Lung volumes

(Redirected from Expiratory reserve volume)
Jump to navigation Jump to search
Lung Volumes

WikiDoc Resources for Lung volumes


Most recent articles on Lung volumes

Most cited articles on Lung volumes

Review articles on Lung volumes

Articles on Lung volumes in N Eng J Med, Lancet, BMJ


Powerpoint slides on Lung volumes

Images of Lung volumes

Photos of Lung volumes

Podcasts & MP3s on Lung volumes

Videos on Lung volumes

Evidence Based Medicine

Cochrane Collaboration on Lung volumes

Bandolier on Lung volumes

TRIP on Lung volumes

Clinical Trials

Ongoing Trials on Lung volumes at Clinical

Trial results on Lung volumes

Clinical Trials on Lung volumes at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Lung volumes

NICE Guidance on Lung volumes


FDA on Lung volumes

CDC on Lung volumes


Books on Lung volumes


Lung volumes in the news

Be alerted to news on Lung volumes

News trends on Lung volumes


Blogs on Lung volumes


Definitions of Lung volumes

Patient Resources / Community

Patient resources on Lung volumes

Discussion groups on Lung volumes

Patient Handouts on Lung volumes

Directions to Hospitals Treating Lung volumes

Risk calculators and risk factors for Lung volumes

Healthcare Provider Resources

Symptoms of Lung volumes

Causes & Risk Factors for Lung volumes

Diagnostic studies for Lung volumes

Treatment of Lung volumes

Continuing Medical Education (CME)

CME Programs on Lung volumes


Lung volumes en Espanol

Lung volumes en Francais


Lung volumes in the Marketplace

Patents on Lung volumes

Experimental / Informatics

List of terms related to Lung volumes

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Lung volumes refer to physical differences in lung volume, while lung capacities represent different combinations of lung volumes, usually in relation to respiration and exhalation.

The average pair of human lungs can hold about 6 liters of air, but only a small amount of this capacity is used during normal breathing.

Breathing mechanism in mammals is called "tidal breathing". Tidal breathing means that air goes into the lungs the same way that it comes out.

Factors affecting lung volume

Several factors affect lung volumes, some that can be controlled and some that can not. These factors include:

Larger volumes Smaller volumes
males females
taller people shorter people
non-smokers heavy smokers
athletes non-athletes
people living at high altitudes people living at low altitudes

A person who is born and lives at sea level will develop a slightly smaller lung capacity than a person who spends their life at a high altitude. This is because the atmosphere is less dense at higher altitude, and therefore, the same volume of air contains fewer molecules of all gases, including oxygen. In response to higher altitude, the body's diffusing capacity increases in order to be able to process more air.

When someone living at or near sea level travels to locations at high altitudes (eg. the Andes, Denver, Colorado, Tibet, the Himalayas, etc.) they can develop a condition called altitude sickness because their lungs cannot respirate sufficiently in the thinner air.

Measurement and values

These values vary with the age and height of the person; the values that follow are for a 70 kg (154 lb), average-sized adult male [1]:

Measurement Value Calculation Description
Total lung capacity (TLC) = 6.0 L = IRV + TV + ERV + RV The volume of gas contained in the lung at the end of maximal inspiration. The total volume of the lung (i.e.: the volume of air in the lungs after maximum inspiration).
Vital capacity (VC) = 4.6 L = IRV + TV + ERV The amount of air that can be forced out of the lungs after a maximal inspiration. Emphasis on completeness of expiration. The maximum volume of air that can be voluntarily moved in and out of the respiratory system.[2][3]
Forced vital capacity (FVC) = 4.8 L measured The amount of air that can be maximally forced out of the lungs after a maximal inspiration. Emphasis on speed.[4][5][6]
Tidal volume (TV) = 500 mL measured The amount of air breathed in or out during normal respiration. The volume of air an individual is normally breathing in and out.
Residual volume (RV) = 1.2 L measured The amount of air left in the lungs after a maximal exhalation. The amount of air that is always in the lungs and can never be expired (i.e.: the amount of air that stays in the lungs after maximum expiration).
Expiratory reserve volume (ERV) = 1.2 L measured The amount of additional air that can be breathed out after the end expiratory level of normal breathing. (At the end of a normal breath, the lungs contain the residual volume plus the expiratory reserve volume, or around 2.4 litres. If one then goes on and exhales as much as possible, only the residual volume of 1.2 litres remains).
Inspiratory reserve volume (IRV) = 3.6 L measured IRV=VC-(TV+ERV) The additional air that can be inhaled after a normal tidal breath in. The maximum volume of air that can be inspired in addition to the tidal volume.
Functional residual capacity (FRC) = 2.4 L = ERV + RV The amount of air left in the lungs after a tidal breath out. The amount of air that stays in the lungs during normal breathing.
Inspiratory capacity (IC) = 4.1 L = TV + IRV The volume that can be inhaled after a tidal breathe-out.
Anatomical dead space = 150 mL measured The volume of the conducting airways. Measured with Fowler method.[7]
Physiologic dead volume = 155 mL <math> V_\mathrm{T} \,\frac{P_\mathrm{A\,CO_2}-P_\mathrm{E\,CO_2}}{P_\mathrm{A\,CO_2}} </math> The anatomic dead space plus the alveolar dead space.

The tidal volume, vital capacity, inspiratory capacity and expiratory reserve volume can be measured directly with a spirometer. Determination of the residual volume can be done by radiographic planemetry, body plethysmography, closed circuit dilution and nitrogen washout.

These are the basic elements of a ventilatory pulmonary function test. The results (in particular FEV1/FVC and FRC) can be used to distinguish between restrictive and obstructive pulmonary diseases:

Type Examples Description FEV1/FVC
restrictive diseases pulmonary fibrosis volumes are decreased often in a normal range (0.8 - 1.0)
obstructive diseases asthma or COPD volumes are essentially normal but flow rates are impeded often low (Asthma can reduce the ratio to 0.6, Emphysema can reduce the ratio to 0.3 - 0.4)


The largest human lung capacity recorded is that of British rower Peter Reed at 11.68 litres, roughly twice that of an average person.


  1. Palsson, et al. Tissue Engineering (2003). CRC Press. ISBN 0-8493-1812-2. page 7-7.
  2. Template:GPnotebook
  3. Template:Dorlands
  4. Template:GPnotebook
  5. Template:Dorlands
  6. Chhabra S (1998). "Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity?". J Asthma. 35 (4): 361–5. PMID 9669830.
  7. Essentials of Human Physiology by Thomas M. Nosek. Section 4/4ch3/s4ch3_17.

External links

Template:WikiDoc Sources

de:Lungenvolumen Template:Jb1