Ephrin A1: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}))
 
m (Bot: HTTP→HTTPS (v470))
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Ephrin A1''' is a [[protein]] that in humans is encoded by the ''EFNA1'' [[gene]].<ref name="pmid2233719">{{cite journal | vauthors = Holzman LB, Marks RM, Dixit VM | title = A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein | journal = Molecular and Cellular Biology | volume = 10 | issue = 11 | pages = 5830–8 | date = Nov 1990 | pmid = 2233719 | pmc = 361366 | doi =  }}</ref><ref name="pmid8660976">{{cite journal | vauthors = Cerretti DP, Lyman SD, Kozlosky CJ, Copeland NG, Gilbert DJ, Jenkins NA, Valentine V, Kirstein MN, Shapiro DN, Morris SW | title = The genes encoding the eph-related receptor tyrosine kinase ligands LERK-1 (EPLG1, Epl1), LERK-3 (EPLG3, Epl3), and LERK-4 (EPLG4, Epl4) are clustered on human chromosome 1 and mouse chromosome 3 | journal = Genomics | volume = 33 | issue = 2 | pages = 277–82 | date = Apr 1996 | pmid = 8660976 | pmc =  | doi = 10.1006/geno.1996.0192 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: EFNA1 ephrin-A1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1942| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
This gene encodes a member of the [[ephrin]] (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of [[receptor protein-tyrosine kinases]] and have been implicated in mediating developmental events, especially in the [[nervous system]] and in [[erythropoiesis]]. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the [[cell membrane|membrane]] by a [[glycosylphosphatidylinositol]] linkage, and the ephrin-B (EFNB) class, which are [[transmembrane proteins]]. This gene encodes an EFNA class ephrin which binds to the [[EPHA2]], [[EPHA4]], [[EPHA5]], [[EPHA6]], and [[EPHA7]] receptors. Two transcript variants that encode different isoforms were identified through sequence analysis.<ref name="entrez">{{cite web | title = Entrez Gene: EFNA1 ephrin-A1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1942| accessdate = }}</ref>
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Ephrin-A1
| HGNCid = 3221
| Symbol = EFNA1
| AltSymbols =; B61; ECKLG; EFL1; EPLG1; LERK1; TNFAIP4
| OMIM = 191164
| ECnumber = 
| Homologene = 3262
| MGIid = 103236
| GeneAtlas_image1 = PBB_GE_EFNA1_202023_at_tn.png
| Function = {{GNF_GO|id=GO:0046875 |text = ephrin receptor binding}} {{GNF_GO|id=GO:0048503 |text = GPI anchor binding}}
| Component = {{GNF_GO|id=GO:0005887 |text = integral to plasma membrane}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0000187 |text = activation of MAPK activity}} {{GNF_GO|id=GO:0007267 |text = cell-cell signaling}} {{GNF_GO|id=GO:0030182 |text = neuron differentiation}} {{GNF_GO|id=GO:0048013 |text = ephrin receptor signaling pathway}} {{GNF_GO|id=GO:0050770 |text = regulation of axonogenesis}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 1942
    | Hs_Ensembl = ENSG00000169242
    | Hs_RefseqProtein = NP_004419
    | Hs_RefseqmRNA = NM_004428
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 1
    | Hs_GenLoc_start = 153366560
    | Hs_GenLoc_end = 153373957
    | Hs_Uniprot = P20827
    | Mm_EntrezGene = 13636
    | Mm_Ensembl = ENSMUSG00000027954
    | Mm_RefseqmRNA = NM_010107
    | Mm_RefseqProtein = NP_034237
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 3
    | Mm_GenLoc_start = 89357663
    | Mm_GenLoc_end = 89365568
    | Mm_Uniprot = Q9D7K8
  }}
}}
'''Ephrin-A1''', also known as '''EFNA1''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: EFNA1 ephrin-A1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1942| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Model organisms ==
{{PBB_Summary
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
| section_title =  
|+ ''Efna1'' knockout mouse phenotype
| summary_text = This gene encodes a member of the ephrin (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and have been implicated in mediating developmental events, especially in the nervous system and in erythropoiesis. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. This gene encodes an EFNA class ephrin which binds to the EPHA2, EPHA4, EPHA5, EPHA6, and EPHA7 receptors. Two transcript variants that encode different isoforms were identified through sequence analysis.<ref name="entrez">{{cite web | title = Entrez Gene: EFNA1 ephrin-A1| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1942| accessdate = }}</ref>
|-
}}
! Characteristic!! Phenotype


==References==
|-
{{reflist|2}}
| [[Homozygote]] viability || bgcolor="#488ED3"|Normal
==Further reading==
|-
| Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#C40000"|Abnormal<ref name="Radiography">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKV/x-ray-imaging/ |title=Radiography data for Efna1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal<ref name="Clinical chemistry">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKV/plasma-chemistry/ |title=Clinical chemistry data for Efna1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| [[Blood plasma|Plasma]] [[immunoglobulin]]s || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Tail epidermis wholemount || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKV/salmonella-challenge/ |title=''Salmonella'' infection data for Efna1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBKV/citrobacter-challenge/ |title=''Citrobacter'' infection data for Efna1 |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages =  925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of EFNA1 function. A conditional [[knockout mouse]] line, called ''Efna1<sup>tm1a(EUCOMM)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Efna1 |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4433482 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program—a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref>
 
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal | vauthors = van der Weyden L, White JK, Adams DJ, Logan DW | title = The mouse genetics toolkit: revealing function and mechanism | journal = Genome Biology | volume = 12 | issue = 6 | pages = 224 | year = 2011 | pmid = 21722353 | pmc = 3218837 | doi = 10.1186/gb-2011-12-6-224 }} </ref> Twenty four tests were carried out on homozygous [[mutant]] mice and one significant abnormality was observed: a transformation in vertebral number from lumbar vertebrae to sacral vertebrae.<ref name="mgp_reference" />
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Pandey A, Lindberg RA, Dixit VM | title = Cell signalling. Receptor orphans find a family | journal = Current Biology | volume = 5 | issue = 9 | pages = 986–9 | date = Sep 1995 | pmid = 8542290 | doi = 10.1016/S0960-9822(95)00195-3 }}
| citations =
* {{cite journal | vauthors = Flanagan JG, Vanderhaeghen P | title = The ephrins and Eph receptors in neural development | journal = Annual Review of Neuroscience | volume = 21 | issue =  | pages = 309–45 | year = 1998 | pmid = 9530499 | doi = 10.1146/annurev.neuro.21.1.309 }}
*{{cite journal | author=Pandey A, Lindberg RA, Dixit VM |title=Cell signalling. Receptor orphans find a family. |journal=Curr. Biol. |volume=5 |issue= 9 |pages= 986-9 |year= 1996 |pmid= 8542290 |doi= }}
* {{cite journal | vauthors = Zhou R | title = The Eph family receptors and ligands | journal = Pharmacology & Therapeutics | volume = 77 | issue = 3 | pages = 151–81 | date = Mar 1998 | pmid = 9576626 | doi = 10.1016/S0163-7258(97)00112-5 }}
*{{cite journal | author=Flanagan JG, Vanderhaeghen P |title=The ephrins and Eph receptors in neural development. |journal=Annu. Rev. Neurosci. |volume=21 |issue=  |pages= 309-45 |year= 1998 |pmid= 9530499 |doi= 10.1146/annurev.neuro.21.1.309 }}
* {{cite journal | vauthors = Holder N, Klein R | title = Eph receptors and ephrins: effectors of morphogenesis | journal = Development | volume = 126 | issue = 10 | pages = 2033–44 | date = May 1999 | pmid = 10207129 | doi =  }}
*{{cite journal | author=Zhou R |title=The Eph family receptors and ligands. |journal=Pharmacol. Ther. |volume=77 |issue= 3 |pages= 151-81 |year= 1998 |pmid= 9576626 |doi= }}
* {{cite journal | vauthors = Wilkinson DG | title = Eph receptors and ephrins: regulators of guidance and assembly | journal = International Review of Cytology | volume = 196 | issue =  | pages = 177–244 | year = 2000 | pmid = 10730216 | doi = 10.1016/S0074-7696(00)96005-4 }}
*{{cite journal | author=Holder N, Klein R |title=Eph receptors and ephrins: effectors of morphogenesis. |journal=Development |volume=126 |issue= 10 |pages= 2033-44 |year= 1999 |pmid= 10207129 |doi=  }}
* {{cite journal | vauthors = Xu Q, Mellitzer G, Wilkinson DG | title = Roles of Eph receptors and ephrins in segmental patterning | journal = Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences | volume = 355 | issue = 1399 | pages = 993–1002 | date = Jul 2000 | pmid = 11128993 | pmc = 1692797 | doi = 10.1098/rstb.2000.0635 }}
*{{cite journal | author=Wilkinson DG |title=Eph receptors and ephrins: regulators of guidance and assembly. |journal=Int. Rev. Cytol. |volume=196 |issue=  |pages= 177-244 |year= 2000 |pmid= 10730216 |doi= }}
* {{cite journal | vauthors = Wilkinson DG | title = Multiple roles of EPH receptors and ephrins in neural development | journal = Nature Reviews. Neuroscience | volume = 2 | issue = 3 | pages = 155–64 | date = Mar 2001 | pmid = 11256076 | doi = 10.1038/35058515 }}
*{{cite journal | author=Xu Q, Mellitzer G, Wilkinson DG |title=Roles of Eph receptors and ephrins in segmental patterning. |journal=Philos. Trans. R. Soc. Lond., B, Biol. Sci. |volume=355 |issue= 1399 |pages= 993-1002 |year= 2001 |pmid= 11128993 |doi= 10.1098/rstb.2000.0635 }}
* {{cite journal | vauthors = Mahadevan D, Thanki N, Singh J, McPhie P, Zangrilli D, Wang LM, Guerrero C, LeVine H, Humblet C, Saldanha J | title = Structural studies on the PH domains of Db1, Sos1, IRS-1, and beta ARK1 and their differential binding to G beta gamma subunits | journal = Biochemistry | volume = 34 | issue = 28 | pages = 9111–7 | date = Jul 1995 | pmid = 7619809 | doi = 10.1021/bi00028a021 }}
*{{cite journal | author=Wilkinson DG |title=Multiple roles of EPH receptors and ephrins in neural development. |journal=Nat. Rev. Neurosci. |volume=2 |issue= 3 |pages= 155-64 |year= 2001 |pmid= 11256076 |doi= }}
* {{cite journal | vauthors = Kozlosky CJ, Maraskovsky E, McGrew JT, VandenBos T, Teepe M, Lyman SD, Srinivasan S, Fletcher FA, Gayle RB, Cerretti DP | title = Ligands for the receptor tyrosine kinases hek and elk: isolation of cDNAs encoding a family of proteins | journal = Oncogene | volume = 10 | issue = 2 | pages = 299–306 | date = Jan 1995 | pmid = 7838529 | doi =  }}
*{{cite journal  | author=Holzman LB, Marks RM, Dixit VM |title=A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. |journal=Mol. Cell. Biol. |volume=10 |issue= 11 |pages= 5830-8 |year= 1990 |pmid= 2233719 |doi=  }}
* {{cite journal | vauthors = Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD | title = Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity | journal = Science | volume = 266 | issue = 5186 | pages = 816–9 | date = Nov 1994 | pmid = 7973638 | doi = 10.1126/science.7973638 }}
*{{cite journal | author=Mahadevan D, Thanki N, Singh J, ''et al.'' |title=Structural studies on the PH domains of Db1, Sos1, IRS-1, and beta ARK1 and their differential binding to G beta gamma subunits. |journal=Biochemistry |volume=34 |issue= 28 |pages= 9111-7 |year= 1995 |pmid= 7619809 |doi= }}
* {{cite journal | vauthors = Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T, Kozlosky C, Hollingsworth T, Shilling H, Maraskovsky E | title = Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors | journal = The EMBO Journal | volume = 13 | issue = 16 | pages = 3757–62 | date = Aug 1994 | pmid = 8070404 | pmc = 395287 | doi =  }}
*{{cite journal | author=Kozlosky CJ, Maraskovsky E, McGrew JT, ''et al.'' |title=Ligands for the receptor tyrosine kinases hek and elk: isolation of cDNAs encoding a family of proteins. |journal=Oncogene |volume=10 |issue= 2 |pages= 299-306 |year= 1995 |pmid= 7838529 |doi=  }}
* {{cite journal | vauthors = Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD | title = Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis | journal = Neuron | volume = 17 | issue = 1 | pages = 9–19 | date = Jul 1996 | pmid = 8755474 | doi = 10.1016/S0896-6273(00)80276-7 }}
*{{cite journal | author=Davis S, Gale NW, Aldrich TH, ''et al.'' |title=Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. |journal=Science |volume=266 |issue= 5186 |pages= 816-9 |year= 1994 |pmid= 7973638 |doi= }}
* {{cite journal | vauthors = Ephnomenclaturecommittee, | title = Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee | journal = Cell | volume = 90 | issue = 3 | pages = 403–4 | date = Aug 1997 | pmid = 9267020 | doi = 10.1016/S0092-8674(00)80500-0 }}
*{{cite journal | author=Beckmann MP, Cerretti DP, Baum P, ''et al.'' |title=Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors. |journal=EMBO J. |volume=13 |issue= 16 |pages= 3757-62 |year= 1994 |pmid= 8070404 |doi=  }}
* {{cite journal | vauthors = Nagel W, Schilcher P, Zeitlmann L, Kolanus W | title = The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function | journal = Molecular Biology of the Cell | volume = 9 | issue = 8 | pages = 1981–94 | date = Aug 1998 | pmid = 9693361 | pmc = 25450 | doi = 10.1091/mbc.9.8.1981 }}
*{{cite journal | author=Cerretti DP, Lyman SD, Kozlosky CJ, ''et al.'' |title=The genes encoding the eph-related receptor tyrosine kinase ligands LERK-1 (EPLG1, Epl1), LERK-3 (EPLG3, Epl3), and LERK-4 (EPLG4, Epl4) are clustered on human chromosome 1 and mouse chromosome 3. |journal=Genomics |volume=33 |issue= 2 |pages= 277-82 |year= 1997 |pmid= 8660976 |doi= 10.1006/geno.1996.0192 }}
*{{cite journal  | author=Gale NW, Holland SJ, Valenzuela DM, ''et al.'' |title=Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. |journal=Neuron |volume=17 |issue= 1 |pages= 9-19 |year= 1996 |pmid= 8755474 |doi= }}
*{{cite journal | author= |title=Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee. |journal=Cell |volume=90 |issue= 3 |pages= 403-4 |year= 1997 |pmid= 9267020 |doi= }}
*{{cite journal | author=Nagel W, Schilcher P, Zeitlmann L, Kolanus W |title=The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function. |journal=Mol. Biol. Cell |volume=9 |issue= 8 |pages= 1981-94 |year= 1998 |pmid= 9693361 |doi= }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
{{Intercellular signaling peptides and proteins}}
{{WikiDoc Sources}}
{{Growth factor receptor modulators}}
 
[[Category:Genes mutated in mice]]

Latest revision as of 01:48, 27 October 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Ephrin A1 is a protein that in humans is encoded by the EFNA1 gene.[1][2][3]

This gene encodes a member of the ephrin (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and have been implicated in mediating developmental events, especially in the nervous system and in erythropoiesis. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. This gene encodes an EFNA class ephrin which binds to the EPHA2, EPHA4, EPHA5, EPHA6, and EPHA7 receptors. Two transcript variants that encode different isoforms were identified through sequence analysis.[3]

Model organisms

Model organisms have been used in the study of EFNA1 function. A conditional knockout mouse line, called Efna1tm1a(EUCOMM)Wtsi[10][11] was generated as part of the International Knockout Mouse Consortium program—a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[12][13][14]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[8][15] Twenty four tests were carried out on homozygous mutant mice and one significant abnormality was observed: a transformation in vertebral number from lumbar vertebrae to sacral vertebrae.[8]

References

  1. Holzman LB, Marks RM, Dixit VM (Nov 1990). "A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein". Molecular and Cellular Biology. 10 (11): 5830–8. PMC 361366. PMID 2233719.
  2. Cerretti DP, Lyman SD, Kozlosky CJ, Copeland NG, Gilbert DJ, Jenkins NA, Valentine V, Kirstein MN, Shapiro DN, Morris SW (Apr 1996). "The genes encoding the eph-related receptor tyrosine kinase ligands LERK-1 (EPLG1, Epl1), LERK-3 (EPLG3, Epl3), and LERK-4 (EPLG4, Epl4) are clustered on human chromosome 1 and mouse chromosome 3". Genomics. 33 (2): 277–82. doi:10.1006/geno.1996.0192. PMID 8660976.
  3. 3.0 3.1 "Entrez Gene: EFNA1 ephrin-A1".
  4. "Radiography data for Efna1". Wellcome Trust Sanger Institute.
  5. "Clinical chemistry data for Efna1". Wellcome Trust Sanger Institute.
  6. "Salmonella infection data for Efna1". Wellcome Trust Sanger Institute.
  7. "Citrobacter infection data for Efna1". Wellcome Trust Sanger Institute.
  8. 8.0 8.1 8.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  9. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  10. "International Knockout Mouse Consortium".
  11. "Mouse Genome Informatics".
  12. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  13. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  14. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  15. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading