Colorectal cancer pathophysiology

Revision as of 16:14, 28 February 2019 by Roukoz Abou Karam (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Colorectal cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Colorectal cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Metastasis Treatment

Primary Prevention

Secondary Prevention

Follow-up

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Colorectal cancer pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Colorectal cancer pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Colorectal cancer pathophysiology

CDC on Colorectal cancer pathophysiology

Colorectal cancer pathophysiology in the news

Blogs on Colorectal cancer pathophysiology

Directions to Hospitals Treating Colorectal cancer

Risk calculators and risk factors for Colorectal cancer pathophysiology

To view the pathophysiology of familial adenomatous polyposis (FAP), click here
To view the pathophysiology of hereditary nonpolyposis colorectal cancer (HNPCC), click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Saarah T. Alkhairy, M.D., Roukoz A. Karam, M.D.[2], Elliot B. Tapper, M.D.

Overview

The pathogenesis of colorectal carcinoma (CRC) involves the molecular pathways for both sporadic and colitis-associated CRC. Sporadic instability originates from the epithelial cells that line the colon or rectum. Colitis-associated CRC includes genetic instability, epigenetic alteration, chronic inflammation, oxidative stress, and intestinal microbiota. According to the World Health Organization (WHO) histological classification, most colorectal tumors are carcinomas of which almost 90% are adenocarcinomas.

Pathogenesis

The pathogenesis of colorectal carcinoma (CRC) involves the molecular pathways for both sporadic and colitis-associated CRC.

Sporadic colorectal cancers

The picture below depicts the molecular pathogenesis of sporadic colon cancer:[1]

Molecular pathogenesis of sporadic colon cancer, (ɔ) Image courtesy of WikiDoc.org

Sporadic colorectal cancer originates from the epithelial cells that line the colon or rectum; it may involve the following:[2]

  • Produces the APC protein, which prevents the accumulation of β-catenin protein (responsible for stem cell renewal)
  • Mutation of the APC protein leads to the accumulation of β-catenin protein and causes inappropriately high levels of stem cell renewal.
  • Produces the p53 protein, which monitors cell division and promotes apoptosis if there are cell defects
  • Mutations result in loss of control over cell division or apoptosis
  • TGF-β and DCC (Deleted in Colorectal Cancer)
  • Usually responsible for apoptosis, but deactivated in colorectal cancer

Colitis-associated colorectal cancers

The picture below depicts the molecular pathogenesis of colitis-associated colon cancer:[1]

Molecular pathogenesis of colitis-associated colon cancer, (ɔ) Image courtesy of WikiDoc.org

At a microbiological level, the development of colitis-associated colorectal cancers (CRC) can be linked to defects within the cell cycle.[3]

Although it is poorly understood, the following five factors may be responsible for its neoplastic changes:[1]

  • Intestinal microbiota[9]
    • The Modification of enteric flora by probiotic lactobacilli is a proposed mechanism that may contribute to the development of colitis-associated cancer.

Genetics

From a genetic standpoint, colorectal cancer can be divided into three categories:[10]

  • Sporadic (75% of cases)
    • No indication of a hereditary component
  • Familial (20% of cases)
  • Hereditary (10% of cases)
Appearance of the inside of the colon showing one invasive colorectal carcinoma (the crater-like, reddish, irregularly shaped tumor). - Source: librepathology.org

Gross Pathology

  • On gross pathology, a polypoid or fungating exophytic (growing outwards) lesion is characteristic of right-sided colorectal tumors including the ascending colon and cecum.[11]
  • Left-sided tumours tend to be circumferential and annular producing an "apple-core" appearance on barium enema x-ray.[11]
Histopathologic image of colonic carcinoid stained by hematoxylin and eosin. - By No machine-readable author provided. KGH assumed (based on copyright claims). - No machine-readable source provided. Own work assumed (based on copyright claims)., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=453828

Microscopic Pathology

According to the World Health Organization (WHO) histological classification, most colorectal tumors are carcinomas of which almost 90% are adenocarcinomas:[12]

  • Carcinomas
    • Adenocarcinoma
    • Mucinous adenocarcinoma
    • Signet-ring cell carcinoma
    • Small cell carcinoma
    • Adenosquamous carcinoma
    • Squamous cell
    • Medullary carcinoma
    • Undifferentiated carcinoma
  • Neuroendocrine neoplasms
  • Hamartomas
  • Mesenchymas tumors
  • Lymphomas



References

  1. 1.0 1.1 1.2 Kim, Eun Ran (2014). "Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis". World Journal of Gastroenterology. 20 (29): 9872. doi:10.3748/wjg.v20.i29.9872. ISSN 1007-9327.
  2. Markowitz SD, Bertagnolli MM (2009). "Molecular origins of cancer: Molecular basis of colorectal cancer". N Engl J Med. 361 (25): 2449–60. doi:10.1056/NEJMra0804588. PMC 2843693. PMID 20018966.
  3. Scully R (2010). "The spindle-assembly checkpoint, aneuploidy, and gastrointestinal cancer". The New England Journal of Medicine. 363 (27): 2665–6. doi:10.1056/NEJMe1008017. PMID 21190461. Retrieved 2011-12-12.
  4. Zivić R, Bjelaković G, Koraćević D (1975). "[Amino acid constitution of the urine in children with rheumatic fever]". Reumatizam. 22 (1): 21–5. PMID 1118685.
  5. Itzkowitz S (2003). "Colon carcinogenesis in inflammatory bowel disease: applying molecular genetics to clinical practice". J Clin Gastroenterol. 36 (5 Suppl): S70–4, discussion S94-6. PMID 12702969.
  6. Kraus S, Arber N (2009). "Inflammation and colorectal cancer". Curr Opin Pharmacol. 9 (4): 405–10. doi:10.1016/j.coph.2009.06.006. PMID 19589728.
  7. Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, Syrjänen K, El-Faitori O; et al. (2013). "High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer". Anticancer Res. 33 (8): 3137–43. PMID 23898071.
  8. Ullman TA, Itzkowitz SH (2011). "Intestinal inflammation and cancer". Gastroenterology. 140 (6): 1807–16. doi:10.1053/j.gastro.2011.01.057. PMID 21530747.
  9. O'Mahony L, Feeney M, O'Halloran S, Murphy L, Kiely B, Fitzgibbon J; et al. (2001). "Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice". Aliment Pharmacol Ther. 15 (8): 1219–25. PMID 11472326.
  10. Schlussel AT, Gagliano RA, Seto-Donlon S, Eggerding F, Donlon T, Berenberg J; et al. (2014). "The evolution of colorectal cancer genetics-Part 1: from discovery to practice". J Gastrointest Oncol. 5 (5): 326–35. doi:10.3978/j.issn.2078-6891.2014.069. PMC 4173047. PMID 25276405.
  11. 11.0 11.1 Weiss JM, Pfau PR, O'Connor ES, King J, LoConte N, Kennedy G; et al. (2011). "Mortality by stage for right- versus left-sided colon cancer: analysis of surveillance, epidemiology, and end results--Medicare data". J Clin Oncol. 29 (33): 4401–9. doi:10.1200/JCO.2011.36.4414. PMC 3221523. PMID 21969498.
  12. Compton CC, Fielding LP, Burgart LJ, Conley B, Cooper HS, Hamilton SR; et al. (2000). "Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999". Arch Pathol Lab Med. 124 (7): 979–94. doi:10.1043/0003-9985(2000)124<0979:PFICC>2.0.CO;2. PMID 10888773.


Template:WikiDoc Sources