Lipoid pneumonia pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 4: Line 4:
{{CMG}}; {{AE}} {{RG}}
{{CMG}}; {{AE}} {{RG}}
==Overview==
==Overview==
The exact pathogenesis of [disease name] is not fully understood.
lipoid pneumonia parthenogenesis is different in its two sub-types: exegenous form:it is understood that exogenus [[lipoid pneumonia]] is the result of chronic body reaction to fatty substance in the [[alveoli|alveol]]. [[lipid]] reaches [[alveoli]] by [[aspiration]] or [[inhalation]]. Some [[Oils|mineral oils]] can cause lung injuries such as [[Natural gasoline|gasoline]]. mineral oils can enter the [[tracheobronchial tree]] without causing [[cough reflex]] which will bother [[Mucociliary clearance|mucociliary transport system]] chronically. injected lipids mechanism of further producing [[lipid pneumonia]] is more complicated. as the [[lipid]] goes inside the [[alveoli]], it is trapped and hard to expectorate, this condition may be worsen by associated [[neurological]] and [[gastrointestinal]] disorders affecting [[swallowing]] or [[cough]]. lipids in [[alveoli]] form [[emulsion]] and then consumed by [[macrophages]] via [[phagocytosis]]. since the [[Macrophages|alveolar macrophages]] cannot metabolize consumed fatty substance, [[oil]] is repeatedly released into [[alveoli]] after death of these [[macrophages]]. The oil released, illicits a [[Granulomatosis|giant-cell granulomatosis]] reaction.


OR
endogenous form: the pathogenesis of endogenous [[lipoid pneumonia]] is still not well understood however there are plenty of suggested mechanisms, endogenous [[lipoid pneumonia]] can be caused by [[Bronchial|transbronchial]] dissemination of [[cancer cell]] breakdown products. poorly differentiated [[adenocarcinoma]] cells secreting [[mucin]] is the most common [[neoplastic]] reason. another mechanism suggested is [[Anoxic brain injury|anoxic tissue injury]] stimulating various [[enzymes]] such as [[phospholipase]] and [[Monooxygenase|mono-oxygenases]].[[Infection]] changes to endogenous [[lipid pneumonia]] is generally localized in airways because the souronding [[lung]] is already [[Consolidation (medicine)|consolidated]], limiting the spread of [[bacteria]].


It is thought that [disease name] is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
On gross and microscopic [[histology]] well circumscribed, firm with prominent [[lymphatics]] on lung surface in exogenous typelipoid material (or empty spaces), [[Inflammation|inflammatory cells]] and young [[Fibroblast|fibroblasts]]. [[Endarteritis obliterans|Reactive endarteritis]], marked [[alveolar]] lining cell [[hyperplasia]]. lipid-laden foamy [[Macrophage|macrophages]] are seen.
 
OR
 
[Pathogen name] is usually transmitted via the [transmission route] route to the human host.
 
OR
 
Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
 
OR
 
 
[Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
 
OR
 
The progression to [disease name] usually involves the [molecular pathway].
 
OR
 
The pathophysiology of [disease/malignancy] depends on the histological subtype.
 
==Pathophysiology==


=== Exogenous lipoid pneumonia ===
=== Exogenous lipoid pneumonia ===
Line 81: Line 58:
==Gross Pathology==
==Gross Pathology==


* well circumscribed, firm with prominent lymphatics on lung surface in exogenous type.<ref name="urlPathology Outlines - Lipoid pneumonia2">{{cite web |url=http://www.pathologyoutlines.com/topic/lungnontumorlipoidpneumonia.html |title=Pathology Outlines - Lipoid pneumonia |format= |work= |accessdate=}}</ref>
* well circumscribed, firm with prominent [[lymphatics]] on lung surface in exogenous type.<ref name="urlPathology Outlines - Lipoid pneumonia2">{{cite web |url=http://www.pathologyoutlines.com/topic/lungnontumorlipoidpneumonia.html |title=Pathology Outlines - Lipoid pneumonia |format= |work= |accessdate=}}</ref>


==Microscopic Pathology==
==Microscopic Pathology==


* Lipoid material (or empty spaces), inflammatory cells and young fibroblasts.<ref name="urlPathology Outlines - Lipoid pneumonia">{{cite web |url=http://www.pathologyoutlines.com/topic/lungnontumorlipoidpneumonia.html |title=Pathology Outlines - Lipoid pneumonia |format= |work= |accessdate=}}</ref>
* Lipoid material (or empty spaces), [[inflammatory cells]] and young [[Fibroblast|fibroblasts]].<ref name="urlPathology Outlines - Lipoid pneumonia">{{cite web |url=http://www.pathologyoutlines.com/topic/lungnontumorlipoidpneumonia.html |title=Pathology Outlines - Lipoid pneumonia |format= |work= |accessdate=}}</ref>
* Reactive endarteritis, marked alveolar lining cell hyperplasia.
*[[Endarteritis obliterans|Reactive endarteritis]], marked alveolar lining cell [[hyperplasia]].
* lipid-laden foamy macrophages
* lipid-laden foamy [[Macrophage|macrophages]]
 
[[File:PMC5356983 1348-9585-58-482-g004.png|center|700ptx|thumbnail|a) Lipid-laden macrophages with Gram staining in sputum.(b) Lipid-laden macrophages with Giemsa staining in sputum. (c) Lipid-laden macrophages with Giemsa staining in bronchoalveolar lavage fluid. (d) Lipid-laden macrophages with Sudan red staining in bronchoalveolar lavage fluid. (e) Diffuse mucosal hyperemia is visible in the upper or lower lobe bronchus. (f) Widened alveolar space, cell reaction, and localized fibrosis in lung tissues. A tissue biopsy sample was stained using hematoxylin and eosin.<ref name="HanLiu2016">{{cite journal|last1=Han|first1=Chenghong|last2=Liu|first2=Lihai|last3=Du|first3=Shiping|last4=Mei|first4=Jianhua|last5=Huang|first5=Ling|last6=Chen|first6=Min|last7=Lei|first7=Yongliang|last8=Qian|first8=Junwen|last9=Luo|first9=Jianyong|last10=Zhang|first10=Meibian|title=Investigation of rare chronic lipoid pneumonia associated with occupational exposure to paraffin aerosol|journal=Journal of Occupational Health|volume=58|issue=5|year=2016|pages=482–488|issn=1341-9145|doi=10.1539/joh.16-0096-CS}}</ref>]]
[[File:PMC5356983 1348-9585-58-482-g004.png|center|700ptx|thumbnail|a) Lipid-laden macrophages with Gram staining in sputum.(b) Lipid-laden macrophages with Giemsa staining in sputum. (c) Lipid-laden macrophages with Giemsa staining in bronchoalveolar lavage fluid. (d) Lipid-laden macrophages with Sudan red staining in bronchoalveolar lavage fluid. (e) Diffuse mucosal hyperemia is visible in the upper or lower lobe bronchus. (f) Widened alveolar space, cell reaction, and localized fibrosis in lung tissues. A tissue biopsy sample was stained using hematoxylin and eosin.<ref name="HanLiu2016">{{cite journal|last1=Han|first1=Chenghong|last2=Liu|first2=Lihai|last3=Du|first3=Shiping|last4=Mei|first4=Jianhua|last5=Huang|first5=Ling|last6=Chen|first6=Min|last7=Lei|first7=Yongliang|last8=Qian|first8=Junwen|last9=Luo|first9=Jianyong|last10=Zhang|first10=Meibian|title=Investigation of rare chronic lipoid pneumonia associated with occupational exposure to paraffin aerosol|journal=Journal of Occupational Health|volume=58|issue=5|year=2016|pages=482–488|issn=1341-9145|doi=10.1539/joh.16-0096-CS}}</ref>]]



Revision as of 18:46, 3 October 2019

Lipoid pneumonia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Lipoid pneumonia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lipoid pneumonia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lipoid pneumonia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lipoid pneumonia pathophysiology

CDC on Lipoid pneumonia pathophysiology

Lipoid pneumonia pathophysiology in the news

Blogs on Lipoid pneumonia pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Lipoid pneumonia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ramyar Ghandriz MD[2]

Overview

lipoid pneumonia parthenogenesis is different in its two sub-types: exegenous form:it is understood that exogenus lipoid pneumonia is the result of chronic body reaction to fatty substance in the alveol. lipid reaches alveoli by aspiration or inhalation. Some mineral oils can cause lung injuries such as gasoline. mineral oils can enter the tracheobronchial tree without causing cough reflex which will bother mucociliary transport system chronically. injected lipids mechanism of further producing lipid pneumonia is more complicated. as the lipid goes inside the alveoli, it is trapped and hard to expectorate, this condition may be worsen by associated neurological and gastrointestinal disorders affecting swallowing or cough. lipids in alveoli form emulsion and then consumed by macrophages via phagocytosis. since the alveolar macrophages cannot metabolize consumed fatty substance, oil is repeatedly released into alveoli after death of these macrophages. The oil released, illicits a giant-cell granulomatosis reaction.

endogenous form: the pathogenesis of endogenous lipoid pneumonia is still not well understood however there are plenty of suggested mechanisms, endogenous lipoid pneumonia can be caused by transbronchial dissemination of cancer cell breakdown products. poorly differentiated adenocarcinoma cells secreting mucin is the most common neoplastic reason. another mechanism suggested is anoxic tissue injury stimulating various enzymes such as phospholipase and mono-oxygenases.Infection changes to endogenous lipid pneumonia is generally localized in airways because the souronding lung is already consolidated, limiting the spread of bacteria.

On gross and microscopic histology well circumscribed, firm with prominent lymphatics on lung surface in exogenous typelipoid material (or empty spaces), inflammatory cells and young fibroblasts. Reactive endarteritis, marked alveolar lining cell hyperplasia. lipid-laden foamy macrophages are seen.

Exogenous lipoid pneumonia

Endogenous lipoid pneumonia

  • Infection changes to endogenous lipid pneumonia is generally localized in airways because the souronding lung is already consolidated, limiting the spread of bacteria[10].

Genetics

There is no genetic predisposition reported with lipoid pneumonia.

Associated Conditions

Gross Pathology

  • well circumscribed, firm with prominent lymphatics on lung surface in exogenous type.[11]

Microscopic Pathology

a) Lipid-laden macrophages with Gram staining in sputum.(b) Lipid-laden macrophages with Giemsa staining in sputum. (c) Lipid-laden macrophages with Giemsa staining in bronchoalveolar lavage fluid. (d) Lipid-laden macrophages with Sudan red staining in bronchoalveolar lavage fluid. (e) Diffuse mucosal hyperemia is visible in the upper or lower lobe bronchus. (f) Widened alveolar space, cell reaction, and localized fibrosis in lung tissues. A tissue biopsy sample was stained using hematoxylin and eosin.[13]


References

  1. Guerguerian, Anne-Marie; Lacroix, Jacques (2000). "Pulmonary injury after intravenous hydrocarbon injection". Paediatrics & Child Health. 5 (8): 471–472. doi:10.1093/pch/5.8.471. ISSN 1205-7088.
  2. Domej, Wolfgang; Mitterhammer, Heike; Stauber, Rudolf; Kaufmann, Peter; Smolle, Karl Heinz (2007). "Successful outcome after intravenous gasoline injection". Journal of Medical Toxicology. 3 (4): 173–177. doi:10.1007/BF03160935. ISSN 1556-9039.
  3. Burke, M; Fraser, R (1988). "Obstructive pneumonitis: a pathologic and pathogenetic reappraisal". Radiology. 166 (3): 699–704. doi:10.1148/radiology.166.3.3340764. ISSN 0033-8419.
  4. 4.0 4.1 "www.thoracic.org" (PDF).
  5. Cohen, Allen B.; Cline, Martin J. (1972). "In VitroStudies of the Foamy Macrophage of Postobstructive Endogenous Lipoid Pneumonia in Man1–3". American Review of Respiratory Disease. 106 (1): 69–78. doi:10.1164/arrd.1972.106.1.69. ISSN 0003-0805.
  6. Tamura, A.; Hebisawa, A.; Fukushima, K.; Yotsumoto, H.; Mori, M. (1998). "Lipoid Pneumonia in Lung Cancer: Radiographic and Pathological Features". Japanese Journal of Clinical Oncology. 28 (8): 492–496. doi:10.1093/jjco/28.8.492. ISSN 0368-2811.
  7. 7.0 7.1 Taki, Takao; Nakazima, Tomoko; Emi, Yohko; Konishi, Yohichi; Hayashi, Akira; Matsumoto, Makoto (1986). "Accumulation of surfactant phospholipids in lipid pneumonia induced with methylnaphthalene". Lipids. 21 (9): 548–552. doi:10.1007/BF02534050. ISSN 0024-4201.
  8. Evans AJ, Sawyez CG, Wolfe BM, Connelly PW, Maguire GF, Huff MW (1993). "Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms". J Lipid Res. 34 (5): 703–17. PMID 8509711.
  9. Tölle, Angelika; Kolleck, Ingrid; Schlame, Michael; Wauer, Roland; Stevens, Paul A.; Rüstow, Bernd (1997). "Effect of hyperoxia on the composition of the alveolar surfactant and the turnover of surfactant phospholipids, cholesterol, plasmalogens and vitamin E". Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism. 1346 (2): 198–204. doi:10.1016/S0005-2760(97)00036-2. ISSN 0005-2760.
  10. Burke, M; Fraser, R (1988). "Obstructive pneumonitis: a pathologic and pathogenetic reappraisal". Radiology. 166 (3): 699–704. doi:10.1148/radiology.166.3.3340764. ISSN 0033-8419.
  11. "Pathology Outlines - Lipoid pneumonia".
  12. "Pathology Outlines - Lipoid pneumonia".
  13. Han, Chenghong; Liu, Lihai; Du, Shiping; Mei, Jianhua; Huang, Ling; Chen, Min; Lei, Yongliang; Qian, Junwen; Luo, Jianyong; Zhang, Meibian (2016). "Investigation of rare chronic lipoid pneumonia associated with occupational exposure to paraffin aerosol". Journal of Occupational Health. 58 (5): 482–488. doi:10.1539/joh.16-0096-CS. ISSN 1341-9145.

Template:WH Template:WS