Glucose-6-phosphate dehydrogenase deficiency pathophysiology: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-msbeih@perfuse.org +msbeih@wikidoc.org, -psingh@perfuse.org +psingh13579@gmail.com, -agovi@perfuse.org +agovi@wikidoc.org, -rgudetti@perfuse.org +ravitheja.g@gmail.com, -lbiller@perfuse.org +lbiller@wikidoc.org,...)
No edit summary
Line 5: Line 5:


==Overview==
==Overview==
'''Glucose-6-phosphate dehydrogenase (G6PD) deficiency''' is an [[Sex-linked|X-linked recessive]] [[hereditary disease]] featuring abnormally low levels of the [[G6PD]] enzyme, which plays an important role in [[red blood cell]] function. Individuals with the disease may exhibit non-immune [[hemolytic anemia]] in response to a number of causes. It is closely linked to '''[[favism]]''', a disorder characterized by a hemolytic reaction to consumption of [[Vicia faba|broad bean]]s, with a name derived from the [[Italian language|Italian]] name of the broad bean (''fava''). Sometimes the name, [[favism]], is alternatively used to refer to the enzyme
 
deficiency as a whole.
==Pathophysiology==
==Pathophysiology==


* [[Glucose-6-phosphate dehydrogenase]] ([[G6PD]]) is an [[enzyme]] in the [[pentose phosphate pathway]], a [[metabolic pathway]] that supplies reducing energy to cells (most notably [[erythrocyte]]s) by maintaining the level of the [[co-enzyme]] [[nicotinamide adenine dinucleotide phosphate|nicotinamide adenine dinucleotide phosphate]] (NADPH).
*  
* The NADPH in turn maintains the level of [[glutathione]] in these cells that helps protect the red blood cells against [[oxidation|oxidative]] damage. G6PD converts [[glucose-6-phosphate]] into [[6-phosphoglucono-δ-lactone]] and is the rate-limiting enzyme of the ''pentose phosphate pathway''.
* Patients with [[G6PD deficiency]] are at risk of [[hemolytic anemia]] in states of [[oxidative stress]]. This can be in severe infection, [[medication]] and certain foods. [[Broad bean]]s contain high levels of vicine, divicine, convicine and isouramil — all are [[oxidant]]s.
* In states of oxidative stress, all remaining [[glutathione]] is consumed. Enzymes and other proteins (including [[hemoglobin]]) are subsequently damaged by the oxidants, leading to [[electrolyte]] imbalance, membrane cross-bonding and [[phagocytosis]] and [[spleen|splenic]] sequestration of red blood cells. The hemoglobin is metabolized to [[bilirubin]] (causing [[jaundice]] at high concentrations) or excreted directly by the [[kidney]] (causing [[acute renal failure]] in severe cases).
* Deficiency of G6PD in the alternative pathway causes the build up of glucose and thus there is an increase of [[advanced glycation endproduct]]s (AGE). The deficiency also causes a reduction of NADPH which is necessary for the formation of Nitric Oxide (NO). The high prevalence of [[diabetes mellitus type 2]] and [[hypertension]] in Afro-Caribbeans in the West could be directly related to G6PD deficiency.<ref>{{cite journal |author=Gaskin RS, Estwick D, Peddi R |title=G6PD deficiency: its role in the high prevalence of hypertension and diabetes mellitus |journal=Ethnicity & disease |volume=11 |issue=4 |pages=749–54 |year=2001 |pmid=11763298 |doi=}}</ref>
* Some other epidemiological reports have pointed out, however, that G6PD seems to decrease the susceptibility to [[cancer]], [[cardiovascular disease]] and [[stroke]].
* Although female carriers can have a mild form of G6PD deficiency (dependent on the degree of inactivation of the unaffected X chromosome - see ''[[lyonization]]''), homozygous females have been described; in these females there is co-incidence of a [[rare disease|rare]] [[immunology|immune disorder]] termed [[chronic granulomatous disease]] (CGD).


[[image:G6PD_mechanism.png|550px|left|Mechanism of G6PD]]
[[image:G6PD_mechanism.png|550px|left|Mechanism of G6PD]]
<br clear="center"/>
<br clear="center" />


==References==
==References==

Revision as of 21:06, 20 February 2018

Glucose-6-phosphate dehydrogenase deficiency Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Glucose-6-phosphate dehydrogenase deficiency from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Glucose-6-phosphate dehydrogenase deficiency pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Glucose-6-phosphate dehydrogenase deficiency pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Glucose-6-phosphate dehydrogenase deficiency pathophysiology

CDC on Glucose-6-phosphate dehydrogenase deficiency pathophysiology

Glucose-6-phosphate dehydrogenase deficiency pathophysiology in the news

Blogs on Glucose-6-phosphate dehydrogenase deficiency pathophysiology

Directions to Hospitals Treating Glucose-6-phosphate dehydrogenase deficiency

Risk calculators and risk factors for Glucose-6-phosphate dehydrogenase deficiency pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.D. [2]

Please help WikiDoc by adding content here. It's easy! Click here to learn about editing.

Overview

Pathophysiology

Mechanism of G6PD
Mechanism of G6PD


References


Template:WikiDoc Sources Need content