Heat stroke medical therapy

Jump to navigation Jump to search

Heat stroke Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Heat Stroke from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X-rays

Ultrasound

CT Scan

MRI

Other Imaging Studies

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Heat stroke medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Heat stroke medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Heat stroke medical therapy

CDC on Heat stroke medical therapy

Heat stroke medical therapy in the news

Blogs on Heat stroke medical therapy

Directions to Hospitals Treating Breast cancer

Risk calculators and risk factors for Heat stroke medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Usama Talib, BSc, MD [2]

Overview

The heat stroke is primarily managed by removing the patient from the environment to minimize heat exposure and to ionitiate rapid cooling protocols.[1]

Medical Therapy

The heat stroke is primarily managed by:[1][2][3][4][5]

  • Removing the patient from the environment to minimize heat exposure
  • Initiating cooling protocols as soon as possible
  • Providing support to the effected organs

Cooling

The cooling is done on the following principles:[4][6]

  • The heat is transferred from the body core to the skin and then dissipated into the air.
  • Vasodilatation of the vessels in the skin occurs as a compensatory mechanism to help dissipate the heat
  • Cooling therapies focus on increasing and facilitating the transfer of heat from the body to the surroundings while keeping the vasodilatory cooling mechanism intact. They can utilize:
    • Increasing the gradient of temperature between the body and the surroundings (cooling by the help of conduction)
    • Increasing the water vapor pressure gradient between the body and the surroundings (cooling by the help of evaporation)
    • Accelerating the flow of air closer to the skin (cooling by the help of convection)
  • These can be achieved by:
    • Application of water
    • Application of ice
    • Fanning

Avoidance of Excessive cooling

Most of the techniques used for cooling can decrease the temparature of the body to below 30 degrees.

References

  1. 1.0 1.1 Leon LR, Bouchama A (2015). "Heat stroke". Compr Physiol. 5 (2): 611–47. doi:10.1002/cphy.c140017. PMID 25880507.
  2. Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B (2007). "Prognostic factors in heat wave related deaths: a meta-analysis". Arch Intern Med. 167 (20): 2170–6. doi:10.1001/archinte.167.20.ira70009. PMID 17698676.
  3. Bouchama A, Knochel JP (2002). "Heat stroke". N Engl J Med. 346 (25): 1978–88. doi:10.1056/NEJMra011089. PMID 12075060.
  4. 4.0 4.1 Graham BS, Lichtenstein MJ, Hinson JM, Theil GB (1986). "Nonexertional heatstroke. Physiologic management and cooling in 14 patients". Arch Intern Med. 146 (1): 87–90. PMID 3942468.
  5. Dematte JE, O'Mara K, Buescher J, Whitney CG, Forsythe S, McNamee T; et al. (1998). "Near-fatal heat stroke during the 1995 heat wave in Chicago". Ann Intern Med. 129 (3): 173–81. PMID 9696724.
  6. Rowell LB (1983). "Cardiovascular aspects of human thermoregulation". Circ Res. 52 (4): 367–79. PMID 6339107.

Template:WH Template:WS