Jump to: navigation, search
Clinical data
ATCvet code
Legal status
Legal status
  • US: Rx-only, Unscheduled
Pharmacokinetic data
Protein binding<5%
Elimination half-life2½ hours
ExcretionRenal, unchanged
CAS Number
E number{{#property:P628}}
ECHA InfoCard{{#property:P2566}}Lua error in Module:EditAtWikidata at line 36: attempt to index field 'wikibase' (a nil value).
Chemical and physical data
Molar mass528.60 g/mol
3D model (JSmol)

WikiDoc Resources for Cefquinome


Most recent articles on Cefquinome

Most cited articles on Cefquinome

Review articles on Cefquinome

Articles on Cefquinome in N Eng J Med, Lancet, BMJ


Powerpoint slides on Cefquinome

Images of Cefquinome

Photos of Cefquinome

Podcasts & MP3s on Cefquinome

Videos on Cefquinome

Evidence Based Medicine

Cochrane Collaboration on Cefquinome

Bandolier on Cefquinome

TRIP on Cefquinome

Clinical Trials

Ongoing Trials on Cefquinome at Clinical Trials.gov

Trial results on Cefquinome

Clinical Trials on Cefquinome at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Cefquinome

NICE Guidance on Cefquinome


FDA on Cefquinome

CDC on Cefquinome


Books on Cefquinome


Cefquinome in the news

Be alerted to news on Cefquinome

News trends on Cefquinome


Blogs on Cefquinome


Definitions of Cefquinome

Patient Resources / Community

Patient resources on Cefquinome

Discussion groups on Cefquinome

Patient Handouts on Cefquinome

Directions to Hospitals Treating Cefquinome

Risk calculators and risk factors for Cefquinome

Healthcare Provider Resources

Symptoms of Cefquinome

Causes & Risk Factors for Cefquinome

Diagnostic studies for Cefquinome

Treatment of Cefquinome

Continuing Medical Education (CME)

CME Programs on Cefquinome


Cefquinome en Espanol

Cefquinome en Francais


Cefquinome in the Marketplace

Patents on Cefquinome

Experimental / Informatics

List of terms related to Cefquinome

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]


Cefquinome is a fourth-generation cephalosporin with pharmacological and antibacterial properties valuable in the treatment of coliform mastitis and other infections. It is only used in veterinary applications.


Cefquinome is resistant to beta-lactamase. Chemically, its zwitterionic structure can facilitate rapid penetration across biological membranes, including porins of bacterial cell walls. Plus, it has a higher affinity to target penicillin-binding proteins. The reactive site is a beta-lactam nucleus, while the main peripheral functional groups are a quaternary quinolinium, an aminothiazolyl moiety and an unusual O-alkylated oxime.

Cefquinome acts by inhibition of the cell wall synthesis, but it has a relatively short half-life of about 2.5 hours. It is less than 5% protein bound and is excreted unchanged in the urine.[1]


Many studies have been conducted, mostly for animal use. One such study was conducted by the Pharma Research in Germany.

Test groups

Groups of albino mice, weighing 191 g, were dosed with 10 and 40 mg of cefquinome per kg. Blood samples were obtained from a cut at the tip of the tail and kept at 4°C. Urine was collected in metabolism cages.

Three male beagle dogs, weighing about 22 kg each, were dosed with 5, 10, and 20 mg/kg at the cephalic vein. Blood samples were drawn from the same vein in the opposite leg. Meanwhile, urine was collected by catheterization.

Pigs, five or six male and female in each group weighing about 18 kg each, were injected with 10 mg of cefquinome at the venajuglaris in the base of the left ear. Blood samples were withdrawn from the contralateral jugular vein.

Male and female calves weighing between 110 and 140 kg were dosed with 10 mg of cefquinome per kg through the vera jucular.

Standard solutions were prepared from pooled murine blood and urine taken from untreated dogs, pigs, and calves.


Cefquinome concentrations were calculated by regression analysis, using the standard curves in which logarithms of the concentration were proportional to the areas of the inhibition zones. Curve fitting was carried out by nonlinear regression with the computer program PHAKOK. Pharmokinetic analysis of the concentration-time data after administration indicated that the best curve fits were usually achieved by using an open two-compartment model.


Data indicate that cefquinome has high antibacterial activity in vitro against nearly all strains tested. In general, cefquinome is within the same range as cefpirome and cefotaxime. Against Gram-negative species, cefquinome has very limited in vitro activity. The in vitro activity of cefquinome does not depend on the composition or pH of the test medium. The broad antibacterial spectrum and the high in vitro activity are reflected by high in vivo efficacy in experimental infections. In mouse models of septicemia, cefquinome possessed high therapetic efficacy. All infections were cured.


In cattle, the injection should help against respiratory disease caused by Mannheimia haemolytica and Pasteurella multocida. It also helps with acute E. coli mastitis, dermatitis, infectious ulbar necrosis, and interdigital necrobacillosis. In calves, it is effective against E. coli septicaemia.

For pigs, it is used to treat bacterial infections of the lungs and respiratory tract caused by P. multocida, Haemophilus parasuis, Actinobacillus pleuropneumoniae, and Streptococcus suis. Mastitis-metritis-agalactia syndrome involved with E. coli, Staphylococcus, Streptococcus, and other cefquinome-sensitive organisms are also treated. In piglets, the mortality rate in cases of meningitis caused by Streptococcus sues is reduced. It is used in the treatment of mild or moderate lesions caused by Staphylococcus hyicus and arthritis caused by Streptococcus spp. and E. coli.


These are some factors to be aware of before treating:

  • This product should not be used in animals known to be hypersensitive to β-lactam antibiotics.
  • It should not be administered to animals with a body weight less than 1.25 kg.
  • Use of the product may result in localised tissue reaction. Tissue lesions are repaired by 15 days after the last administration of the product.
  • Hypersensitivity reactions to cephalosporins occur rarely.
  • The product does not contain an antimicrobial preservative.
  • To prevent the claimed infections in piglets, attention should be paid to hygiene and ventilation, and overcrowding should be avoided. When the first piglets are affected, careful examination of all animals in the same pen is recommended to enable an early treatment of any other infected piglets.

Clinical usage

Human use

Cefquinome is not approved for human use.

Veterinary medicine

Conditions of use are limited to therapeutic, parenteral, and individual animal use. Individual parenteral therapy of bovine respiratory disease data on cefquinome-related residues demonstrate only very small amounts are present in the intestinal tract of treated cattle with gastrointestinal activation. However, treatment should be short, meaning a single injection daily for about a week. Treatment should only be given by prescription. Cefquinome should not be used in feed or water.

Since 1994, in Europe, it was allowed to treat cattle by prescription only. In 1999, swine were included. By 2005, horses were allowed as well. In the United States, approval is pending for treatment of bovine respiratory disease. Even so, this is only available by prescription.

Cefquinome is also used for other illnesses, such as “shipping fever”, a pneumonia-like illness commonly found in cattle.[2]


Resistance and food-borne transmission

Of concern, the use of the drug in animals may lead to increases in antibiotic resistance. Humans can be exposed to bacteria through food-borne transmission, raising chances of becoming exposed to resistant bacterial species, such as Salmonella or E. coli. The potential for the development of antibiotic resistance increases as usage increases, by selecting bacteria which have acquired beta-lactamases.


The use may cause resistance in Salmonella present in the intestinal tract of the target animal. Resistant Salmonella may also contaminate the carcass at slaughter and transfer to humans when used as food. When humans are infected and treated with a fourth-generation cephalosporin, effectiveness may be compromised.

Although fourth-generation cephalosporin resistance is very rare, they are active against bacteria carrying the AmpC-type β-lactamase resistance mechanism. Since the late 1990s, the US and EU have surveyed and gathered data for fourth-generation cephalosporins for both human and veterinary use. Data indicate no changes occur in resistance patterns of relevant food-borne pathogens.

FDA guidelines

  • Administered products will be used in individual animals for short duration and by prescription only.
  • The extent of use is ranked low.
  • Avoid human drug resistance to fourth-generation cephalosporins by authorizing extra-label prohibition.

See also


  1. Intervet, "Cephaguard Injection Data Sheet," http://www.intervet.co.uk/Products_Public/Cephaguard_Injection/090_Product_Datasheet.asp
  2. Associated Press, "Farmers, doctors battle over new drug for dairy cows," April 5, 2007, State and Regional