P73

Revision as of 16:03, 20 January 2012 by Priyamvada Singh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Tumor protein p73
File:PBB Protein TP73 image.jpg
PDB rendering based on 1cok.
Identifiers
Symbols TP73 ; P73
External IDs Template:OMIM5 Template:MGI HomoloGene3960
RNA expression pattern
File:PBB GE TP73 220804 s at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

WikiDoc Resources for P73

Articles

Most recent articles on P73

Most cited articles on P73

Review articles on P73

Articles on P73 in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on P73

Images of P73

Photos of P73

Podcasts & MP3s on P73

Videos on P73

Evidence Based Medicine

Cochrane Collaboration on P73

Bandolier on P73

TRIP on P73

Clinical Trials

Ongoing Trials on P73 at Clinical Trials.gov

Trial results on P73

Clinical Trials on P73 at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on P73

NICE Guidance on P73

NHS PRODIGY Guidance

FDA on P73

CDC on P73

Books

Books on P73

News

P73 in the news

Be alerted to news on P73

News trends on P73

Commentary

Blogs on P73

Definitions

Definitions of P73

Patient Resources / Community

Patient resources on P73

Discussion groups on P73

Patient Handouts on P73

Directions to Hospitals Treating P73

Risk calculators and risk factors for P73

Healthcare Provider Resources

Symptoms of P73

Causes & Risk Factors for P73

Diagnostic studies for P73

Treatment of P73

Continuing Medical Education (CME)

CME Programs on P73

International

P73 en Espanol

P73 en Francais

Business

P73 in the Marketplace

Patents on P73

Experimental / Informatics

List of terms related to P73

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

p73 is a protein related to the p53 tumor protein. Because of its structural resemblance to p53, it has also been considered a tumor suppressor. It is involved in cell cycle regulation, and induction of apoptosis. Like p53, p73 is characterized by the presence of different isoforms of the protein. This is explained by splice variants, and an alternative promoter in the DNA sequence.

p73, also known as tumor protein 73 (TP73), protein was the first identified homologue of the tumor suppressor gene, p53. Like p53, p73 has several variants. It is expressed as distinct forms differing at either at the C- or the N-terminus. Currently, six different C-terminus splicing variants have been found in normal cells. The p73 gene encodes a protein with a significant sequence homology and a functional similarity with the tumor suppressor p53. The over-expression of p73 in cultured cells promotes a growth arrest and/or apoptosis similarly to p53.

The p73 gene has been mapped to a chromosome region (1p36. 2-3) a locus which is commonly deleted in various tumor entities and human cancers. Similar to p53 the protein product of p73 induces cell cycle arrest or apoptosis, hence its classification as a tumor suppressor. However unlike its counter part, p73 is infrequently mutated in cancers. Perhaps, even more shocking is the fact that p73 – deficient mice do not show a tumorigenic phenotype. A deficiency of p53 almost certainly leads to unchecked cell proliferation and is noted in 60% of cancers.

Analyses of many tumors typically found in humans including breast and ovarian cancer show a high expression of p73 when compared to normal tissues in corresponding areas. Adenoviruses which cause cellular transformations have also been found to result in increased p73 expression. Furthermore, recent finding are suggesting that deregulated over expression of transcription factors within the body involved in cell cycle regulation and synthesis of DNA in mammalian cells (i.e.: E2F-1), induces the expression of p73. Many researchers believe that these results are beginning to suggest that p73 may not be a tumor suppressor but rather an oncoprotien. Some suggest that the TP73 locus encodes both a tumor suppressor (TAp73) and a putative oncogene (ΔNp73). This is a strong theory and causes much confusion as it is unknown which of the two p73 variants is being over expressed and ultimately plays a role in tumorigenesis.

Genes of the p53 family are known to be complex. The viral oncoproteins (i.e.: Adenovirus 1EB) which efficiently inhibit p53 function, are unable to inactivate p73 and those which seem to inhibit p73 have no effect on p53.

Debate persists about the exact function of p73. Recently it has been reported that p73 is enriched in the nervous system and that the p73-deficient mice, which do not exhibit an increased susceptibility to spontaneous tumorigenesis, have neurological and immunological defects. These results have been expanded and it has also been shown that p73 is present in early stages of neurological development and neuronal apoptosis by blocking the proapoptotic function of p53. This strongly implicates p73 as playing a large role in cellular differentiation.

External links

Further reading

  • Kaghad, M., H. Bonnet, A. Yang, L. Creancier, J. C. Biscan, A. Valent, A. Minty, P. Chalon, J. M. Lelias, X. Dumont, P. Ferrara, F. McKeon, and D. Caput. 1997. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809-819. Template:Entrez Pubmed
  • Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. (2000). J. Cell Sci., 113: (10). 1661-1670 Template:Entrez Pubmed
  • Pozniak, C. D., S. Radinovic, A. Yang, F. McKeon, D. R. Kaplan, and F. D. Miller. 2000. An anti-apoptotic role for the p53 family member, p73, during developmental neuron death. Science 289:304-306 Template:Entrez Pubmed
  • Yang, A., N. Walker, R. Bronson, M. Kaghad, M. Oosterwegel, J. Bonnin, C. Vagner, H. Bonnet, P. Dikkes, A. Scharpe, F. McKeon, and D. Caput. 2000. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99-103. Template:Entrez Pubmed
  • Kaelin WG (1999). "The emerging p53 gene family". J. Natl. Cancer Inst. 91 (7): 594–8. PMID 10203277.
  • Davis PK, Dowdy SF (2001). "p73". Int. J. Biochem. Cell Biol. 33 (10): 935–9. PMID 11470228.
  • Salomoni P, Pandolfi PP (2002). "The role of PML in tumor suppression". Cell. 108 (2): 165–70. PMID 11832207.
  • Melino G (2004). "p73, the "assistant" guardian of the genome?". Ann. N. Y. Acad. Sci. 1010: 9–15. PMID 15033688.
  • Jacobs WB, Walsh GS, Miller FD (2005). "Neuronal survival and p73/p63/p53: a family affair". The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 10 (5): 443–55. doi:10.1177/1073858404263456. PMID 15359011.
  • Rossi M, Sayan AE, Terrinoni A; et al. (2005). "Mechanism of induction of apoptosis by p73 and its relevance to neuroblastoma biology". Ann. N. Y. Acad. Sci. 1028: 143–9. doi:10.1196/annals.1322.015. PMID 15650240.
  • Dobbelstein M, Strano S, Roth J, Blandino G (2005). "p73-induced apoptosis: a question of compartments and cooperation". Biochem. Biophys. Res. Commun. 331 (3): 688–93. doi:10.1016/j.bbrc.2005.03.155. PMID 15865923.
  • Ramadan S, Terrinoni A, Catani MV; et al. (2005). "p73 induces apoptosis by different mechanisms". Biochem. Biophys. Res. Commun. 331 (3): 713–7. doi:10.1016/j.bbrc.2005.03.156. PMID 15865927.
  • Harms KL, Chen X (2006). "p19ras brings a new twist to the regulation of p73 by Mdm2". Sci. STKE. 2006 (337): pe24. doi:10.1126/stke.3372006pe24. PMID 16738062.
  • Marabese M, Vikhanskaya F, Broggini M (2007). "p73: a chiaroscuro gene in cancer". Eur. J. Cancer. 43 (9): 1361–72. doi:10.1016/j.ejca.2007.01.042. PMID 17428654.

ur:P73 (وراثہ) Template:WH Template:WikiDoc Sources