Ependymoma natural history

Revision as of 18:53, 6 October 2015 by Ahmad Al Maradni (talk | contribs)
Jump to navigation Jump to search

Ependymoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Epidemiology and Demographics

Risk Factors

Differentiating Ependymoma from other Diseases

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Staging

Laboratory Findings

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Ependymoma natural history On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Ependymoma natural history

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Ependymoma natural history

CDC on Ependymoma natural history

Ependymoma natural history in the news

Blogs on Ependymoma natural history

Directions to Hospitals Treating Ependymoma

Risk calculators and risk factors for Ependymoma natural history

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Ahmad Al Maradni, M.D. [2]

Overview

Complication

where they may produce obstruction of the flow of cerebrospinal fluid. Arising in the walls of the lateral ventricles over the basal ganglia, this tumor tends to cause obstruction when it becomes large.

Prognosis

Unfavorable factors affecting outcome include the following:

  • Gain of chromosome 1q25 is present in approximately 20% of pediatric intracranial ependymoma cases and has been reported as a negative prognostic factor by multiple research groups.[1][2][3][4]
  • Gene expression profile.[5][6]
  • Other factors that have been reported to be associated with poor prognosis for pediatric ependymoma include expression of the enzymatic subunit of telomerase (hTERT) [15-17] and expression of the neural stem cell marker Nestin.[7]
  • Tumor location. Cranial variants of ependymoma have a less favorable outcome than primary spinal cord ependymomas.[19,20] Location within the spinal cord may also affect outcome, with tumors in the lower portion of the spinal cord having a worse prognosis.[21][Level of evidence: 3iiiA]

Younger age at diagnosis.[8]

  • Anaplastic histology.[8][9]
  • Subtotal resection.[8]
  • Lower doses of radiation.[10]
  • Immunohistochemical testing has identified increased expression of markers of proliferation (e.g., Ki-67 and MIB-1) [28,29] and increased expression of EZH2, a polycomb complex protein involved in epigenetic regulation of gene expression, as prognostic factors for greater risk of treatment failure.[11]

References

  1. Scheyer M, Iannascoli F, Brioude R, Canet J (1975). "[Transport of "high-risk" newborn infants. (Apropos of 159 emergency calls by the SAMU 94-Service d'Aide Médicale Urgente-Emergency Health Service)]". Ann Anesthesiol Fr. 16 Spec No 1: 130–4. PMID 2070-9 Check |pmid= value (help).
  2. Harris JE, Karobath M, Baldessarini RJ (1976). "Characteristics of tyrosine hydroxylation in isolated nerve endings". Biochem Pharmacol. 25 (1): 91–3. PMID 3182-90 Check |pmid= value (help).
  3. Mekler LB (1975). "On the problem of oncogene of tumour viruses". Acta Virol. 19 (6): 501–8. PMID 2001-11 Check |pmid= value (help).
  4. Collier JR (1975). "Polyadenylation of nascent RNA during the embryogenesis of Ilyanassa obsoleta". Exp Cell Res. 95 (2): 263–8. PMID 247-57 Check |pmid= value (help).
  5. Koval TM, Myser WC, Hink WF (1975). "Effects of x-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro". Radiat Res. 64 (3): 524–32. PMID 727-38 Check |pmid= value (help).
  6. Sloane NH (1975). "alpha-Naphthoflavone activation of 6-hydroxymethylbenzo(alpha)pyrene synthetase". Cancer Res. 35 (12): 3731–4. PMID 143-57 Check |pmid= value (help).
  7. Allam AM, Hussein AM, Ragab AM (1975). "Amylase of the thermophilic actinomycete Thermomonospora vulgaris". Z Allg Mikrobiol. 15 (6): 393–8. PMID 848-60 Check |pmid= value (help).
  8. 8.0 8.1 8.2 White F (1975). "Epidemiology and infection control". Dimens Health Serv. 52 (12): 34, 37, 39. PMID 1303-12 Check |pmid= value (help).
  9. Hunter AL, Klaassen CD (1975). "Biliary excretion of colchicine in newborn rats". Drug Metab Dispos. 3 (6): 530–5. PMID 1230-7 Check |pmid= value (help).
  10. Davison C, Benziger D, Fritz A, Edelson J (1975). "Absorption and disposition of 2-[4-(2,2-dichlorocyclopropyl)phenoxy]-2-methylpropanoic acid, WIN 35,833, in rats, monkeys, and men". Drug Metab Dispos. 3 (6): 520–4. PMID 1228-35 Check |pmid= value (help).
  11. Ezer E, Szporny L (1975). "A complementary method for the quantitative evaluation of rat stomach with Shay-ulcer". J Pharm Pharmacol. 27 (11): 866–7. PMID 1499-507 Check |pmid= value (help).

Template:WikiDoc Sources