FARS2: Difference between revisions

Jump to navigation Jump to search
m (Reverted edits by 47.147.195.241 (talk) to last version by KolbertBot)
 
No edit summary
 
Line 1: Line 1:
{{Underlinked|date=May 2016}}
{{Infobox_gene}}
 
'''Phenylalanyl-tRNA synthetase, mitochondrial (FARS2)''' is an [[enzyme]] that in humans is encoded by the ''FARS2'' [[gene]].<ref name="pmid10329163">{{cite journal | vauthors = Bullard JM, Cai YC, Demeler B, Spremulli LL | title = Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase | journal = Journal of Molecular Biology | volume = 288 | issue = 4 | pages = 567–77 | date = May 1999 | pmid = 10329163 | pmc =  | doi = 10.1006/jmbi.1999.2708 }}</ref> This [[protein]] encoded by ''FARS2'' localizes to the [[mitochondrion]] and plays a role in mitochondrial [[Translation (biology)|protein translation]]. [[Mutation]]s in this gene have been associated with combined oxidative phosphorylation deficiency 14, also known as Alpers encephalopathy, as well as [[Hereditary spastic paraplegia|spastic paraplegia]] 77 and infantile-onset [[epilepsy]] and [[cytochrome c oxidase]] deficiency.<ref name="entrez">{{cite web|url=https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10667|title=Entrez Gene: FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial|access-date=}}{{PD-notice}}</ref><ref name=":1">{{cite journal | vauthors = Almalki A, Alston CL, Parker A, Simonic I, Mehta SG, He L, Reza M, Oliveira JM, Lightowlers RN, McFarland R, Taylor RW, Chrzanowska-Lightowlers ZM | title = Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency | journal = Biochimica et Biophysica Acta | volume = 1842 | issue = 1 | pages = 56–64 | date = January 2014 | pmid = 24161539 | pmc = 3898479 | doi = 10.1016/j.bbadis.2013.10.008 }}</ref>
 
== Structure ==
''FARS2'' is located on the [[Locus (genetics)|p arm]] of [[chromosome 6]] in position 25.1 and has 15 [[exon]]s.<ref name="entrez" /> This gene encodes a member of the [[Aminoacyl tRNA synthetases, class II|class-II aminoacyl-tRNA synthetase]] family.<ref name=":2">{{Cite web|url=https://www.uniprot.org/uniprot/O95363|title=FARS2 - Phenylalanine--tRNA ligase, mitochondrial precursor - Homo sapiens (Human) - FARS2 gene & protein|website=www.uniprot.org|language=en|access-date=2018-09-05}}{{CC-notice|cc=by4}}</ref><ref name=":0">{{cite journal | vauthors =  | title = UniProt: the universal protein knowledgebase | journal = Nucleic Acids Research | volume = 45 | issue = D1 | pages = D158-D169 | date = January 2017 | pmid = 27899622 | pmc = 5210571 | doi = 10.1093/nar/gkw1099 }}</ref> FARS2 is a phenylalanine-tRNA [[synthetase]] (PheRS) localized to the [[mitochondrion]] which consists of a single [[polypeptide chain]], unlike the (alpha-beta)2 structure of the [[Prokaryote|prokaryotic]] and [[Eukaryote|eukaryotic]] [[cytoplasm]]ic forms of PheRS. Structure analysis and [[Catalysis|catalytic]] properties indicate mitochondrial PheRSs may constitute a class of PheRS distinct from the enzymes found in prokaryotes and in the eukaryotic cytoplasm.<ref name="entrez" />
 
== Function ==
[[Aminoacyl tRNA synthetase|Aminoacyl-tRNA synthetases]] are a class of [[enzyme]]s that charge [[Transfer RNA|tRNAs]] with their cognate [[amino acid]]s.<ref name="entrez" /> FARS2 charges tRNA(Phe) with [[phenylalanine]] and catalyzes direct attachment of m-Tyr (an oxidized version of Phe) to tRNA(Phe). This makes it important for mitochondrial [[Translation (biology)|translation]] and for delivery of the misacylated tRNA to the [[ribosome]] and incorporation of [[Reactive oxygen species|ROS]]-damaged amino acid into proteins.<ref name=":2" /><ref name=":0" /><ref name=":3">{{cite journal | vauthors = Klipcan L, Moor N, Kessler N, Safro MG | title = Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 106 | issue = 27 | pages = 11045–8 | date = July 2009 | pmid = 19549855 | pmc = 2700156 | doi = 10.1073/pnas.0905212106 }}</ref><ref name=":4">{{cite journal | vauthors = Elo JM, Yadavalli SS, Euro L, Isohanni P, Götz A, Carroll CJ, Valanne L, Alkuraya FS, Uusimaa J, Paetau A, Caruso EM, Pihko H, Ibba M, Tyynismaa H, Suomalainen A | title = Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy | journal = Human Molecular Genetics | volume = 21 | issue = 20 | pages = 4521–9 | date = October 2012 | pmid = 22833457 | doi = 10.1093/hmg/dds294 }}</ref> [[Alternative splicing]] results in multiple transcript variants.<ref name="entrez" />
 
=== Catalytic activity ===
[[Adenosine triphosphate|ATP]] + L-[[phenylalanine]] + [[Transfer RNA|tRNA]](Phe) = [[Adenosine monophosphate|AMP]] + [[Pyrophosphate|diphosphate]] + L-phenylalanyl-tRNA(Phe)<ref name=":2" /><ref name=":0" /><ref name=":3" /><ref name=":4" />
 
== Clinical significance ==
Mutations in ''FARS2'' have been associated to combined oxidative phosphorylation deficiency 14, [[Hereditary spastic paraplegia|spastic paraplegia]] 77, and infantile-onset [[epilepsy]] and [[cytochrome c oxidase]] deficiency. Both combined oxidative phosphorylation deficiency 14 and spastic paraplegia 77 are [[Dominance (genetics)|autosomal recessive]] in nature and have been linked to several pathogenic variants including Y144C,<ref>{{cite journal | vauthors = Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS | title = Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes | journal = Journal of Medical Genetics | volume = 49 | issue = 4 | pages = 234–41 | date = April 2012 | pmid = 22499341 | doi = 10.1136/jmedgenet-2012-100836 }}</ref> I329T, D391V,<ref name=":4" /> and D142Y.<ref>{{cite journal | vauthors = Yang Y, Liu W, Fang Z, Shi J, Che F, He C, Yao L, Wang E, Wu Y | title = A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia | journal = Human Mutation | volume = 37 | issue = 2 | pages = 165–9 | date = February 2016 | pmid = 26553276 | doi = 10.1002/humu.22930 }}</ref> Combined oxidative phosphorylation deficiency 14 is characterized by neonatal onset of [[global developmental delay]], refractory [[Epileptic seizure|seizures]], [[lactic acidosis]], and deficiencies of multiple mitochondrial respiratory enzymes. Spastic paraplegia, meanwhile, is a [[Neurodegeneration|neurodegenerative disorder]] characterized by a slow, gradual, progressive weakness and [[spasticity]] of the lower limbs, with patients often exhibiting difficulty with balance, weakness and stiffness in the legs, [[Spasm|muscle spasms]], and dragging the toes when walking.<ref name=":2" /><ref name=":0" /> One case of infantile-onset epilepsy and cytochrome c oxidase deficiency resulting from a ''FARS2'' Asp325Tyr [[missense mutation]] has also been reported. Early-onset epilepsy, [[neurological deficit]]s, and [[Cytochrome c oxidase|complex IV]] deficiency are the main characteristics of the disease stemming from this mutation.<ref name=":1" />


{{Infobox_gene}}
== Interactions ==
'''Phenylalanyl-tRNA synthetase, mitochondrial''' is an [[enzyme]] that in humans is encoded by the ''FARS2'' [[gene]].<ref name="pmid10329163">{{cite journal | vauthors = Bullard JM, Cai YC, Demeler B, Spremulli LL | title = Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase | journal = J Mol Biol | volume = 288 | issue = 4 | pages = 567–77 |date=Jun 1999 | pmid = 10329163 | pmc =  | doi = 10.1006/jmbi.1999.2708 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10667| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
FARS2 has been shown to have 193 binary [[Protein–protein interaction|protein-protein interactions]] including 12 co-complex interactions. FARS2 appears to interact with [[RCBTB2]], KRTAP10-9, [[CALCOCO2]], [[KRT40]], [[MID2]], [[APPL1]], [[IKZF3]], [[KRT13]], [[TADA2A (gene)|TADA2A]], [[STX11]], [[TRIM27]], KRTAP10-5, KRTAP10-7, [[TFCP2]], [[MKRN3]], [[KRT31]], [[HMBOX1]], [[AGTRAP]], [[ADAMTSL4]], [[NOTCH2NL]], CMTM5, TRIM54, FSD2, CYSRT1, HIGD1C, homez, [[SPRY1]], ZNF500, [[Keratin 34|KRT34]], [[YIF1A]], [[BAG4]], [[TPM2]], SYP, KRTAP10-8, KRTAP1-1, [[AP1B1]], [[TRAF2]], [[GRB10]], MESD, [[TRIP6]], CCDC152, BEX5, [[FHL5]], MORN3, DGAT2L6, ZNF438, KCTD17, [[ZNF655]], [[BANP]], SPERT, [[NFKBID]], ZNF526, [[PCSK5]], [[DVL3]], AJUBA, PPP1R16B, [[MDFI]], DPH2, CDCA4, KRTAP3-3, [[BACH2]], [[KCNF1]], MAN1C1, RIMBP3, [[ZRANB2|ZRANB1]], ISY1, [[FKBP7]], and E7.<ref>{{cite web | url = https://www.ebi.ac.uk/intact/interactions?conversationContext=3&query=FARS2 | title = 193 binary interactions found for search term FARS2 | work = IntAct Molecular Interaction Database | publisher = EMBL-EBI | access-date = 2018-09-05 }}</ref>
{{PBB_Summary
| section_title =  
| summary_text = Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. This gene encodes a phenylalanine-tRNA synthetase (PheRS) localized to the mitochondrion which consists of a single polypeptide chain, unlike the (alpha-beta)2 structure of the prokaryotic and eukaryotic cytoplasmic forms of PheRS. Structure analysis and catalytic properties indicate mitochondrial PheRSs may constitute a class of PheRS distinct from the enzymes found in prokaryotes and in the eukaryotic cytoplasm.<ref name="entrez" />
}}


==References==
== References ==
{{reflist}}
{{reflist}}


==Further reading==
== External links ==
 
*[https://www.ncbi.nlm.nih.gov/books/NBK320989/ Nuclear Gene-Encoded Leigh Syndrome Overview]
*[https://www.ncbi.nlm.nih.gov/books/NBK1173/ Mitochondrial DNA-Associated Leigh Syndrome and NARP]
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Levin I, Kessler N, Moor N, Klipcan L, Koc E, Templeton P, Spremulli L, Safro M | title = Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase | journal = Acta Crystallographica Section F | volume = 63 | issue = Pt 9 | pages = 761–4 | date = September 2007 | pmid = 17768348 | pmc = 2376306 | doi = 10.1107/S1744309107038651 }}
| citations =
* {{cite journal | vauthors = Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW | title = Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation | journal = Nature Biotechnology | volume = 22 | issue = 6 | pages = 707–16 | date = June 2004 | pmid = 15146197 | doi = 10.1038/nbt971 }}
*{{cite journal | author=Levin I |title=Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase |journal=Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. |volume=63 |issue= Pt 9 |pages= 761–4 |year= 2007 |pmid= 17768348 |doi= 10.1107/S1744309107038651 | pmc=2376306  |name-list-format=vanc| author2=Kessler N  | author3=Moor N  | display-authors=3  | last4=Klipcan  | first4=Liron  | last5=Koc  | first5=Emine  | last6=Templeton  | first6=Paul  | last7=Spremulli  | first7=Linda  | last8=Safro  | first8=Mark }}
* {{cite journal | vauthors = Harrington JJ, Sherf B, Rundlett S, Jackson PD, Perry R, Cain S, Leventhal C, Thornton M, Ramachandran R, Whittington J, Lerner L, Costanzo D, McElligott K, Boozer S, Mays R, Smith E, Veloso N, Klika A, Hess J, Cothren K, Lo K, Offenbacher J, Danzig J, Ducar M | title = Creation of genome-wide protein expression libraries using random activation of gene expression | journal = Nature Biotechnology | volume = 19 | issue = 5 | pages = 440–5 | date = May 2001 | pmid = 11329013 | doi = 10.1038/88107 }}
*{{cite journal | author=Gerhard DS |title=The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928  |name-list-format=vanc| author2=Wagner L  | author3=Feingold EA  | display-authors=3  | last4=Shenmen  | first4=CM  | last5=Grouse  | first5=LH  | last6=Schuler  | first6=G  | last7=Klein  | first7=SL  | last8=Old  | first8=S | last9=Rasooly  | first9=R }}
* {{cite journal | vauthors = Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S | title = Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library | journal = Gene | volume = 200 | issue = 1-2 | pages = 149–56 | date = October 1997 | pmid = 9373149 | doi = 10.1016/S0378-1119(97)00411-3 }}
*{{cite journal  | author=Brandenberger R |title=Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation |journal=Nat. Biotechnol. |volume=22 |issue= 6 |pages= 707–16 |year= 2005 |pmid= 15146197 |doi= 10.1038/nbt971 |name-list-format=vanc| author2=Wei H  | author3=Zhang S  | display-authors=3  | last4=Lei  | first4=Shirley  | last5=Murage  | first5=Jaji  | last6=Fisk  | first6=Gregory J  | last7=Li  | first7=Yan  | last8=Xu  | first8=Chunhui  | last9=Fang  | first9=Rixun }}
* {{cite journal | vauthors = Maruyama K, Sugano S | title = Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides | journal = Gene | volume = 138 | issue = 1-2 | pages = 171–4 | date = January 1994 | pmid = 8125298 | doi = 10.1016/0378-1119(94)90802-8 }}
*{{cite journal | author=Mungall AJ |title=The DNA sequence and analysis of human chromosome 6 |journal=Nature |volume=425 |issue= 6960 |pages= 805–11 |year= 2003 |pmid= 14574404 |doi= 10.1038/nature02055  |name-list-format=vanc| author2=Palmer SA  | author3=Sims SK  | display-authors=3  | last4=Edwards  | first4=C. A.  | last5=Ashurst  | first5=J. L.  | last6=Wilming  | first6=L.  | last7=Jones  | first7=M. C.  | last8=Horton  | first8=R.  | last9=Hunt  | first9=S. E. }}
*{{cite journal  | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899  | pmc=139241  |name-list-format=vanc| author2=Feingold EA  | author3=Grouse LH  | display-authors=3  | last4=Derge  | first4=JG  | last5=Klausner  | first5=RD  | last6=Collins  | first6=FS  | last7=Wagner  | first7=L  | last8=Shenmen  | first8=CM  | last9=Schuler  | first9=GD }}
*{{cite journal  | author=Harrington JJ |title=Creation of genome-wide protein expression libraries using random activation of gene expression |journal=Nat. Biotechnol. |volume=19 |issue= 5 |pages= 440–5 |year= 2001 |pmid= 11329013 |doi= 10.1038/88107 |name-list-format=vanc| author2=Sherf B  | author3=Rundlett S  | display-authors=3  | last4=Jackson  | first4=P. David  | last5=Perry  | first5=Rob  | last6=Cain  | first6=Scott  | last7=Leventhal  | first7=Christina  | last8=Thornton  | first8=Mark  | last9=Ramachandran  | first9=Rakesh }}
*{{cite journal | author=Suzuki Y |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 |name-list-format=vanc| author2=Yoshitomo-Nakagawa K  | author3=Maruyama K  | display-authors=3  | last4=Suyama  | first4=Akira  | last5=Sugano  | first5=Sumio  }}
*{{cite journal | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
}}
{{refend}}
{{refend}}


<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{NLM content}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 


{{gene-6-stub}}
{{Portal bar|Mitochondria|Gene Wiki|border=no}}

Latest revision as of 02:45, 16 December 2018

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Phenylalanyl-tRNA synthetase, mitochondrial (FARS2) is an enzyme that in humans is encoded by the FARS2 gene.[1] This protein encoded by FARS2 localizes to the mitochondrion and plays a role in mitochondrial protein translation. Mutations in this gene have been associated with combined oxidative phosphorylation deficiency 14, also known as Alpers encephalopathy, as well as spastic paraplegia 77 and infantile-onset epilepsy and cytochrome c oxidase deficiency.[2][3]

Structure

FARS2 is located on the p arm of chromosome 6 in position 25.1 and has 15 exons.[2] This gene encodes a member of the class-II aminoacyl-tRNA synthetase family.[4][5] FARS2 is a phenylalanine-tRNA synthetase (PheRS) localized to the mitochondrion which consists of a single polypeptide chain, unlike the (alpha-beta)2 structure of the prokaryotic and eukaryotic cytoplasmic forms of PheRS. Structure analysis and catalytic properties indicate mitochondrial PheRSs may constitute a class of PheRS distinct from the enzymes found in prokaryotes and in the eukaryotic cytoplasm.[2]

Function

Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids.[2] FARS2 charges tRNA(Phe) with phenylalanine and catalyzes direct attachment of m-Tyr (an oxidized version of Phe) to tRNA(Phe). This makes it important for mitochondrial translation and for delivery of the misacylated tRNA to the ribosome and incorporation of ROS-damaged amino acid into proteins.[4][5][6][7] Alternative splicing results in multiple transcript variants.[2]

Catalytic activity

ATP + L-phenylalanine + tRNA(Phe) = AMP + diphosphate + L-phenylalanyl-tRNA(Phe)[4][5][6][7]

Clinical significance

Mutations in FARS2 have been associated to combined oxidative phosphorylation deficiency 14, spastic paraplegia 77, and infantile-onset epilepsy and cytochrome c oxidase deficiency. Both combined oxidative phosphorylation deficiency 14 and spastic paraplegia 77 are autosomal recessive in nature and have been linked to several pathogenic variants including Y144C,[8] I329T, D391V,[7] and D142Y.[9] Combined oxidative phosphorylation deficiency 14 is characterized by neonatal onset of global developmental delay, refractory seizures, lactic acidosis, and deficiencies of multiple mitochondrial respiratory enzymes. Spastic paraplegia, meanwhile, is a neurodegenerative disorder characterized by a slow, gradual, progressive weakness and spasticity of the lower limbs, with patients often exhibiting difficulty with balance, weakness and stiffness in the legs, muscle spasms, and dragging the toes when walking.[4][5] One case of infantile-onset epilepsy and cytochrome c oxidase deficiency resulting from a FARS2 Asp325Tyr missense mutation has also been reported. Early-onset epilepsy, neurological deficits, and complex IV deficiency are the main characteristics of the disease stemming from this mutation.[3]

Interactions

FARS2 has been shown to have 193 binary protein-protein interactions including 12 co-complex interactions. FARS2 appears to interact with RCBTB2, KRTAP10-9, CALCOCO2, KRT40, MID2, APPL1, IKZF3, KRT13, TADA2A, STX11, TRIM27, KRTAP10-5, KRTAP10-7, TFCP2, MKRN3, KRT31, HMBOX1, AGTRAP, ADAMTSL4, NOTCH2NL, CMTM5, TRIM54, FSD2, CYSRT1, HIGD1C, homez, SPRY1, ZNF500, KRT34, YIF1A, BAG4, TPM2, SYP, KRTAP10-8, KRTAP1-1, AP1B1, TRAF2, GRB10, MESD, TRIP6, CCDC152, BEX5, FHL5, MORN3, DGAT2L6, ZNF438, KCTD17, ZNF655, BANP, SPERT, NFKBID, ZNF526, PCSK5, DVL3, AJUBA, PPP1R16B, MDFI, DPH2, CDCA4, KRTAP3-3, BACH2, KCNF1, MAN1C1, RIMBP3, ZRANB1, ISY1, FKBP7, and E7.[10]

References

  1. Bullard JM, Cai YC, Demeler B, Spremulli LL (May 1999). "Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase". Journal of Molecular Biology. 288 (4): 567–77. doi:10.1006/jmbi.1999.2708. PMID 10329163.
  2. 2.0 2.1 2.2 2.3 2.4 "Entrez Gene: FARS2 phenylalanyl-tRNA synthetase 2, mitochondrial". This article incorporates text from this source, which is in the public domain.
  3. 3.0 3.1 Almalki A, Alston CL, Parker A, Simonic I, Mehta SG, He L, Reza M, Oliveira JM, Lightowlers RN, McFarland R, Taylor RW, Chrzanowska-Lightowlers ZM (January 2014). "Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency". Biochimica et Biophysica Acta. 1842 (1): 56–64. doi:10.1016/j.bbadis.2013.10.008. PMC 3898479. PMID 24161539.
  4. 4.0 4.1 4.2 4.3 "FARS2 - Phenylalanine--tRNA ligase, mitochondrial precursor - Homo sapiens (Human) - FARS2 gene & protein". www.uniprot.org. Retrieved 2018-09-05.File:CC-BY-icon-80x15.png This article incorporates text available under the CC BY 4.0 license.
  5. 5.0 5.1 5.2 5.3 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC 5210571. PMID 27899622.
  6. 6.0 6.1 Klipcan L, Moor N, Kessler N, Safro MG (July 2009). "Eukaryotic cytosolic and mitochondrial phenylalanyl-tRNA synthetases catalyze the charging of tRNA with the meta-tyrosine". Proceedings of the National Academy of Sciences of the United States of America. 106 (27): 11045–8. doi:10.1073/pnas.0905212106. PMC 2700156. PMID 19549855.
  7. 7.0 7.1 7.2 Elo JM, Yadavalli SS, Euro L, Isohanni P, Götz A, Carroll CJ, Valanne L, Alkuraya FS, Uusimaa J, Paetau A, Caruso EM, Pihko H, Ibba M, Tyynismaa H, Suomalainen A (October 2012). "Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy". Human Molecular Genetics. 21 (20): 4521–9. doi:10.1093/hmg/dds294. PMID 22833457.
  8. Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (April 2012). "Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes". Journal of Medical Genetics. 49 (4): 234–41. doi:10.1136/jmedgenet-2012-100836. PMID 22499341.
  9. Yang Y, Liu W, Fang Z, Shi J, Che F, He C, Yao L, Wang E, Wu Y (February 2016). "A Newly Identified Missense Mutation in FARS2 Causes Autosomal-Recessive Spastic Paraplegia". Human Mutation. 37 (2): 165–9. doi:10.1002/humu.22930. PMID 26553276.
  10. "193 binary interactions found for search term FARS2". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-09-05.

External links

Further reading

  • Levin I, Kessler N, Moor N, Klipcan L, Koc E, Templeton P, Spremulli L, Safro M (September 2007). "Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase". Acta Crystallographica Section F. 63 (Pt 9): 761–4. doi:10.1107/S1744309107038651. PMC 2376306. PMID 17768348.
  • Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (June 2004). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nature Biotechnology. 22 (6): 707–16. doi:10.1038/nbt971. PMID 15146197.
  • Harrington JJ, Sherf B, Rundlett S, Jackson PD, Perry R, Cain S, Leventhal C, Thornton M, Ramachandran R, Whittington J, Lerner L, Costanzo D, McElligott K, Boozer S, Mays R, Smith E, Veloso N, Klika A, Hess J, Cothren K, Lo K, Offenbacher J, Danzig J, Ducar M (May 2001). "Creation of genome-wide protein expression libraries using random activation of gene expression". Nature Biotechnology. 19 (5): 440–5. doi:10.1038/88107. PMID 11329013.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.