Alpha 1-antitrypsin deficiency medical therapy: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 12: Line 12:


As α<sub>1</sub>-antitrypsin is an [[acute phase reaction|acute phase reactant]], its [[Transcription (genetics)|transcription]] is markedly increased during [[inflammation]] elsewhere in response to increased [[interleukin]]-1 and 6 and [[Tumor necrosis factor-alpha|TNFα]] production. Any treatment that blunts this response, specifically [[paracetamol]] (acetaminophen), can delay the accumulation of A1AT polymers in the liver and (hence) [[cirrhosis]]. A1AD patients are therefore encouraged to use paracetamol when slightly to moderately ill, even if they would otherwise not have used [[antipyretic]]s.
As α<sub>1</sub>-antitrypsin is an [[acute phase reaction|acute phase reactant]], its [[Transcription (genetics)|transcription]] is markedly increased during [[inflammation]] elsewhere in response to increased [[interleukin]]-1 and 6 and [[Tumor necrosis factor-alpha|TNFα]] production. Any treatment that blunts this response, specifically [[paracetamol]] (acetaminophen), can delay the accumulation of A1AT polymers in the liver and (hence) [[cirrhosis]]. A1AD patients are therefore encouraged to use paracetamol when slightly to moderately ill, even if they would otherwise not have used [[antipyretic]]s.


Treatment guidelines of AATD that are similar to COPD include:
Treatment guidelines of AATD that are similar to COPD include:
Line 29: Line 28:
*Augmentation therapy recipients demonstrate a slower rate of FEV1 decline than nonrecipients
*Augmentation therapy recipients demonstrate a slower rate of FEV1 decline than nonrecipients
*Wencker and colleagues conducted a before–after study and found that the greatest effect of augmentation therapy in changing FEV1 slope was observed in individuals with a rapid FEV1 decline before augmentation therapy was initiated (ie, FEV1 decline 256 mL/y before therapy vs 53 mL/y during therapy).
*Wencker and colleagues conducted a before–after study and found that the greatest effect of augmentation therapy in changing FEV1 slope was observed in individuals with a rapid FEV1 decline before augmentation therapy was initiated (ie, FEV1 decline 256 mL/y before therapy vs 53 mL/y during therapy).


==References==
==References==

Revision as of 22:36, 27 November 2017

Alpha 1-antitrypsin deficiency Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Alpha 1-antitrypsin deficiency from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications, and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Alpha 1-antitrypsin deficiency medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Alpha 1-antitrypsin deficiency medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Alpha 1-antitrypsin deficiency medical therapy

CDC on Alpha 1-antitrypsin deficiency medical therapy

Alpha 1-antitrypsin deficiency medical therapy in the news

Blogs on Alpha 1-antitrypsin deficiency medical therapy

Directions to Hospitals Treating Alpha 1-antitrypsin deficiency

Risk calculators and risk factors for Alpha 1-antitrypsin deficiency medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Overview

Alpha 1-antitrypsin deficiency (A1AD) may be treated through intravenous infusions derived from donated human plasma.

Medical Therapy

In the United States, Canada, and several European countries, lung-affected A1AD patients may receive intravenous infusions of alpha-1 antitrypsin, derived from donated human plasma. This augmentation therapy is thought to arrest the course of the disease and halt any further damage to the lungs. Long-term studies of the effectiveness of A1AT replacement therapy are not available. It is currently recommended that patients begin augmentation therapy only after the onset of emphysema symptoms.

Augmentation therapy is not appropriate for liver-affected patients; treatment of A1AD-related liver damage focuses on alleviating the symptoms of the disease. In severe cases, liver transplantation may be necessary.

As α1-antitrypsin is an acute phase reactant, its transcription is markedly increased during inflammation elsewhere in response to increased interleukin-1 and 6 and TNFα production. Any treatment that blunts this response, specifically paracetamol (acetaminophen), can delay the accumulation of A1AT polymers in the liver and (hence) cirrhosis. A1AD patients are therefore encouraged to use paracetamol when slightly to moderately ill, even if they would otherwise not have used antipyretics.

Treatment guidelines of AATD that are similar to COPD include:

  • Smoking cessation
  • Long-acting bronchodilators
  • Preventive vaccinations
  • Pulmonary rehabilitation
  • Supplemental oxygen if needed
  • Lung transplantation
  • Augmentation therapy is the specific therapy for Alpha 1-antitrypsin deficiency (A1AD) associated lung disease.
  • Augmentation therapy includes intravenous infusion of purified pooled human plasma alpha 1-antitrypsin deficiency to raise and maintain serum Alpha 1-antitrypsin levels above the threshold and to slow emphysema progression and enhance the duration and quality of life.
  • Food and Drug Administration has approved four preparations of purified AAT.
  • Following infusion AAT levels remain above the protective threshold for most of the dosing interval.
  • The infused AAT has the ability to neutralize neutrophil elastase activity.
  • Augmentation therapy recipients demonstrate a slower rate of FEV1 decline than nonrecipients
  • Wencker and colleagues conducted a before–after study and found that the greatest effect of augmentation therapy in changing FEV1 slope was observed in individuals with a rapid FEV1 decline before augmentation therapy was initiated (ie, FEV1 decline 256 mL/y before therapy vs 53 mL/y during therapy).

References


Template:WikiDoc Sources