Chronic stable angina revascularization percutaneous coronary intervention
Chronic stable angina Microchapters | ||
Classification | ||
---|---|---|
| ||
| ||
Differentiating Chronic Stable Angina from Acute Coronary Syndromes | ||
Diagnosis | ||
Alternative Therapies for Refractory Angina | ||
Discharge Care | ||
Guidelines for Asymptomatic Patients | ||
Case Studies | ||
Chronic stable angina revascularization percutaneous coronary intervention On the Web | ||
FDA on Chronic stable angina revascularization percutaneous coronary intervention | ||
CDC onChronic stable angina revascularization percutaneous coronary intervention | ||
Chronic stable angina revascularization percutaneous coronary intervention in the news | ||
Blogs on Chronic stable angina revascularization percutaneous coronary intervention | ||
to Hospitals Treating Chronic stable angina revascularization percutaneous coronary intervention | ||
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]; John Fani Srour, M.D.; Jinhui Wu, M.D.; Lakshmi Gopalakrishnan, M.B.B.S.; Aysha Anwar, M.B.B.S[3] Jair Basantes de la Calle, M.D.
Overview
Percutaneous coronary intervention for coronary artery disease first began in 1977, as a valuable mode of revascularization, wherein at the point of coronary stenosis a catheter-borne balloon is inflated to relieve the stenosis.
PCI
Advantages
The advantages of PCI for the treatment of CAD are many and include:
- Low level of procedure-related morbidity and mortality rate in properly selected patients
- Shorter hospital stay
- Early return to activity
- Overall feasibility of multiple procedures
Disadvantages
The main disadvantages of PCI are:
- Risk of acute coronary occlusion during PCI
- Increased incidence of restenosis in lesions that were successfully treated.
During clinical evaluation for treatment, these disadvantages must be considered and may limit the usage of this procedure.[1][2]
Indications
Ideal candidates for PTCA/PCI include patients:
- Less than 75 years of age with stable angina
- With single-vessel and/or single-lesion CAD
- Without a history of diabetes
- With objective large ischemia - in particular, lesions less than 10 mm, readily accessible, concentric, and discrete are best suited for revascularization by PCI
Contraindications
On the contrary, chronic total occlusions that cannot be crossed, lesions greater than 20 mm, tortuous, irregular, angulated, calcified, severely stenotic with one or more lesion greater than 90% stenosis present in an artery are associated with an increased risk of morbidity and mortality from the procedure. In addition, PCI is used with reservation in diabetics with multi-vessel disease and in patients with unprotected left main stenosis. Other important factors include the operator volume and the presence or absence of onsite cardiovascular surgeon.[3]
Primary Success
Primary success of coronary intervention is generally defined as an absolute increase of 20% points in the luminal diameter and a final diameter obstruction of less than 30%. Such angiographic success can be anticipated in more than 90% of properly selected patients.
Over the years, alternative methods of percutaneous treatment developed include the use of:
- Intracoronary brachytherapy for in-stent restenosis.[4][5]
- Cutting balloon with metal razors to avoid the spillage and subsequent reduction in the incidence of vessel trauma.
- Burr rotablation that pulverizes the atheromatous material.[6]
- Intracoronary stents designed to maintain the lumen size.
PCI in Patients with Chronic Stable Angina
2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization. Revascularization in Stable ischemic heart disease (Please do not edit).
Revascularization in Stable ischemic heart disease
Left ventricular dysfunction and multivessel CAD
Class I |
"1. In patients with SIHD and multivessel CAD appropriate for CABG with severe left ventricular systolic dysfunction (left ventricular ejection fraction <35%), CABG is recommended to improve survival. (Level of Evidence: B-R) " |
''2. In selected patients with SIHD and multivessel CAD appropriate for CABG and mild to moderate left ventricular systolic dysfunction (ejection fraction 35%–50%), CABG (to include a left internal mammary artery [LIMA] graft to the LAD) is reasonable to improve survival (Level of evidence B-NR)'' |
Left main CAD
Class I |
"3. In patients with SIHD and significant left main stenosis, CABG is recommended to improve survivalLevel of Evidence: B-R) " |
''4. In selected patients with SIHD and significant left main stenosis for whom PCI can provide equivalent revascularization to that possible with CABG, PCI is reasonable to improve survival. (Level of evidence B-NR)'' |
Multivessel CAD
Class IIb |
" 5. In patients with SIHD, normal ejection fraction, significant stenosis in 3 major coronary arteries (with or without proximal LAD), and anatomy suitable for CABG, CABG may be reasonable to improve survival (Level of Evidence B-R)". |
'' 6. In patients with SIHD, normal ejection fraction, significant stenosis in 3 major coronary arteries (with or without proximal LAD), and anatomy suitable for PCI, the usefulness of PCI to improve survival is uncertain (Level of Evidence B-NR)'' |
Stenosis in the proximal LAD artery
Class IIb |
" 8. In intermediate-risk adults who would benefit from more aggressive LDL-C lowering and in whom high-intensity statins are advisable but not acceptable or tolerated, it may be reasonable to add a nonstatin drug (ezetimibe or bile acid sequestrant) to a moderate-intensity statin (Level of Evidence B-R)". |
Single- or double-vessel disease not involving the proximal LAD
References
- ↑ Bauters C, Banos JL, Van Belle E, Mc Fadden EP, Lablanche JM, Bertrand ME (1998) Six-month angiographic outcome after successful repeat percutaneous intervention for in-stent restenosis. Circulation 97 (4):318-21. PMID: 9468204
- ↑ Mehran R, Dangas G, Abizaid AS, Mintz GS, Lansky AJ, Satler LF et al. (1999) Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome. Circulation 100 (18):1872-8. PMID: 10545431
- ↑ Smith SC, Feldman TE, Hirshfeld JW, Jacobs AK, Kern MJ, King SB et al. (2006) ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). Circulation 113 (1):156-75. DOI:10.1161/CIRCULATIONAHA.105.170815 PMID: 16391169
- ↑ Teirstein PS, Massullo V, Jani S, Popma JJ, Russo RJ, Schatz RA et al. (2000) Three-year clinical and angiographic follow-up after intracoronary radiation : results of a randomized clinical trial. Circulation 101 (4):360-5. PMID: 10653825
- ↑ Salomon R, Soreq H, Givon D, Sela I, Littauer UZ (1975) Proceedings: Enzymatic acylation of histidine to tobacco mosaic virus RNA. Isr J Med Sci 11 (11):1208-9. PMID: 1205798
- ↑ Kobayashi Y, Teirstein P, Linnemeier T, Stone G, Leon M, Moses J (2001) Rotational atherectomy (stentablation) in a lesion with stent underexpansion due to heavily calcified plaque. Catheter Cardiovasc Interv 52 (2):208-11. PMID: 11170330
- ↑ 7.0 7.1 7.2 7.3 7.4 "Correction to: 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". Circulation. 145 (11): e771. 2022. doi:10.1161/CIR.0000000000001061. PMID 35286170 Check
|pmid=
value (help).