a naturally occurring, slightly radioactive metal, it has been considered as an alternative nuclear fuel to uranium.

Notable characteristics

When pure, thorium is a silvery white metal that retains its luster for several months. However, when it is exposed to oxygen, thorium slowly tarnishes in air, becoming grey and eventually black. Thorium dioxide (ThO2), also called thoria, has the highest melting point of any oxide (3300°C).[1] When heated in air, thorium metal turnings ignite and burn brilliantly with a white light.

Thorium has the largest liquid range of any element: 2946 K between the melting point and boiling point.

See Actinides in the environment for details of the environmental aspects of thorium.

Applications

Applications of thorium:

Applications of thorium dioxide (ThO2):

  • Mantles in portable gas lights. These mantles glow with a dazzling light (unrelated to radioactivity) when heated in a gas flame.
  • Used to control the grain size of tungsten used for electric lamps.
  • Used for high-temperature laboratory crucibles.
  • Added to glass, it helps create glasses of a high refractive index and with low dispersion. Consequently, they find application in high-quality lenses for cameras and scientific instruments.
  • Has been used as a catalyst:
  • Thorium dioxide is the active ingredient of Thorotrast, which was used as part of X-ray diagnostics. This use has been abandoned due to the carcinogenic nature of Thorotrast.

History

M. T. Esmark found a black mineral on Løvøy Island, Norway and gave a sample to Professor Jens Esmark, a noted mineralogist who was not able to identify it so he sent a sample to the Swedish chemist Jöns Jakob Berzelius for examination in 1828.[2] Berzelius analysed it and named it after Thor, the Norse god of thunder. The metal had virtually no uses until the invention of the gas mantle in 1885.

Between 1900 and 1903 Ernest Rutherford and Frederick Soddy showed how thorium decayed at a fixed rate over time into a series of other elements. This observation led to the identification of half life as one of the outcomes of the alpha particle experiments that led to their disintegration theory of radioactivity.[3]

The crystal bar process (or Iodide process) was discovered by Anton Eduard van Arkel and Jan Hendrik de Boer in 1925 to produce high-purity metallic thorium.[4]

The name ionium was given early in the study of radioactive elements to the 230Th isotope produced in the decay chain of 238U before it was realized that ionium and thorium were chemically identical. The symbol Io was used for this supposed element.

Occurrence

File:MonaziteUSGOV.jpg
Monazite, a rare-earth-and-thorium-phosphate mineral, is the primary source of the world's thorium

Thorium is found in small amounts in most rocks and soils, where it is about three times more abundant than uranium, and is about as common as lead. Soil commonly contains an average of around 12 parts per million (ppm) of thorium. Thorium occurs in several minerals, the most common being the rare earth-thorium-phosphate mineral, monazite, which contains up to about 12% thorium oxide. There are substantial deposits in several countries. 232Th decays very slowly (its half-life is about three times the age of the earth) but other thorium isotopes occur in the thorium and uranium decay chains. Most of these are short-lived and hence much more radioactive than 232Th, though on a mass basis they are negligible. India is believed to have 25% of the world's Thorium reserves.[5]

See also thorium minerals.

Distribution

Present knowledge of the distribution of Thorium resources is poor because of the relatively low-key exploration efforts arising out of insignificant demand.[6] Under the prevailing estimate, Australia and India have particularly large reserves of thorium.

  • The prevailing estimate of the economically available thorium reserves comes from the US Geological Survey, Mineral Commodity Summaries (1997-2006):[7][8]
Country Th Reserves (tonnes) Th Reserve Base (tonnes)
Australia 300,000 340,000
India 290,000 300,000
Norway 170,000 180,000
United States 160,000 300,000
Canada 100,000 100,000
South Africa 35,000 39,000
Brazil 16,000 18,000
Malaysia 4,500 4,500
Other Countries 95,000 100,000
World Total 1,200,000 1,400,000
  • Another estimate of Reasonably Assured Reserves (RAR) and Estimated Additional Reserves (EAR) of thorium comes from OECD/NEA, Nuclear Energy, "Trends in Nuclear Fuel Cycle", Paris, France (2001).[9]
Country RAR Th (tonnes) EAR Th (tonnes)
Brazil 606,000 700,000
Turkey 380,000 500,000
India 319,000 -
United States 137,000 295,000
Norway 132,000 132,000
Greenland 54,000 32,000
Canada 45,000 128,000
Australia 19,000 -
South Africa 18,000 -
Egypt 15,000 309,000
Other Countries 505,000 -
World Total 2,230,000 2,130,000

The two sources vary wildly for countries such as Brazil, Turkey, and Australia.

Thorium as a nuclear fuel

File:Thorium.jpg
Thorium metal foil (approximately 0.5 mm thick) sealed in a glass ampoule under an argon atmosphere to prevent oxidation

Thorium, as well as uranium and plutonium, can be used as fuel in a nuclear reactor. Although not fissile itself, 232Th will absorb slow neutrons to produce uranium-233 (233U), which is fissile. Hence, like 238U, it is fertile. In one significant respect 233U is better than the other two fissile isotopes used for nuclear fuel, 235U and plutonium-239 (239Pu), because of its higher neutron yield per neutron absorbed. Given a start with some other fissile material (235U or 239Pu), a breeding cycle similar to, but more efficient than that currently possible with the 238U-to-239Pu cycle (in slow-neutron reactors), can be set up. The 232Th absorbs a neutron to become 233Th which normally emits an electron and an anti-neutrino (<math>\bar{\nu}_e</math>) by β decay to become protactinium-233 (233Pa) and then emits another electron and anti-neutrino by a second β decay to become 233U:

<math>\mathrm\hbox{n}+{{}^2{}^{32}_{90}Th}\rightarrow\mathrm{{}^2{}^{33}_{90}Th}\rightarrow\mathrm{{}^2{}^{33}_{91}Pa}+ e^- + \bar{\nu}_e</math>
<math>\mathrm{{}^2{}^{33}_{91}Pa}\rightarrow\mathrm{{}^2{}^{33}_{92}U}+ e^- + \bar{\nu}_e</math>

The irradiated fuel can then be unloaded from the reactor, the 233U separated from the thorium (a relatively simple process since it involves chemical instead of isotopic separation), and fed back into another reactor as part of a closed nuclear fuel cycle.

Problems include the high cost of fuel fabrication due partly to the high radioactivity of 233U which is a result of its contamination with traces of the short-lived 232U; the similar problems in recycling thorium due to highly radioactive 228Th; some weapons proliferation risk of 233U; and the technical problems (not yet satisfactorily solved) in reprocessing. Much development work is still required before the thorium fuel cycle can be commercialised, and the effort required seems unlikely while (or where) abundant uranium is available.

Nevertheless, the thorium fuel cycle, with its potential for breeding fuel without fast neutron reactors, holds considerable potential long-term benefits. Thorium is significantly more abundant than uranium, and is a key factor in sustainable nuclear energy. An example of this is the Liquid fluoride reactor.

One of the earliest efforts to use thorium fuel cycle took place at Oak Ridge National Laboratory in the 1960s. An experimental reactor was built based on Molten Salt Reactor technology to study the feasibility of such an approach. This effort culminated in a Molten Salt Breeder Reactor (MSBR) design that used 232Th as the fertile material and 233U as the fissile fuel. Due to a lack of funding, the MSBR program was discontinued in 1976.


In 2007, Norway was debating whether or not to focus on thorium plants, due to the existence of large deposits of thorium ores in the country, particularly at Fensfeltet, near Ulefoss in Telemark county.

The primary fuel of the HT3R Project in Odessa, Texas, USA will be ceramic-coated thorium beads.

Isotopes

Naturally occurring thorium is composed of one isotope: 232Th. Twenty-seven radioisotopes have been characterized, with the most abundant and/or stable being 232Th with a half-life of 14.05 billion years, 230Th with a half-life of 75,380 years, 229Th with a half-life of 7340 years, and 228Th with a half-life of 1.92 years. All of the remaining radioactive isotopes have half-lives that are less than thirty days and the majority of these have half-lives that are less than ten minutes. One isotope, 229Th, has a nuclear isomer (or metastable state) with a remarkably low excitation energy of 3.5 eV.[10]

The known isotopes of thorium range in atomic weight from 210 u (210Th) to 236 u (236Th).[11]

Precautions

Powdered thorium metal is often pyrophoric and should be handled carefully.

Natural thorium decays very slowly compared to many other radioactive materials, and the alpha radiation emitted cannot penetrate human skin. Owning and handling small amounts of thorium, such as a gas mantle, is considered safe if care is taken not to ingest the thorium -- lungs and other internal organs can be penetrated by alpha radiation. Exposure to aerosolized thorium can lead to increased risk of cancers of the lung, pancreas and blood. Exposure to thorium internally leads to increased risk of liver diseases. This element has no known biological role. See also Thorotrast.

Thorium Extraction

Thorium has been extracted chiefly from monazite through a multi-stage process. In the first stage, the monazite sand is dissolved in an inorganic acid such as sulfuric acid (H2SO4). In the second, the Thorium is extracted into an organic phase containing an amine. Next it is separated or "stripped" using an anion such as nitrate, chloride, hydroxide, or carbonate, returning the thorium to an aqueous phase. Finally, the thorium is precipitated and collected.[12]

See also

Footnotes

  1. Emsley, John (2001). Nature's Building Blocks ((Hardcover, First Edition) ed.). Oxford University Press. pp. page 441. ISBN 0198503407.
  2. "Thorium". BBC.co. Retrieved 2007-01-18.
  3. Simmons, John Galbraith (1996). The Scientific 100. Seacaucus NJ: Carol. p. 19.
  4. van Arkel, A.E. (1925). "Preparation of pure titanium, zirconium, hafnium, and thorium metal". Zeitschrift für Anorganische und Allgemeine Chemie. 148: 345–350. Unknown parameter |coauthors= ignored (help); |access-date= requires |url= (help)
  5. "US approves Indian nuclear deal". BBC News. 2006-12-09.
  6. K.M.V. Jayaram. "An Overview of World Thorium Resources, Incentives for Further Exploration and Forecast for Thorium Requirements in the Near Future" (PDF).
  7. "U.S. Geological Survey, Mineral Commodity Summaries - Thorium".
  8. "Information and Issue Briefs - Thorium". World Nuclear Association. Retrieved 2006-11-01.
  9. IAEA: Thorium fuel cycle -- Potential benefits and challenges (PDF). pp. pp 45(table 8), 97(ref 78).
  10. Phys. Rev. C 73 044326 (April 2006)
  11. Phys. Rev. C 52, 113–116 (1995)
  12. Crouse, David; Brown, Keith (December 1959) "The Amex Process for Extracting Thorium Ores with Alkyl Amines".Industrial & Engineering Chemistry 51 (12): 1461. Retrieved on 2007-03-09

References

External links

ar:ثوريوم bn:থোরিয়াম be:Торый bs:Torijum bg:Торий ca:Tori cs:Thorium co:Toriu da:Thorium de:Thorium et:Toorium el:Θόριο eo:Torio fa:توریوم fur:Tori gl:Torio (elemento) ko:토륨 hy:Թորիում hi:थोरियम hr:Torij io:Torio id:Torium ia:Thorium it:Torio he:תוריום ht:Toryòm la:Thorium lv:Torijs lb:Thorium lt:Toris jbo:lidycevjinme hu:Tórium nl:Thorium no:Thorium nn:Thorium qu:Thoryu simple:Thorium sk:Tórium sl:Torij sr:Торијум sh:Torijum fi:Torium sv:Torium th:ทอเรียม uk:Торій Template:WH Template:WikiDoc Sources