Lipoid pneumonia pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
 
(16 intermediate revisions by 3 users not shown)
Line 4: Line 4:
{{CMG}}; {{AE}} {{RG}}
{{CMG}}; {{AE}} {{RG}}
==Overview==
==Overview==
The exact pathogenesis of [disease name] is not fully understood.
[[Lipoid pneumonia]] [[pathogenesis]] is different in its two subtypes: [[Exogenous]] form is the result of [[chronic]] body reaction to fatty [[substance]] in the [[alveoli]]. [[Lipid]] reaches [[alveoli]] by [[aspiration]] or [[inhalation]]. Some [[Oils|mineral oils]] can cause [[lung]] [[injuries]] such as [[Natural gasoline|gasoline]]. [[Mineral oil|Mineral oils]] can enter the [[tracheobronchial tree]] without causing [[cough reflex]] which will bother [[Mucociliary clearance|mucociliary transport system]] [[Chronic|chronically]]. Injected [[lipids]] mechanism of further producing [[lipid pneumonia]] is more complicated. As the [[lipid]] goes inside the [[alveoli]], it is trapped and hard to [[expectorate]], this condition may be worsen by associated [[neurological]] and [[gastrointestinal]] disorders affecting [[swallowing]] or [[cough]]. [[Lipids]] in [[alveoli]] form [[emulsion]] and then consumed by [[macrophages]] via [[phagocytosis]]. Since the [[Macrophages|alveolar macrophages]] cannot metabolize consumed fatty [[substance]], [[oil]] is repeatedly released into [[alveoli]] after death of these [[macrophages]]. The oil released, elicits a [[Granulomatosis|giant-cell granulomatosis]] reaction. Pathogenesis of endogenous form is still not well understood however there are plenty of suggested mechanisms, one saying that [[endogenous]] [[lipoid pneumonia]] can be caused by [[Bronchial|transbronchial]] dissemination of [[cancer cell]] breakdown products. Poorly differentiated [[adenocarcinoma]] cells secreting [[mucin]] is the most common [[neoplastic]] reason. Another mechanism suggested is [[Anoxic brain injury|anoxic tissue injury]] stimulating various [[enzymes]] such as [[phospholipase]] and [[Monooxygenase|monooxygenases]]. [[Infection]] changes to [[endogenous]] [[lipid pneumonia]] is generally localized in airways because the surrounding [[lung]] is already [[Consolidation (medicine)|consolidated]], limiting the spread of [[bacteria]]. On [[gross]] and [[microscopic]] [[histology]] will show well circumscribed, firm with prominent [[lymphatics]] on [[lung]] surface, [[Inflammation|inflammatory cells,]] and young [[Fibroblast|fibroblasts]]. [[Endarteritis obliterans|Reactive endarteritis]] and marked [[alveolar]] lining cell [[hyperplasia]] may also be seen. Lipid-laden foamy [[Macrophage|macrophages]] are part of pathology.


OR
== Pathophysiology ==
 
It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
 
OR
 
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
 
OR
 
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
 
OR
 
 
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
 
OR
 
The progression to [disease name] usually involves the [molecular pathway].
 
OR
 
The pathophysiology of [disease/malignancy] depends on the histological subtype.
 
==Pathophysiology==


=== Exogenous lipoid pneumonia ===
=== Exogenous lipoid pneumonia ===
The important [[pathophysiology]] aspects regarding [[exogenous]] [[lipoid pneumonia]] include:<ref name="GuerguerianLacroix2000">{{cite journal|last1=Guerguerian|first1=Anne-Marie|last2=Lacroix|first2=Jacques|title=Pulmonary injury after intravenous hydrocarbon injection|journal=Paediatrics & Child Health|volume=5|issue=8|year=2000|pages=471–472|issn=1205-7088|doi=10.1093/pch/5.8.471}}</ref><ref name="DomejMitterhammer2007">{{cite journal|last1=Domej|first1=Wolfgang|last2=Mitterhammer|first2=Heike|last3=Stauber|first3=Rudolf|last4=Kaufmann|first4=Peter|last5=Smolle|first5=Karl Heinz|title=Successful outcome after intravenous gasoline injection|journal=Journal of Medical Toxicology|volume=3|issue=4|year=2007|pages=173–177|issn=1556-9039|doi=10.1007/BF03160935}}</ref>


*It is understood that exogenus [[lipoid pneumonia]] is the result of chronic body reaction to fatty substance in the [[alveoli]]<ref name="GuerguerianLacroix2000">{{cite journal|last1=Guerguerian|first1=Anne-Marie|last2=Lacroix|first2=Jacques|title=Pulmonary injury after intravenous hydrocarbon injection|journal=Paediatrics & Child Health|volume=5|issue=8|year=2000|pages=471–472|issn=1205-7088|doi=10.1093/pch/5.8.471}}</ref>.
*It is understood that [[exogenous]] [[lipoid pneumonia]] is the result of [[chronic]] body reaction to fatty substance in the [[alveoli]].
*[[Lipid]] reaches [[alveoli]] by [[aspiration]] or [[inhalation]].
*[[Lipid]] reaches [[alveoli]] by [[aspiration]] or [[inhalation]].
*Some [[Oils|mineral oils]] can cause lung injuries such as [[Natural gasoline|gasoline]]<ref name="DomejMitterhammer2007">{{cite journal|last1=Domej|first1=Wolfgang|last2=Mitterhammer|first2=Heike|last3=Stauber|first3=Rudolf|last4=Kaufmann|first4=Peter|last5=Smolle|first5=Karl Heinz|title=Successful outcome after intravenous gasoline injection|journal=Journal of Medical Toxicology|volume=3|issue=4|year=2007|pages=173–177|issn=1556-9039|doi=10.1007/BF03160935}}</ref>.
*Some [[Oils|mineral oils]] can cause [[lung]] injuries such as [[Natural gasoline|gasoline]].
*Mineral oils can enter the [[tracheobronchial tree]] without causing [[cough reflex]] which will bother [[Mucociliary clearance|mucociliary transport system]] chronically.
*[[Mineral oil|Mineral oils]] can enter the [[tracheobronchial tree]] without causing [[cough reflex]] which will bother [[Mucociliary clearance|mucociliary transport system]] chronically.
*Injected lipids mechanism of further producing [[lipid pneumonia]] is more complicated:
*Injected [[Lipid|lipids]] mechanism of further producing [[lipid pneumonia]] is more complicated:
**It is suggested that the [[lung]] is the first [[capillary bed]] encountered during [[circulation]], bearing the majority of damage.
**It is suggested that the [[lung]] is the first [[capillary bed]] encountered during [[circulation]], bearing the majority of damage.
*as the [[lipid]] goes inside the [[alveoli]], it is trapped and hard to expectorate, this condition may be worsen by associated [[neurological]] and [[gastrointestinal]] disorders affecting [[swallowing]] or [[cough]].
*As the [[lipid]] goes inside the [[alveoli]], it is trapped and hard to [[expectorate]], this condition may be worsen by associated [[neurological]] and [[gastrointestinal]] disorders affecting [[swallowing]] or [[cough]].
*Lipids in [[alveoli]] form [[emulsion]] and then consumed by [[macrophages]] via [[phagocytosis]].
*[[Lipid|Lipids]] in [[alveoli]] form [[emulsion]] and then consumed by [[macrophages]] via [[phagocytosis]].
*Since the [[Macrophages|alveolar macrophages]] cannot metabolize consumed fatty substance, [[oil]] is repeatedly released into [[alveoli]] after death of these [[macrophages]].
*Since the [[Macrophages|alveolar macrophages]] cannot metabolize consumed fatty substance, [[oil]] is repeatedly released into [[alveoli]] after death of these [[macrophages]].
*The oil released, illicits a [[Granulomatosis|giant-cell granulomatosis]] reaction.
*The oil released, elicits a [[Granulomatosis|giant-cell granulomatosis]] reaction:
**In fresh lesions, lipid-laden [[Macrophage|macrophages]] are seen.
**In fresh [[Lesion|lesions]], lipid-laden [[Macrophage|macrophages]] are seen.
**In advanced lesions larger [[vacuoles]] and inflamatory infiltrates are seen in alveolar and bronchial walls and septa.
**In advanced [[Lesion|lesions]] larger [[vacuoles]] and [[inflammatory]] infiltrates are seen in [[alveolar]] and [[bronchial]] walls and [[septa]].
**In oldest lesions [[fibrosis]] and [[Parenchyma|parenchymal]] destruction around large lipid-containing [[Vacuole|vacuoles]] is seen.
**In oldest [[lesions]] [[fibrosis]] and [[Parenchyma|parenchymal]] destruction around large [[lipid]]-containing [[Vacuole|vacuoles]] is seen.
*Staining can help demonestrating whether [[vacuoles]] are filled with lipid or not:
*Staining can help demonstrating whether [[vacuoles]] are filled with [[lipid]] or not:
**Oil red O
**[[Oil Red O|Oil red O]].
**[[Sudan Black B|Sudan black]]
**[[Sudan Black B|Sudan black]].


=== Endogenous lipoid pneumonia ===
=== Endogenous lipoid pneumonia ===
The [[pathogenesis]] of [[endogenous]] [[lipoid pneumonia]] is still not well understood however there are plenty of suggested mechanisms:<ref name="BurkeFraser1988">{{cite journal|last1=Burke|first1=M|last2=Fraser|first2=R|title=Obstructive pneumonitis: a pathologic and pathogenetic reappraisal.|journal=Radiology|volume=166|issue=3|year=1988|pages=699–704|issn=0033-8419|doi=10.1148/radiology.166.3.3340764}}</ref><ref name="urlwww.thoracic.org">{{cite web |url=https://www.thoracic.org/statements/resources/interstitial-lung-disease/online-supplement-clinical-utility-blcaild.pdf |title=www.thoracic.org |format= |work= |accessdate=}}</ref><ref name="CohenCline1972">{{cite journal|last1=Cohen|first1=Allen B.|last2=Cline|first2=Martin J.|title=In VitroStudies of the Foamy Macrophage of Postobstructive Endogenous Lipoid Pneumonia in Man1–3|journal=American Review of Respiratory Disease|volume=106|issue=1|year=1972|pages=69–78|issn=0003-0805|doi=10.1164/arrd.1972.106.1.69}}</ref>


* The pathogenesis of endogenous pneumonia is still not well understood<ref name="BurkeFraser1988">{{cite journal|last1=Burke|first1=M|last2=Fraser|first2=R|title=Obstructive pneumonitis: a pathologic and pathogenetic reappraisal.|journal=Radiology|volume=166|issue=3|year=1988|pages=699–704|issn=0033-8419|doi=10.1148/radiology.166.3.3340764}}</ref><ref name="urlwww.thoracic.org">{{cite web |url=https://www.thoracic.org/statements/resources/interstitial-lung-disease/online-supplement-clinical-utility-blcaild.pdf |title=www.thoracic.org |format= |work= |accessdate=}}</ref><ref name="CohenCline1972">{{cite journal|last1=Cohen|first1=Allen B.|last2=Cline|first2=Martin J.|title=In VitroStudies of the Foamy Macrophage of Postobstructive Endogenous Lipoid Pneumonia in Man1–3|journal=American Review of Respiratory Disease|volume=106|issue=1|year=1972|pages=69–78|issn=0003-0805|doi=10.1164/arrd.1972.106.1.69}}</ref>.
*Most proven mechanisms are:
* The mechanism may be related to several mechanisms such as:
** Retained [[epithelial]] [[secretion]].
** Retained epithelial secretion
**[[Cell]] breakdown.
** Cell breakdown
** Leakage from [[vessels]].
** Leakage from vessels
** Prolonged [[hypoxia]].
** Prolonged hypoxia
** Local [[oxygen]] and [[carbon dioxide]] tension.
** Local oxygen and carbon dioxide tension.
*[[Endogenous]] [[lipoid pneumonia]] can be caused by [[Bronchial|transbronchial]] dissemination of [[cancer cell]] breakdown products.<ref name="TamuraHebisawa1998">{{cite journal|last1=Tamura|first1=A.|last2=Hebisawa|first2=A.|last3=Fukushima|first3=K.|last4=Yotsumoto|first4=H.|last5=Mori|first5=M.|title=Lipoid Pneumonia in Lung Cancer: Radiographic and Pathological Features|journal=Japanese Journal of Clinical Oncology|volume=28|issue=8|year=1998|pages=492–496|issn=0368-2811|doi=10.1093/jjco/28.8.492}}</ref>
*Endogenous lipoid pneumonia can be caused by transbronchial dissemination of cancer cell breakdown products<ref name="TamuraHebisawa1998">{{cite journal|last1=Tamura|first1=A.|last2=Hebisawa|first2=A.|last3=Fukushima|first3=K.|last4=Yotsumoto|first4=H.|last5=Mori|first5=M.|title=Lipoid Pneumonia in Lung Cancer: Radiographic and Pathological Features|journal=Japanese Journal of Clinical Oncology|volume=28|issue=8|year=1998|pages=492–496|issn=0368-2811|doi=10.1093/jjco/28.8.492}}</ref>.
*Poorly differentiated [[adenocarcinoma]] cells secreting [[mucin]] is the most common [[neoplastic]] reason.
*Poorly differentiated adenocarcinoma cells secreting mucin is the most common neoplastic reason.
*Another mechanism suggested is [[Anoxic brain injury|anoxic tissue injury]] stimulating various [[enzymes]] such as [[phospholipase]] and [[Monooxygenase|mono-oxygenases]].<ref name="TakiNakazima1986">{{cite journal|last1=Taki|first1=Takao|last2=Nakazima|first2=Tomoko|last3=Emi|first3=Yohko|last4=Konishi|first4=Yohichi|last5=Hayashi|first5=Akira|last6=Matsumoto|first6=Makoto|title=Accumulation of surfactant phospholipids in lipid pneumonia induced with methylnaphthalene|journal=Lipids|volume=21|issue=9|year=1986|pages=548–552|issn=0024-4201|doi=10.1007/BF02534050}}</ref><ref name="pmid8509711">{{cite journal| author=Evans AJ, Sawyez CG, Wolfe BM, Connelly PW, Maguire GF, Huff MW| title=Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms. | journal=J Lipid Res | year= 1993 | volume= 34 | issue= 5 | pages= 703-17 | pmid=8509711 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8509711  }}</ref><ref name="TölleKolleck1997">{{cite journal|last1=Tölle|first1=Angelika|last2=Kolleck|first2=Ingrid|last3=Schlame|first3=Michael|last4=Wauer|first4=Roland|last5=Stevens|first5=Paul A.|last6=Rüstow|first6=Bernd|title=Effect of hyperoxia on the composition of the alveolar surfactant and the turnover of surfactant phospholipids, cholesterol, plasmalogens and vitamin E|journal=Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism|volume=1346|issue=2|year=1997|pages=198–204|issn=00052760|doi=10.1016/S0005-2760(97)00036-2}}</ref>
*Another mechanism suggested is anoxic tissue injury stimulating various enzymes such as phospholipase and mono-oxygenases<ref name="TakiNakazima1986">{{cite journal|last1=Taki|first1=Takao|last2=Nakazima|first2=Tomoko|last3=Emi|first3=Yohko|last4=Konishi|first4=Yohichi|last5=Hayashi|first5=Akira|last6=Matsumoto|first6=Makoto|title=Accumulation of surfactant phospholipids in lipid pneumonia induced with methylnaphthalene|journal=Lipids|volume=21|issue=9|year=1986|pages=548–552|issn=0024-4201|doi=10.1007/BF02534050}}</ref><ref name="pmid8509711">{{cite journal| author=Evans AJ, Sawyez CG, Wolfe BM, Connelly PW, Maguire GF, Huff MW| title=Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms. | journal=J Lipid Res | year= 1993 | volume= 34 | issue= 5 | pages= 703-17 | pmid=8509711 | doi= | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=8509711  }}</ref>.
*These [[enzymes]] activation in turn cause modification of [[LDL cholesterol]], enhancing [[lipid]] uptake by [[alveolar]] [[macrophages]] similar to [[atherogenesis]].
*These enzymes activation in turn cause modification of LDL cholesterol, enhancing lipid uptake by alveolar macrophages similar to atherogenesis.<br />
==Genetics==
[Disease name] is transmitted in [mode of genetic transmission] pattern.


OR
* [[Infection]] changes to endogenous [[lipid pneumonia]] is generally localized in airways because the surrounding [[lung]] is already [[Consolidation (medicine)|consolidated]], limiting the spread of [[Bacterial|bacteria]].<ref name="BurkeFraser19882">{{cite journal|last1=Burke|first1=M|last2=Fraser|first2=R|title=Obstructive pneumonitis: a pathologic and pathogenetic reappraisal.|journal=Radiology|volume=166|issue=3|year=1988|pages=699–704|issn=0033-8419|doi=10.1148/radiology.166.3.3340764}}</ref><br />


Genes involved in the pathogenesis of [disease name] include:
==Genetics==
*[Gene1]
There is no [[genetic]] predisposition reported with [[lipoid pneumonia]].
*[Gene2]
*[Gene3]
 
OR
 
The development of [disease name] is the result of multiple genetic mutations such as:
 
*[Mutation 1]
*[Mutation 2]
*[Mutation 3]


==Associated Conditions==
==Associated Conditions==
Conditions associated with [disease name] include:
*[Condition 1]
*[Condition 2]
*[Condition 3]


*Vaping is associated with [[exogenous]] [[lipoid pneumonia]].<ref name="TakiNakazima1986" /><ref name="urlwww.thoracic.org" />
*Fire eating is associated with [[exogenous]] [[lipoid pneumonia]].
*Using oily [[laxative]] is associated with exogenous [[lipoid pneumonia]].
*[[Adenocarcinoma of the lung|Pulmonary adenocarcinoma]] is associated with [[endogenous]] [[lipid pneumonia]].
*Long lasting [[pulmonary]] [[granulomatosis]] diseases is associated with [[endogenous]] [[Lipoid pneumonia|lipid pneumonia]].
==Gross Pathology==
==Gross Pathology==
On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
* Well circumscribed, firm with prominent [[lymphatics]] on [[lung]] surface in [[exogenous]] type.<ref name="urlPathology Outlines - Lipoid pneumonia2">{{cite web |url=http://www.pathologyoutlines.com/topic/lungnontumorlipoidpneumonia.html |title=Pathology Outlines - Lipoid pneumonia |format= |work= |accessdate=}}</ref>
*[[Parenchyma|Parenchymal]] [[Consolidation (medicine)|consolidation]] in [[endogenous]] [[lipoid pneumonia]] produce a characteristic yellowish discoloration, hence called "golden [[pneumonia]]".<ref name="GaerteMeyer2002">{{cite journal|last1=Gaerte|first1=Scott C.|last2=Meyer|first2=Cristopher A.|last3=Winer-Muram|first3=Helen T.|last4=Tarver|first4=Robert D.|last5=Conces|first5=Dewey J.|title=Fat-containing Lesions of the Chest|journal=RadioGraphics|volume=22|issue=suppl_1|year=2002|pages=S61–S78|issn=0271-5333|doi=10.1148/radiographics.22.suppl_1.g02oc08s61}}</ref>
[[File:LUNG026.jpg|center|700ptx|thumbnail|Golden pneumonia seen in endogenous lipid pneumonia<ref name="urlPulmonary Pathology">{{cite web |url=https://webpath.med.utah.edu/LUNGHTML/LUNG026.html |title=Pulmonary Pathology |format= |work= |accessdate=}}</ref>]]
==Microscopic Pathology==
* Lipoid material (or empty spaces), [[inflammatory cells]] and young [[Fibroblast|fibroblasts]].<ref name="urlPathology Outlines - Lipoid pneumonia">{{cite web |url=http://www.pathologyoutlines.com/topic/lungnontumorlipoidpneumonia.html |title=Pathology Outlines - Lipoid pneumonia |format= |work= |accessdate=}}</ref>
*[[Endarteritis obliterans|Reactive endarteritis]], marked [[alveolar]] lining cell [[hyperplasia]].
* Lipid-laden foamy [[Macrophage|macrophages]]


==Microscopic Pathology==
[[File:PMC5356983 1348-9585-58-482-g004.png|center|700ptx|thumbnail|a) Lipid-laden macrophages with Gram staining in sputum.(b) Lipid-laden macrophages with Giemsa staining in sputum. (c) Lipid-laden macrophages with Giemsa staining in bronchoalveolar lavage fluid. (d) Lipid-laden macrophages with Sudan red staining in bronchoalveolar lavage fluid. (e) Diffuse mucosal hyperemia is visible in the upper or lower lobe bronchus. (f) Widened alveolar space, cell reaction, and localized fibrosis in lung tissues. A tissue biopsy sample was stained using hematoxylin and eosin.<ref name="HanLiu2016">{{cite journal|last1=Han|first1=Chenghong|last2=Liu|first2=Lihai|last3=Du|first3=Shiping|last4=Mei|first4=Jianhua|last5=Huang|first5=Ling|last6=Chen|first6=Min|last7=Lei|first7=Yongliang|last8=Qian|first8=Junwen|last9=Luo|first9=Jianyong|last10=Zhang|first10=Meibian|title=Investigation of rare chronic lipoid pneumonia associated with occupational exposure to paraffin aerosol|journal=Journal of Occupational Health|volume=58|issue=5|year=2016|pages=482–488|issn=1341-9145|doi=10.1539/joh.16-0096-CS}}</ref>]]
On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].
[[File:800px-Macrophages in bronchial wash specimen -- very high mag.jpg|center|700ptx|thumbnail|Lipid laden macrophages]]
<br />
{| align="center"
|
{{#ev:youtube|https://www.youtube.com/watch?v=nGi0udE5EI8|500}}
|}


==References==
==References==

Latest revision as of 23:53, 29 October 2019

Lipoid pneumonia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Lipoid pneumonia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lipoid pneumonia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lipoid pneumonia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lipoid pneumonia pathophysiology

CDC on Lipoid pneumonia pathophysiology

Lipoid pneumonia pathophysiology in the news

Blogs on Lipoid pneumonia pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Lipoid pneumonia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ramyar Ghandriz MD[2]

Overview

Lipoid pneumonia pathogenesis is different in its two subtypes: Exogenous form is the result of chronic body reaction to fatty substance in the alveoli. Lipid reaches alveoli by aspiration or inhalation. Some mineral oils can cause lung injuries such as gasoline. Mineral oils can enter the tracheobronchial tree without causing cough reflex which will bother mucociliary transport system chronically. Injected lipids mechanism of further producing lipid pneumonia is more complicated. As the lipid goes inside the alveoli, it is trapped and hard to expectorate, this condition may be worsen by associated neurological and gastrointestinal disorders affecting swallowing or cough. Lipids in alveoli form emulsion and then consumed by macrophages via phagocytosis. Since the alveolar macrophages cannot metabolize consumed fatty substance, oil is repeatedly released into alveoli after death of these macrophages. The oil released, elicits a giant-cell granulomatosis reaction. Pathogenesis of endogenous form is still not well understood however there are plenty of suggested mechanisms, one saying that endogenous lipoid pneumonia can be caused by transbronchial dissemination of cancer cell breakdown products. Poorly differentiated adenocarcinoma cells secreting mucin is the most common neoplastic reason. Another mechanism suggested is anoxic tissue injury stimulating various enzymes such as phospholipase and monooxygenases. Infection changes to endogenous lipid pneumonia is generally localized in airways because the surrounding lung is already consolidated, limiting the spread of bacteria. On gross and microscopic histology will show well circumscribed, firm with prominent lymphatics on lung surface, inflammatory cells, and young fibroblasts. Reactive endarteritis and marked alveolar lining cell hyperplasia may also be seen. Lipid-laden foamy macrophages are part of pathology.

Pathophysiology

Exogenous lipoid pneumonia

The important pathophysiology aspects regarding exogenous lipoid pneumonia include:[1][2]

Endogenous lipoid pneumonia

The pathogenesis of endogenous lipoid pneumonia is still not well understood however there are plenty of suggested mechanisms:[3][4][5]

Genetics

There is no genetic predisposition reported with lipoid pneumonia.

Associated Conditions

Gross Pathology

Golden pneumonia seen in endogenous lipid pneumonia[13]

Microscopic Pathology

a) Lipid-laden macrophages with Gram staining in sputum.(b) Lipid-laden macrophages with Giemsa staining in sputum. (c) Lipid-laden macrophages with Giemsa staining in bronchoalveolar lavage fluid. (d) Lipid-laden macrophages with Sudan red staining in bronchoalveolar lavage fluid. (e) Diffuse mucosal hyperemia is visible in the upper or lower lobe bronchus. (f) Widened alveolar space, cell reaction, and localized fibrosis in lung tissues. A tissue biopsy sample was stained using hematoxylin and eosin.[15]
Lipid laden macrophages


{{#ev:youtube|https://www.youtube.com/watch?v=nGi0udE5EI8%7C500}}

References

  1. Guerguerian, Anne-Marie; Lacroix, Jacques (2000). "Pulmonary injury after intravenous hydrocarbon injection". Paediatrics & Child Health. 5 (8): 471–472. doi:10.1093/pch/5.8.471. ISSN 1205-7088.
  2. Domej, Wolfgang; Mitterhammer, Heike; Stauber, Rudolf; Kaufmann, Peter; Smolle, Karl Heinz (2007). "Successful outcome after intravenous gasoline injection". Journal of Medical Toxicology. 3 (4): 173–177. doi:10.1007/BF03160935. ISSN 1556-9039.
  3. Burke, M; Fraser, R (1988). "Obstructive pneumonitis: a pathologic and pathogenetic reappraisal". Radiology. 166 (3): 699–704. doi:10.1148/radiology.166.3.3340764. ISSN 0033-8419.
  4. 4.0 4.1 "www.thoracic.org" (PDF).
  5. Cohen, Allen B.; Cline, Martin J. (1972). "In VitroStudies of the Foamy Macrophage of Postobstructive Endogenous Lipoid Pneumonia in Man1–3". American Review of Respiratory Disease. 106 (1): 69–78. doi:10.1164/arrd.1972.106.1.69. ISSN 0003-0805.
  6. Tamura, A.; Hebisawa, A.; Fukushima, K.; Yotsumoto, H.; Mori, M. (1998). "Lipoid Pneumonia in Lung Cancer: Radiographic and Pathological Features". Japanese Journal of Clinical Oncology. 28 (8): 492–496. doi:10.1093/jjco/28.8.492. ISSN 0368-2811.
  7. 7.0 7.1 Taki, Takao; Nakazima, Tomoko; Emi, Yohko; Konishi, Yohichi; Hayashi, Akira; Matsumoto, Makoto (1986). "Accumulation of surfactant phospholipids in lipid pneumonia induced with methylnaphthalene". Lipids. 21 (9): 548–552. doi:10.1007/BF02534050. ISSN 0024-4201.
  8. Evans AJ, Sawyez CG, Wolfe BM, Connelly PW, Maguire GF, Huff MW (1993). "Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms". J Lipid Res. 34 (5): 703–17. PMID 8509711.
  9. Tölle, Angelika; Kolleck, Ingrid; Schlame, Michael; Wauer, Roland; Stevens, Paul A.; Rüstow, Bernd (1997). "Effect of hyperoxia on the composition of the alveolar surfactant and the turnover of surfactant phospholipids, cholesterol, plasmalogens and vitamin E". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 1346 (2): 198–204. doi:10.1016/S0005-2760(97)00036-2. ISSN 0005-2760.
  10. Burke, M; Fraser, R (1988). "Obstructive pneumonitis: a pathologic and pathogenetic reappraisal". Radiology. 166 (3): 699–704. doi:10.1148/radiology.166.3.3340764. ISSN 0033-8419.
  11. "Pathology Outlines - Lipoid pneumonia".
  12. Gaerte, Scott C.; Meyer, Cristopher A.; Winer-Muram, Helen T.; Tarver, Robert D.; Conces, Dewey J. (2002). "Fat-containing Lesions of the Chest". RadioGraphics. 22 (suppl_1): S61–S78. doi:10.1148/radiographics.22.suppl_1.g02oc08s61. ISSN 0271-5333.
  13. "Pulmonary Pathology".
  14. "Pathology Outlines - Lipoid pneumonia".
  15. Han, Chenghong; Liu, Lihai; Du, Shiping; Mei, Jianhua; Huang, Ling; Chen, Min; Lei, Yongliang; Qian, Junwen; Luo, Jianyong; Zhang, Meibian (2016). "Investigation of rare chronic lipoid pneumonia associated with occupational exposure to paraffin aerosol". Journal of Occupational Health. 58 (5): 482–488. doi:10.1539/joh.16-0096-CS. ISSN 1341-9145.

Template:WH Template:WS