Jump to navigation Jump to search
style="background:#Template:Taxobox colour;"|Hantavirus
Transmission electron micrograph of the Sin Nombre Hantavirus
Transmission electron micrograph of the Sin Nombre Hantavirus
style="background:#Template:Taxobox colour;" | Virus classification
Group: Group V ((-)ssRNA)
Family: Bunyaviridae
Genus: Hantavirus

Andes virus (ANDV)
Bayou virus (BAYV)
Black Creek Canal virus (BCCV)
Cano Delgadito virus (CADV)
Choclo virus (CHOV)
Dobrava-Belgrade virus (DOBV)
Hantaan virus (HTNV)
Isla Vista virus (ISLAV)
Khabarovsk virus (KHAV)
Laguna Negra virus (LANV)
Muleshoe virus (MULV)
New York virus (NYV)
Prospect Hill virus (PHV)
Puumala virus (PUUV)
Rio Mamore virus (RIOMV)
Rio Segundo virus (RIOSV)
Seoul virus (SEOV)
Sin Nombre virus (SNV)
Thailand virus (THAIV)
Thottapalayam virus (TPMV)
Topografov virus (TOPV)
Tula virus (TULV)
Bakau virus

This page is about microbiologic aspects of the organism(s).  For clinical aspects of the disease, see Hantavirus infection.

Hantavirus infection Microchapters


Patient Information

Hantavirus cardiopulmonary syndrome (HCPS) (patient information)
Hemorrhagic fever with renal syndrome (HFRS) (patient information)


Historical Perspective




Differentiating Hantavirus infection from other Diseases

Epidemiology and Demographics

Risk Factors


Natural History, Complications and Prognosis


History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT Scan



Other Imaging Findings

Other Diagnostic Studies


Medical Therapy


Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future Investigational Therapies

Case Studies

Case #1

Hantavirus On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides


American Roentgen Ray Society Images of Hantavirus

All Images
Echo & Ultrasound
CT Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hantavirus

CDC on Hantavirus

Hantavirus in the news

Blogs on Hantavirus

Directions to Hospitals Treating Hantavirus pulmonary syndrome

Risk calculators and risk factors for Hantavirus

WikiDoc Resources for Hantavirus


Most recent articles on Hantavirus

Most cited articles on Hantavirus

Review articles on Hantavirus

Articles on Hantavirus in N Eng J Med, Lancet, BMJ


Powerpoint slides on Hantavirus

Images of Hantavirus

Photos of Hantavirus

Podcasts & MP3s on Hantavirus

Videos on Hantavirus

Evidence Based Medicine

Cochrane Collaboration on Hantavirus

Bandolier on Hantavirus

TRIP on Hantavirus

Clinical Trials

Ongoing Trials on Hantavirus at Clinical Trials.gov

Trial results on Hantavirus

Clinical Trials on Hantavirus at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Hantavirus

NICE Guidance on Hantavirus


FDA on Hantavirus

CDC on Hantavirus


Books on Hantavirus


Hantavirus in the news

Be alerted to news on Hantavirus

News trends on Hantavirus


Blogs on Hantavirus


Definitions of Hantavirus

Patient Resources / Community

Patient resources on Hantavirus

Discussion groups on Hantavirus

Patient Handouts on Hantavirus

Directions to Hospitals Treating Hantavirus

Risk calculators and risk factors for Hantavirus

Healthcare Provider Resources

Symptoms of Hantavirus

Causes & Risk Factors for Hantavirus

Diagnostic studies for Hantavirus

Treatment of Hantavirus

Continuing Medical Education (CME)

CME Programs on Hantavirus


Hantavirus en Espanol

Hantavirus en Francais


Hantavirus in the Marketplace

Patents on Hantavirus

Experimental / Informatics

List of terms related to Hantavirus


Hantaviruses belong to the bunyaviridae family of viruses. There are 5 genera within the bunyaviridae family: bunyavirus, phlebovirus, nairovirus, tospovirus, and hantavirus. Each is made up of negative-sensed, single-stranded RNA viruses. All these genera include arthropod-borne viruses, with the exception of hantavirus, which is a genus of rodent-borne agents.

The word hantavirus is derived from the Hantan River, where the Hantaan virus (the etiologic agent of Korean hemorrhagic fever) was first isolated by Dr. Lee Ho-Wang. The disease associated with Hantaan virus is called Korean hemorrhagic fever (a term that is no longer in use) or hemorrhagic fever with renal syndrome (HFRS), a term that is accepted by the World Health Organization.


The Hantaviruses constitute a relatively newly discovered class of virus; the disease entity HFRS was first recognized by Western medicine during the Korean War in the early 1950s. In 1993, a newly-recognized species of hantavirus was found to be behind the Hantavirus cardiopulmonary syndrome (HCPS, also called HPS) caused by the Sin Nombre virus (Spanish for "nameless virus") in New Mexico and other Four Corners states. In addition to Hantaan virus and Sin Nombre virus, several other hantaviruses have been implicated as etiologic agents for either HFRS or HCPS.


Hantaviruses can be classified based on the clinical manifestations of hantavirus cardiopulmonary syndrome (HCPS), hemorrhagic fever with renal syndrome (HFRS) and nephropathia epidemica (NE).

Clinical Manifestation* Type of Hantavirus Host (rodent) Area of Predominance
Hantavirus cardiopulmonary syndrome (HCPS) Bayou virus (BAYV) Oryzomys palustris North America
Araraquara virus (ARAV) Necromys lasiurus Brazil
Puumala virus (PUUV)
  • Myodes glareolus
  • Clethrionomys glareolus
Andes virus (ANDV) Oligoryzomys longicaudatus Argentina, Chile
Bermejo virus (BMJV)
  • Oligoryzomys chacoensis
  • Oligoryzomys flavescens
Bolivia, Argentina
Black Creek Canal virus (BCCV) Sigmodon hispidus North America
Castelo Dos Sonhos virus (CASV) Oligoryzomys spp Brazil
Laguna Negra virus (LANV) Calomys callosus Argentina, Paraguay,


Lechiguanas virus (LECV) Oligoryzomys flavescens Argentina
Maciel virus (MCLV) Bolomys obscurus Argentina
Sin Nombre virus (SNV) Peromyscus maniculatus North America
Oran virus (ORNV) Oligoryzomys chacoensis Argentina
New York virus (NYV) Peromyscus leucopus North America
Muleshoe virus (MULEV) Sigmodon hispidus North America
Monongahela virus (MGLV) Peromyscus†leucopus North America
Choclo virus (CHOV) Oligoryzomys fulvescens Panama
Juquitiba virus (JUQV) Oligoryzomys nigripes Brazil, Argentina
Hemorrhagic fever with renal syndrome (HFRS) Amur virus (AMRV) Apodemus peninsulae China, Russia, Korea
Hantaan virus (HTNV) Apodemus flavicollis China, Russia, Korea
Saaremaa virus (SAAV) Apodemus agrarius Europe
Puumala virus (PUUV)
  • Myodes glareolus
  • Clethrionomys glareolus
Seoul virus (SEOV) Rattus norvegicus Global
Thailand hantavirus (THAIV) Bandicota indica Thailand
Tula virus (TULV) Microtus arvalis Europe
Dobrava-Belgrade virus (DOBV) Apodemus agrarius Europe
Nephropathia epidemica (NE) Saaremaa virus (SAAV) Apodemus agrarius Europe
Puumala virus (PUUV)
  • Myodes glareolus
  • Clethrionomys glareolus

*Recreated from VIROLOGICA SINICA.[1]

Geographic distribution and epidemiology

Regions especially affected by HFRS include China, the Korean Peninsula, Russia (Hantaan, Puumala and Seoul viruses), and northern and western Europe (Puumala and Dobrava viruses). Regions with the highest incidences of HCPS include Patagonian Argentina, Chile, Brazil, the United States, Canada, and Panama, where a milder form of disease that spares the heart has been recognized. The two agents of HCPS in South America are Andes virus (also called Oran, Castelo de Sonhos, Lechiguanas, Juquitiba, Araraquara, and Bermejo viruses, among many other synonyms), which is the only hantavirus that has shown (only in a few clusters of cases) an interpersonal form of transmission, and Laguna Negra virus, an extremely close relative of the previously-known Rio Mamore virus. In the U.S., minor causes of HCPS include New York virus, Bayou virus, and possibly Black Creek Canal virus.

As of July of 2007, six states had reported 30 or more cases of Hantavirus since 1993 - New Mexico (69), Colorado (49), Arizona (46), California (43), Texas (33), and Washington (30). Other states reporting a significant number of cases include Montana (25), Idaho (19), and Utah (24). With only 7 cases, Oregon has a notably lower attack rate overall and relative to population, compared to other Western states.


Like other members of the bunyavirus family, hantaviruses are enveloped viruses with a genome that consists of three single-stranded RNA segments designated S (small), M (medium), and L (large). All hantaviral genes are encoded in the negative (genome complementary) sense. The S RNA encodes the nucleocapsid (N) protein. The M RNA encodes a polyprotein that is cotranslationally cleaved to yield the envelope glycoproteins G1 and G2. The L RNA encodes the L protein, which functions as the viral transcriptase/replicase. Within virions, the genomic RNAs of hantaviruses are thought to complex with the N protein to form helical nucleocapsids, the RNA component of which circularizes due to sequence complementarity between the 5' and 3' terminal sequences of each genomic segment.

Hantaviruses replicate exclusively in the host cell cytoplasm. Entry into host cells is thought to occur by attachment of virions to cellular receptors and subsequent endocytosis. Nucleocapsids are introduced into the cytoplasm by pH-dependent fusion of the virion with the endosomal membrane. Transcription of viral genes must be initiated by association of the L protein with the three nucleocapsid species. In addition to transcriptase and replicase functions, the viral L protein is also thought to have an endonuclease activity that cleaves cellular messenger RNAs (mRNAs) for the production of capped primers used to initiate transcription of viral mRNAs. As a result of this "cap snatching," the mRNAs of hantaviruses are capped and contain nontemplated 5' terminal extensions. The G1 (aka Gn) and G2 (Gc) glycoproteins form hetero-oligomers and are then transported from the endoplasmic reticulum to the Golgi complex, where glycosylation is completed. The L protein produces nascent genomes by replication via a positive-sense RNA intermediate. Hantavirus virions are believed to assemble by association of nucleocapsids with glycoproteins embedded in the membranes of the Golgi, followed by budding into the Golgi cisternae. Nascent virions are then transported in secretory vesicles to the plasma membrane and released by exocytosis.


Hemorrhagic Fever with Renal Syndrome (HFRS)

Hantavirus has an incubation time of 2-4 weeks in humans, before symptoms of infection occur. These symptoms can be split into five phases:

  • Hypotensive phase: This occurs when the blood platelet levels drop and symptoms can lead to tachycardia and hypoxemia. This phase can last for 2 days.
  • Oliguric phase: This phase lasts for 3-7 days and is characterised by the onset of renal failure and proteinuria occurs.
  • Diuretic phase: This is characterized by diuresis of 3-6L per day, which can last for a couple of days up to weeks.
  • Convalescent phase: This is normally when recovery occurs and symptoms begin to improve.

Hantavirus (Cardio-)Pulmonary Syndrome (HPS or HCPS)

Hantavirus pulmonary syndrome (HPS) is a deadly disease transmitted by infected rodents through urine, droppings, or saliva. Humans can contract the disease when they breathe in aerosolized virus. HPS was first recognized in 1993 and has since been identified throughout the United States. Although rare, HPS is potentially deadly. Rodent control in and around the home remains the primary strategy for preventing hantavirus infection.

These symptoms, which are very similar to HFRS, include tachycardia and tachypnoea. Such conditions can lead to a cardiopulmonary phase, where cardiovascular shock can occur, and hospitalization of the patient is required.

External links

Template:WikiDoc Sources


  1. Jiang H, Zheng X, Wang L, Du H, Wang P, Bai X (2017). "Hantavirus infection: a global zoonotic challenge". Virol Sin. 32 (1): 32–43. doi:10.1007/s12250-016-3899-x. PMID 28120221.